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Electric circuits are known to realize topological quadrupole insulators. We explore electric circuits made
of capacitors and inductors forming the breathing kagome and pyrochlore lattices. They are known to possess
three phases (trivial insulator, higher-order topological insulator, and metallic phases) in the tight-binding model,
where the topological phase is characterized by the emergence of zero-energy corner states. A topological phase
transition is induced by tuning continuously the capacitance, which is possible by using variable capacitors. It
is found that the two-point impedance yields huge resonance peaks when one node is taken at a corner in the
topological phase. It is a good signal to detect a topological phase transition. We also show that the topological
corner resonance is robust against the randomness of capacitance and inductance. Furthermore, the size of the
electric circuits can be quite small to realize the topological phase together with topological phase transitions.
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Introduction. Topological insulators and their generaliza-
tion to higher-order topological insulators [1–12] are fascinat-
ing topics in condensed-matter physics (CMP). They are char-
acterized by bulk symmetry and bulk topological numbers,
and observed by the emergence of topological zero-energy
boundary states. Especially, topological zero-energy corner
states emerge for second-order topological insulators (SOTIs)
in two dimensions and for third-order topological insulators
in three dimensions. They are robust against impurities. They
are studied mainly in fermionic systems in materials [13–15].
Actually, it is quite difficult to make an experimental obser-
vation of the topological corner states in CMP. Furthermore,
although topological phase transitions have been extensively
studied, an experimental observation is also very difficult in
CMP. On the other hand, these topological corner states have
already been observed experimentally in phononic systems
[16–18], microwave systems [19], photonic systems [20], and
electric circuits [21].

Topological corner states in square lattices are experi-
mentally realized in electric circuits [21,22]. Indeed, the
Su-Schrieffer-Heeger model [23,24], the honeycomb lattice
[23,24], and Weyl semimetals [23,25] have already been im-
plemented in electric circuits. The impedance is a measurable
quantity determining whether or not the system is topological,
where topological boundary resonance effects occur in the
topological phases. Here, we note that the emergence of
topological corner states has been predicted [10] also in the
breathing kagome and pyrochlore lattices in the context of
CMP. Thus, it is an interesting problem to study the measur-
able quantities in topological electric circuits corresponding
to these lattices.

Let us explain how to construct a topological electric
circuit by taking an instance of the breathing kagome lattice.
The breathing kagome lattice consists of lattice sites and two
types of links indicated in red and cyan as in Fig. 1(c). We
insert capacitors with capacitance CA and CB to links in red
and cyan, respectively, as in Fig. 1(a). Then, we connect each

lattice site to the ground via an inductor with inductance L,
as illustrated in Fig. 1(b). A lattice site is called a node in the
electric circuit. It is clear that this method is applicable to any
lattices we encounter in CMP.

In this Rapid Communication, we study electric circuits
corresponding to the breathing kagome and pyrochlore lat-
tices. Topological phase transitions in electric circuits are well
signaled by measuring the impedance, where huge resonance
peaks emerge at the corners in the topological phase. We
find the topological robustness, that is, this resonance is
robust against the randomness of capacitance and inductance.
We explicitly investigate a triangular geometry made of the
breathing kagome circuit, where we define its size � by the
number of small upper triangles along one edge: See Fig. 1.
We also study a tetrahedron geometry made of the breathing
pyrochlore circuit.

Topological electric circuits. Electric circuits are character-
ized by the Kirchhoff’s current law [21,23,24],

d

dt
Ia =

∑
b

Cab

d2

dt2
(Va − Vb ) + 1

La

Va, (1)

where Ia is the current between node a and the ground, Va is
the voltage at node a, Cab is the capacitance between nodes a

and b, 1/La is the inverse of the inductance at node a, and the
sum is taken over all adjacent nodes b. See an example of the
breathing kagome circuit in Fig. 1. When we apply an ac field
V (t ) = V (0)eiωt , the Kirchhoff’s law is rewritten as

Ia (ω) =
∑

b

Jab(ω)Vb(ω), (2)

with

Jab(ω) = iω

[
Cab + δab

(∑
c

Cac − 1

ω2La

)]
, (3)

where the matrix J (ω) = {Jab(ω)} is called the circuit
Laplacian. It is a linear operator and corresponds to a
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FIG. 1. Illustration of the breathing kagome circuit composed of
two types of capacitors (with capacitance CA and CB ) and inductors
(with inductance L). Adjacent nodes are connected by capacitors and
each node is grounded by an inductor. The size of the triangle is
� = 6.

tight-binding Hamiltonian H in CMP via the relation
Jab(ω) = iωHab(ω) with the Hamiltonian being [21,23]

Hab(ω) = Cab + δab

(∑
c

Cac − 1

ω2La

)
. (4)

The capacitor between adjacent nodes a and b corresponds
to the transfer integral tab ↔ Cab between adjacent sites a

and b, while the inductor attached to node a corresponds to
the on-site potential Ua ↔ ∑

b Cab − (1/ω2La ) at the site a.
Later we present an explicit correspondence in the case of the
breathing kagome lattice.

By diagonalizing the matrix J (ω) we obtain the eigenvalue
jn and the associated eigenmode |ψn〉. Then, we have J (ω) =∑

n jn|ψn〉〈ψn|. The eigenmode |ψn〉 is a vector whose com-
ponents are labeled by node a; |ψn〉 = {ψn,a}. The admittance
eigenvalue jn is a measurable quantity [24].

The two-point impedance is given by [21,23]

Zab = Va − Vb

Iab

=
∑

n

|ψn,a − ψn,b|2
jn

, (5)

and determined by measuring the voltage response by running
a current between two nodes a and b. The key property is
that Zab diverges in the presence of zero-admittance modes
(jn = 0) provided ψn,a �= ψn,b. Hence, the emergence of zero-
admittance modes may be detected by measuring the two-
point impedance.

Breathing kagome circuit. The electric circuits correspond-
ing to the honeycomb lattice have already been studied
[23,24]. Here, we investigate them for the breathing kagome
lattice, which is known to realize a SOTI in CMP. We con-
sider an infinite circuit which is periodic with a unit cell. It
corresponds to a bulk system in CMP.

The circuit Laplacian (3) for an infinite circuit reads

J = iω

[
2(CA + CB ) − 1

ω2L

]
I − iωHkagome, (6)

where I is the unit matrix and

Hkagome =
⎛
⎝ 0 h12 h13

h∗
12 0 h23

h∗
13 h∗

23 0

⎞
⎠, (7)

with

h12 = CA + CBe−i(kx/2+√
3ky/2),

h13 = CA + CBe−ikx ,

h23 = CA + CBei(−kx/2+√
3ky/2). (8)

Here, CA and CB are capacitances shown in Fig. 1(a). We note
that the Hamiltonian Hkagome is precisely the same one that
describes the tight-binding model for the breathing kagome
lattice by replacing CA and CB with the hopping parameters
ta and tb, respectively: See Eq. (1) of Ref. [10]. Consequently,
the system (7) for the breathing kagome circuit is topological
for −1 < CA/CB < 1/2, trivial for CA/CB < −1, and metal-
lic for CA/CB > 1/2. Consequently, the system undergoes
topological phase transitions at CA/CB = −1 between the
trivial and topological phases, and at CA/CB = 1/2 between
the topological and metallic phases. In contrast to the case
of CMP, it will be rather easy to make an experimental ob-
servation of these phase transitions by tuning the capacitance
continuously. We note that negative capacitance is possible
[21] with the use of inductors by identifying C ≡ −1/ω2L.

We investigate the topological phase in triangular geometry
[Fig. 1(a)], where topological zero-admittance modes are
present at the corners. Due to the presence of zero-admittance
modes, the second term in the right-hand side of Eq. (6)
vanishes. The resultant equation is a standard formula for
the LC circuit with capacitance CA + CB . The resonant fre-
quency is given by the zero of the identity matrix and given
by ωc = 1/

√
2L(CA + CB ).

The behavior of the impedance around ωc is expressed as

|Z| ∝ 1/
(
ω2 − ω2

c

)
, (9)

which yields a huge resonance peak at the frequency ωc.
There is no divergence because of the finite-size effect. On
the other hand, when there are no zero-admittance modes, the
impedance is finite. The metallic phase is intriguing due to
the presence of the sea of zero-admittance modes. As we shall
see soon, there is no resonance enhancement in |Z|. We expect
that the emergence of the resonant modes is a signal that the
electric circuit is in a topological phase.

When we use the capacitor of the order of 1 μF and the
inductor of the order 1 μH, the resonance occurs around
1 MHz and the impedance is of the order of 1 �, while the
resonant impedance becomes to the order of 109 �.

Corner impedance. We consider a triangle structure made
of the breathing kagome circuit (Fig. 1). We first show the ad-
mittance spectrum in Fig. 2(b), where zero-admittance corner
modes emerge only in the topological phase.

We next investigate the two-point impedance. We fix one
node a arbitrarily, and measure the impedance Zab between
node a and another node b. By moving b over all nodes,
we obtain a space distribution of the two-point impedance.
We show the results in the three phases in Figs. 2(d)–2(f),
where node a is taken around the center of the triangle. The
essential feature is a strong enhancement of the two-point
impedance in the topological phase when node b is taken at
three corners. We have found that this essential feature does
not depend on the position of the fixed node a provided it is
not taken on the corners. When node a is taken on a corner,
the strong enhancement appears only when node b is taken
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FIG. 2. Two-point impedance for the breathing kagome circuit.
(a) The maximum value of the two-point impedance as a function
of CA/CB . (b) The admittance spectrum at the resonant frequency
ω = ωc as a function of CA/CB . (c) The numerator of the impedance∑3

n=1 |ψn,a − ψn,b|2. Spatial distribution of two-point impedance (d)
in the trivial phase, (e) in the topological phase, and (f) in the metallic
phase. One node is fixed in the vicinity of the triangle center. The
absolute value of the impedance is represented by the length of the
tubes. We have taken CB = 1 μF and L = 1 μH. We use a triangle
with � = 6.

at the other two corners because Zaa = 0. The huge peak in
Zab is easily understood in the topological phase due to the
zero-admittance corner modes as we have discussed below
Eq. (9). We find that the strongest resonance occurs when two
nodes a and b are taken at two different corners.

We show the two-point impedance in Fig. 3, where the
two nodes are fixed at two different corners. We show the

impedance as a function of ω/ωc. The impedance displays
a huge peak at ω = ωc in the topological phase, while there
are no such peaks in the trivial phase and the metallic phase.
We also show the impedance at the resonant frequency ωc as a
function of CA/CB in Fig. 2(a). It becomes huge rapidly in the
topological phase, which implies that it is a good indicator to
observe topological phases. Remarkably, the resonance peak
signaling the topological phase is clearly present in such a
small triangle that has the size � = 2: See Figs. 3(a1′)–3(c1′).

Naively, we expect that the impedance takes a large
value also for the metallic phase since there are many zero-
admittance modes although they are not topological. However,
this is not the case. We show the numerator |ψn,a − ψn,b|2
as a function of CA/CB , where the sum of n is taken only
for the three zero-admittance modes in Fig. 2(c). It takes a
value around 2 only for the topological phase representing
the two localization of the corner modes. On the other hand,
in the metallic phase, it is very small, |ψn,a − ψn,b|2 ∝ 1/N ,
where N is the number of nodes. Accordingly, the impedance
is small in the metallic phase although there are plenty of
zero-admittance modes.

Effects of randomness. We next study the effects of ran-
domness in capacitors and inductors. For this purpose, we
make substitution Ci �→ Ci (1 + ηi ) and Li �→ Li (1 + ξi ),
where ηi and ξi are uniformly distributed random variables
ranging from −δ to δ. We have calculated the impedance by
choosing δ = 0.05.

We show the ω dependence of the impedance in Fig. 3. The
prominent peak signaling the topological resonance remains
as it is. On the other hand, all other peaks are reduced. The
results indicate the topological robustness of the topological
corner resonance.

Breathing pyrochlore circuit. A natural extension of the
breathing kagome circuit to three dimensions is the breathing
pyrochlore circuit, where a third-order topological insulator is
realized [10]. The circuit Laplacian is given by

L = iω

[
3(CA + CB ) − 1

ω2L

]
I − iωHpyro, (10)

FIG. 3. Corner impedance |Z| as a function of ω/ωc of the triangle made of the breathing kagome circuit (a) in the trivial phase (CA/CB =
−1.5), (b) in the topological phase (CA/CB = 0.25), and (c) in the metallic phase (CA/CB = 1.5). Red circles indicate the resonance peak
arising from the topological corner modes. The height of the peak is as huge as 109 � in the case of � = 9. The size � is shown in the figure.
(a1)–(c1′) Corner impedance |Z| without randomness. (a2)–(c2′) Corresponding impedance |Z| in the presence of 5% randomness. The inset
of (c1′) illustrates the breathing kagome circuit with the size � = 2.
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where

Hpyro =

⎛
⎜⎝

0 h12 h13 h14

h∗
12 0 h23 h24

h∗
13 h∗

23 0 h34

h∗
14 h∗

24 h∗
34 0

⎞
⎟⎠, (11)

with

h12 = CA + CBe−i(kx+ky )/2,

h13 = CA + CBe−i(ky+kz )/2,

h14 = CA + CBe−i(kz+kx )/2,

h23 = CA + CBe−i(kz−kx )/2,

h24 = CA + CBe−i(−ky+kz )/2,

h34 = CA + CBe−i(kx−ky )/2. (12)

The resonant frequency is ωc = 1/
√

3L(CA + CB ). The topo-
logical phase diagram of the breathing pyrochlore circuit
is the same as that of the breathing kagome circuit. We
show the admittance spectrum of the tetrahedron in Fig. 4(b),
where the four topological corner modes appear in the topo-
logical phase. We show the two-point impedance between two
nodes as a function of CA/CB in Fig. 4(a), which becomes
huge in the topological phase. We also show the numerator
|ψn,a − ψn,b|2, where the sum of n is taken only for the four
zero-admittance modes in Fig. 4(c). A space distribution of
the two-point impedance is shown in the three phases in
Figs. 4(d)–4(f).

Discussion. We have shown that the topological corner
impedance is a good signal to detect a topological phase
transition in electric circuits corresponding to the breathing
kagome and pyrochlore lattices, where the huge resonance
peak emerges only in the topological phase. The topological
phase transition is controlled by tuning variable capacitors. It
is not necessary to tune the capacitance so precisely because
of the topological robustness. Furthermore, to realize the
topological phase together with topological phase transitions,
the size of the electric circuit can be quite small.
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