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Topological multipole insulators are a class of higher-order topological insulators (HOTIs) in which robust
fractional corner charges appear due to a quantized electric multipole moment of the bulk. This bulk-corner
correspondence has been expressed in terms of a topological invariant computed using the eigenstates of the
Wilson loop operator, a so-called “nested Wilson loop” procedure. We show that, similar to the unitary Floquet
operator describing periodically driven systems, the unitary Wilson loop operator can realize “anomalous” phases
that are topologically nontrivial despite having a trivial topological invariant. We introduce a concrete example
of an anomalous HOTI, which has a quantized bulk quadrupole moment and fractional corner charges, but a
vanishing nested Wilson loop index. An invariant able to capture the topology of this phase is then constructed.
Our work shows that anomalous topological phases, previously thought to be unique to periodically driven
systems, can occur and be used to understand purely time-independent HOTIs.
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Introduction. In topological insulators, bulk-boundary cor-
respondence relates the presence of robust boundary phe-
nomena to a quantity determined from the bulk system, a
topological invariant [1–5]. In strong topological insulators,
the D-dimensional bulk is gapped and the topological in-
variant counts the number of gapless modes present on the
(D − 1)-dimensional boundaries of the crystal. In the recently
introduced higher-order topological insulators (HOTIs) [6–
31], however, both the bulk and the boundaries are gapped,
so that standard bulk-boundary correspondence no longer
applies. In some cases, the HOTI invariant determines the
presence of topologically protected gapless modes on some
regions of the boundary which have dimensions (D − 2) or
less, such as the corners or hinges of a crystal [9–19,32].

Gapless modes on corners or hinges are not the only
manifestations of topology in a HOTI, however. Extending the
notion of bulk-boundary correspondence to that of bulk-hinge
or bulk-corner correspondence allows for a greater variety
of boundary phenomena to be associated with a topolog-
ically nontrivial bulk. In seminal works, Benalcazar et al.
have introduced a class of HOTIs dubbed “quantized electric
multipole insulators” [6,7], whose nontrivial nature leads to
topologically protected corner charges, not states. Among
others, they considered a two-dimensional (2D) topological
quadrupole insulator (TQI), whose topological invariant is a
bulk quadrupole moment qxy . The latter is quantized to 0 (triv-
ial) or e

2 (nontrivial) by lattice symmetries, with e the electron
charge. This leads to quantized tangential edge polarizations
and fractional corner charges. The defining relation of this
HOTI is

qxy = ∣∣pedge
x

∣∣ = ∣∣pedge
y

∣∣ = |Qcorner|, (1)

where p
edge
x and p

edge
y are the tangential polarizations per unit

length of the x and y edge and Qcorner is the fractional corner
charge. The above relations illustrate the bulk nature of the

TQI, distinguishing it from phases in which the corner charge
arises only due to “free” electric dipoles at the boundaries [6].
In the latter case, Qcorner = p

edge
x + p

edge
y , violating Eq. (1).

To compute the bulk quadrupole moment, Refs. [6,7] use
the Wilson loop, a unitary operator whose spectrum repre-
sents the Wannier centers of electronic wave functions in the
crystal. In the TQI these centers form gapped Wannier bands,
and the quadrupole moment is determined from a topological
invariant associated with these bands. An essential observa-
tion in the context of this Rapid Communication is that this
procedure, termed a “nested Wilson loop” formalism, is unlike
those used for conventional topological phases. It determines
the invariant from the eigenstates of a unitary operator and not
directly from those of the Hermitian, Hamiltonian operator.

The topological phases of unitary operators are well stud-
ied in the context of periodically driven systems [33–44],
which are usually described in terms of the time evolution
operator over one driving period—the Floquet operator. Its
unitary nature means the spectrum is 2π periodic, enabling
so-called “anomalous topological phases” [33,39–44]. In the
latter, the invariant associated with the Floquet operator van-
ishes, failing to capture the topologically nontrivial nature of
the bulk. Anomalous topological phases so far have been hall-
marks of periodically driven systems, and are considered im-
possible to achieve in a time-independent setting. Ultimately,
however, their presence is possible solely due to the fact that
nontrivial topology is realized using a unitary operator instead
of a Hermitian one. Is it then possible for the unitary Wilson
loop of a HOTI to host such anomalous phases?

In this Rapid Communication, we show that time-
independent HOTIs can indeed host anomalous phases, intro-
ducing a class of systems we dub anomalous HOTIs. Using the
familiar language of Majorana bound states, we build a model
of an electric insulator with a quantized bulk quadrupole
moment and fractional corner charges. The system obeys the
TQI relation Eq. (1), but has a vanishing nested Wilson loop
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FIG. 1. (a) TQI described by Eq. (2). Solid/dashed lines rep-
resent hoppings with positive/negative amplitudes, the red lines
represent intracell hoppings γ , and the black ones intercell hoppings
λ. Unit cells are marked by gray squares, with blue and yellow circles
denoting sites belonging to different sublattices. (b) Charge density
(Q) plot for a finite system consisting of 24 × 24 unit cells, where Rx

and Ry label the unit cells in real space. The excess corner charge is
±1/2. (c) Bulk Wannier bands of Wx,k=(π,π ), obtained by discretizing
the BZ using 51 k points. (d) Wannier spectrum in the strip geometry
(infinite in x, 20 unit cells in y). The ν = ±0.5 edge modes are shown
in red. (e) Tangential polarization along x as a function of position
in the y direction, Ry . The integrated polarization over half of the
lattice sites yields ±1/2. We use γ = 0.5 and λ = 1. As explained in
Refs. [6,7], to fix a sign for the polarization and the corner charges,
we add a term δτzσ0 to Eq. (2) (δ = 10−3), which weakly breaks
the two mirror symmetries Mx and My but not their product, the
inversion symmetry I = MxMy .

invariant. We then adapt this formalism and formulate an
invariant which correctly captures the topologically nontrivial
nature of the phase.

Nested Wilson loops. We begin by briefly reviewing the
previously introduced TQI and the nested Wilson loop pro-
cedure [6,7]. We consider a system of spinless, noninter-
acting fermions on a square lattice with dimerized nearest-
neighbor hoppings and a π flux threading every plaquette [see
Fig. 1(a)]. Setting h̄ = 1 and the lattice constant a = 1, the
Hamiltonian is

h(k) = (γ + λ cos kx )τxσ0 − λ sin kxτyσz

− (γ + λ cos ky )τyσy − λ sin kyτyσx, (2)

where k = (kx, ky ), τ Pauli matrices act on the sublattice
degree of freedom, and σ ’s parametrize the degree of freedom
associated with the two sites within a sublattice. Intracell and
intercell hoppings are γ and λ, respectively.

For |γ | < |λ|, the system obeys all the requirements of a
TQI, Eq. (1). The 2D bulk is gapped and each edge forms
a nontrivial Su-Schrieffer-Heeger (SSH) chain [45], leading
to a single protected zero mode at every corner. At half
filling, there are Nocc = 2 occupied bands in the bulk and
the four degenerate corner states contain two electrons in
total, leading to a fractional corner charge |Qcorner| = 1/2 [see
Fig. 1(b)], where we set the electron charge e = 1 throughout
the following.

To determine the polarizations, we define Wilson loop
operators describing parallel transport of eigenstates along
a closed path p in the Brillouin zone (BZ). In the thermo-
dynamic limit, the Wilson loop [46,47] is a path-ordered

exponential (denoted exp)

Wp = exp

(
−i

∮
p

dp · Ak

)
, (3)

where Ak is the Berry connection of the occupied Hamilto-
nian eigenstates |uk〉. As such, Ak is an Nocc × Nocc matrix
with elements [Ak]mn = −i〈um

k |∇ku
n
k〉. We only consider

Wilson loops computed on noncontractible paths of the BZ
(so-called large Wilson loops). We define Wx,k on a path
along kx , from k to k + (2π, 0), and similarly Wy,k from k
to k + (0, 2π ), where k is called the base point of the Wilson
loop. Diagonalizing these unitary operators,

Wx,k
∣∣νj

x,k

〉 = exp
[
i2πνj

x (ky )
] ∣∣νj

x,k

〉
, (4)

where j ∈ {1, . . . , Nocc}, yields eigenstates |νj

x,k〉 with com-

ponents [νj

x,k]
n

as well as eigenphases ν
j
x . Note that while in

general eigenstates depend explicitly on the base point k, the
eigenvalues are independent of the momentum along the path.
As such, ν

j
x is only a function of ky , while the eigenphase of

Wy,k, ν
j
y , only depends on kx . Since the model Eq. (2) has a

fourfold rotation symmetry, we will only focus on Wx,k in the
remainder of this section, with the understanding that Wy,k
gives identical results.

We numerically determine the Wilson loop operators by
discretizing the BZ. The procedure is thoroughly explained in
Refs. [6,7], so we do not repeat it here. In the Supplemental
Material [48], however, we give a detailed account of these
steps and include the code library we have developed for
this purpose, which is general enough to be used for a large
variety of HOTIs. The two eigenphases ν

j
x obtained from

Eq. (4) are shown in Fig. 1(c). They form gapped Wannier
bands which are positioned symmetrically around 0, which
is a consequence of the two mirror symmetries Mx = τxσz

and My = τxσx acting in the x and y directions, respectively.
Since the bulk polarization is given by the sum of Wilson
loop eigenphases, px (ky ) = ∑

j ν
j
x (ky ), it vanishes at every

momentum, a necessary requirement for a TQI [6,7]. Of
course, due to fourfold rotation the same result holds for
py (kx ).

The key insight behind the nested Wilson loop formalism is
to notice that, since the Wannier bands are gapped, they carry
their own topological invariants. Nontrivial Wannier bands
then lead to topologically protected Wannier modes at the
boundaries of the system. To introduce boundaries, we con-
sider Eq. (2) in a strip geometry, infinite along kx and contain-
ing 20 unit cells in the y direction. From the strip Hamiltonian
h(kx, Ry ), where Ry labels the unit cells, we compute the
large Wilson loop along the only remaining momentum kx

and show its eigenphases in Fig. 1(d). The gapped Wannier
centers are accompanied by topological modes (shown in
red) which are pinned to νx = ±0.5 by mirror symmetry.
These are localized on opposite boundaries of the system,
leading to a quantized edge polarization. We confirm this in
Fig. 1(e), which shows the tangential polarization px in the
strip geometry. While there is no polarization in the bulk,
the boundaries have a quantized polarization ±1/2, which
accompanies the fractional corner charges.
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Since |pedge
x | = |pedge

y | = |Qcorner| = 1/2, the origin of the
corner charges must be due to a bulk quadrupole moment
qxy = 1/2. To compute the latter, Refs. [6,7] use the topolog-
ical invariants associated with the Wannier bands in Fig. 1(c).
They split the Wannier bands into two sectors, an “occupied”
and an “unoccupied” one,

ν−
x = {

νj
x (ky ) such that νj

x (ky ) < 0
}
,

ν+
x = {

νj
x (ky ) such that νj

x (ky ) > 0
}
.

(5)

Notice that, similar to Floquet systems, this distinction is not
well defined, since the whole spectrum is 2π periodic, and
there is no notion of a band being “above” or “below” another.
Nevertheless, this splitting allows one to separate the space
of occupied Hamiltonian eigenstates into two Wannier band
subspaces, corresponding to Wannier states

∣∣w±,r
x,k

〉 =
Nocc∑
n=1

∣∣un
k

〉 [
ν

±,r
x,k

]n
. (6)

Here, the superscript ± denotes the Wannier band subspace,
with r ∈ {1, . . . , Nocc/2} labeling the bands within a sub-
space. The nontrivial nature of each of the Wannier subspaces
is then determined from the Wannier sector polarization. In
the thermodynamic limit,

p
ν±
x

y = − 1

(2π )2

∫
BZ

Tr
[
Ãν±

x

y,k

]
d2k (7)

is a Z2 topological index, p
ν±
x

y ∈ {0, 1/2}, where

[Ãν±
x

y,k]
mn = −i 〈w±,m

x,k | ∂ky
|w±,n

x,k 〉 are the matrix elements of
the (Nocc/2) × (Nocc/2) Berry connection of the ± Wannier
subspace. In the case of Eq. (2), Nocc = 2 so the connection

is a scalar. We find p
ν±
x

y = p
ν±
y

x = 1/2, in agreement with
Refs. [6,7], which define the bulk quadrupole invariant as

qxy = p
ν+
x

y p
ν+
y

x + p
ν−
x

y p
ν−
y

x , (8)

obtaining a quantized value qxy = 1/2.
Anomalous HOTI. In a HOTI, nontrivial Wannier sector

invariants, Eq. (7), imply topological Wannier edge modes,
leading to quantized edge polarizations and fractional corner
charges. The converse statement is, however, not true. As we
show in the following, due to the unitary nature of the Wilson
loop, Wannier edge modes can occur even if the subspaces ν±

x

have trivial invariants.
To model an anomalous HOTI, we consider a 2D array of

Majorana nanowires [49,50]. The wires are coupled to each
other in a dimerized fashion, such that their end modes gap
out in pairs, leaving topologically protected zero modes only
at the corners [see Fig. 2(a)]. In this respect, the system is
very similar to the TQI of Eq. (2): Each corner state is a
simultaneous topological mode of two nontrivial edges. The
horizontal edges of Fig. 2(a) are topological nanowires, while
the vertical edges are Kitaev chains in the nontrivial phase
[51]. The Hamiltonian reads

H (k) = [2tx (1 − cos kx ) − μ]τzσ0η0

+Vzτ0σzη0 + �τxσ0η0 + α sin kxτzσyη0

−β1τzσxηy−β2 sin kyτzσxηx+β2 cos kyτzσxηy, (9)

FIG. 2. (a) Array of Majorana wires (black lines), coupled in
a dimerized fashion (gray solid/dashed lines). The unit cell (blue)
contains two wires. Majorana modes which are gapped out by the
dimerized coupling are shown in dark red, whereas protected corner
modes are shown in bright red. (b) Charge density plot of a system
of 24 × 24 unit cells. The integrated excess charge is ±1/2 for each
corner. (c), (d) Bulk Wannier bands of Wx,(π,π ) and Wy,(π,π ). (e),
(f) Wannier spectra in a strip geometry, infinite along either (e) kx

or (f) ky , with 40 unit cells in the finite direction. Both spectra
show edge modes at ν = ±0.5 (red), but the strip along kx also
shows topological 0 modes (blue). The insets show closeups of the
gaps around ν = 0. (g), (h) The corresponding edge polarization
is quantized to ±1/2 in both cases. To fix the sign of the charge
and polarization, we add a mirror symmetry breaking term δτyσyηz

(δ = 10−2).

where tx and α are the nearest-neighbor hopping strength
and the spin-orbit coupling (SOC) strength in the x direc-
tion (along the wires), μ is the chemical potential, Vz is
the Zeeman energy, and � is the superconducting pairing
strength. In the y direction, β1 < β2 are dimerized Rashba
SOC terms connecting neighboring wires within and between
unit cells, whereas Pauli matrices τ , σ , and η act on the
particle-hole, spin, and wire space, respectively. We set α =
3.7, tx = 1.7, μ = −0.9, � = 1.6, Vz = 2.7, β1 = 0.8, and
β2 = 6.2 throughout the following.

As is conventional when describing the topology of
superconductors [52,53], in the following we neglect the
Bogoliubov–de Gennes (BdG) nature of the Hamiltonian
Eq. (9), treating it instead as a charge-conserving Bloch
Hamiltonian with a well-defined filling. As such, from now on
we consider each of the four corner modes not as a Majorana
bound state, but as an electron state which may be filled
independently of the others. At half filling, there are Nocc = 4
occupied bulk bands, and each corner mode is half filled, such
that |Qcorner| = 1/2 [see Fig. 2(b)], the first indication of a
TQI.

We follow the procedure summarized in the previous sec-
tion, and determine the bulk and edge polarizations. Since
Eq. (9) lacks rotation symmetry, we show the eigenphases
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of both Wx,(π,π ) and Wy,(π,π ) in Figs. 2(c) and 2(d). There
are four Wannier bands in total, such that each Wannier
sector [Eq. (5)] contains two bands, shown in red and black.
Similarly to the TQI of Eq. (2), the bands are gapped and
positioned symmetrically around 0 due to mirror symme-
tries (here, Mx = ηzσz and My = ηy), which leads to a
vanishing bulk polarization. The behavior of Wy,(π,π ) is
identical to that of the previous model: Topological Wan-
nier edge modes appear at νy = ±0.5 [Fig. 2(f)], lead-
ing to edge polarizations which are quantized to ±1/2
[Fig. 2(h)].

The crucial difference with respect to Eq. (2) is given
by the Wannier spectrum associated with Wx [Fig. 2(e)]. In
a strip geometry infinite along kx , the Wilson loop shows
two different kinds of edge modes. The first (shown in red)
corresponds to π eigenphases of the Wilson loop, ν = ±0.5,
leading to quantized edge polarizations. The second kind of
topological edge mode (shown in blue) has ν = 0 instead.
Both 0 and π modes are compatible with the mirror symmetry,
which renders the spectrum ±ν symmetric. However, since
the polarization is given by the eigenphases of the Wilson
loop, the zero modes do not contribute to the edge polar-
izations, even though their eigenstates are localized on the
boundaries of the system [48].

Figure 2(e) is analogous to the spectrum of a one-
dimensional (1D) Floquet topological phase, where it is
known that two kinds of protected modes can occur, at 0
and at π quasienergies, respectively [54–58]. When both
types of topological boundary states are present in the same
system, the resulting phase is termed “anomalous,” since the
topological invariant associated with the bulk Floquet operator
vanishes. The same occurs for the Wilson loop operators of
Fig. 2. For Wy,(π,π ), only π modes are present so the Wannier

sector polarizations [Eq. (7)] are p
ν±
y

x = 1/2, as expected. For
Wx,(π,π ), on the other hand, we find trivial Wannier subspace

invariants p
ν±
x

y = 0.
Taken by themselves, the Wannier sector invariants would

indicate a trivial HOTI, qxy = 0, as per Eq. (8). We know,
however, that this is not the case, since both of the bulk Wilson
loops show topological edge modes when boundaries are
introduced. These modes lead to quantized edge polarizations
equal to the corner charge, |pedge

x | = |pedge
y | = |Qcorner| =

1/2, which is the defining relation of a TQI, Eq. (1). To over-
come this discrepancy, we adapt the nested Wilson procedure
and introduce a different bulk index. The key observation
is that for the model Eq. (9) there are two Wannier bands
in each of the ν±

x subspaces, such that the associated Berry

connection of each sector, Ãν±
x

y,k, is a 2 × 2 matrix. This
means that the Wannier sector polarization Eq. (7) effectively
sums the invariants of the two Wannier bands, so that two
nontrivial bands lead to a vanishing topological index. We
take this into account and compute the topological index of
each band separately, splitting the trace in Eq. (7) into two

separate integrals, p
ν±
x

y = p
ν±
x ,1

y + p
ν±
x ,2

y , where the superscript
1,2 denotes the index of the black and red Wannier bands of
Figs. 2(c) and 2(d). Note that since the Wannier bands do not
cross, the index of each band is well defined and quantized to
0 or 1/2 [48]. This allows us to redefine the bulk quadrupole

index of Eq. (8) as

qxy =
Nocc/2∑
r=1

p
ν+
x ,r

y p
ν+
y ,r

x + p
ν−
x ,r

y p
ν−
y ,r

x . (10)

We find that in each Wannier sector both Wannier bands of
Wx,k are nontrivial p

ν±
x ,1

y = p
ν±
x ,2

y = 1/2. On the other hand,

for Wy,k only p
ν±
y ,1

x is nonzero, such that Eq. (10) gives qxy =
1/2, signaling a nontrivial TQI. In the Supplemental Material
we further confirm these values of the topological invariants
by showing the phase transitions that occur between Wannier
bands as a function of model parameters β1,2, Vz, and μ.
Note that since |pedge

x | = |pedge
y | = |Qcorner| = 1/2, as shown

in Fig. 2, the index qxy = 1/2 defined in Eq. (10) represents
the physical quadrupole moment of this system.

Conclusion. We have shown that anomalous topological
phases, previously considered unique to periodically driven
systems, can occur in time-independent HOTIs. We have
introduced an example of such an anomalous HOTI, in which
the unitary Wilson loop has topological properties analo-
gous to those of an anomalous Floquet operator. Topological
boundary states appear both at 0 and at π values of the
eigenphase, leading to a system with quantized edge polar-
izations and corner charges, but in which the nested Wilson
loop index [Eqs. (7) and (8)] vanishes. A bulk invariant has
been introduced [Eq. (10)], which takes into account the
topological properties of each individual Wannier band, as
opposed to those of the entire Wannier sector.

There are, however, important differences between the
topology of a Wilson loop and that of the Floquet operator
describing a driven system. In Floquet systems, observing
topological phases is often hindered by the requirement of
filling specific bands [59]. Further, when interactions are
present, Floquet band populations are known to evolve to-
wards a featureless infinite temperature state [60,61], unless
the system is many-body localized. In contrast, in static HO-
TIs there is no notion of “filling” for the bands of the Wilson
loop. The latter simply describe the positions of ground-state
quasiparticles relative to the unit cells, and can be defined also
in interacting systems [62,63]. As such, HOTIs may provide
a way to observe anomalous phases, while mitigating the
above-mentioned difficulties.

Our work bridges the gap between the study of topological
phases in static and time-periodic systems, and as such opens
many different directions of future research. For instance,
anomalous HOTIs can be extended to higher multipole mo-
ments, and we conjecture that a three-dimensional (3D) array
of coupled nanowires would realize a system with corner
charges and an anomalous octupole index. Further, it is in-
teresting to consider whether both 0 and π modes can occur
in a system with only two Wannier bands, such as the one
of Fig. 1. In that case, neither the index of Eq. (8) nor that
of Eq. (10) would be adequate to characterize the nontrivial
nature of the phase, prompting the search for other topological
invariants. Finally, we remark that anomalous phases are not
restricted to insulating systems, and they should be possible
also in higher-order topological semimetals. In fact, the gap-
less Wannier spectrum shown in Fig. 4(d) of Ref. [64] shows
protected Dirac cones occurring simultaneously at ν = 0 and
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ν = ±1/2, a behavior usually associated with anomalous
Floquet semimetals [65–68].

Acknowledgments. We thank Ulrike Nitzsche for technical
assistance.

[1] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Quantized Hall Conductance in a Two-Dimensional Peri-
odic Potential, Phys. Rev. Lett. 49, 405 (1982).

[2] C. L. Kane and E. J. Mele, Z2 Topological Order and the
Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005).

[3] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[4] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[5] B. A. Bernevig, Topological Insulators and Topological Super-
conductors (Princeton University Press, Princeton, NJ, 2013).

[6] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized
electric multipole insulators, Science 357, 61 (2017).

[7] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[8] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and
P. W. Brouwer, Reflection-Symmetric Second-Order Topolog-
ical Insulators and Superconductors, Phys. Rev. Lett. 119,
246401 (2017).

[9] S. Hayashi, Topological invariants and corner states for Hamil-
tonians on a three-dimensional lattice, Commun. Math. Phys.
364, 343 (2018).

[10] Z. Song, Z. Fang, and C. Fang, (d − 2)-Dimensional Edge
States of Rotation Symmetry Protected Topological States,
Phys. Rev. Lett. 119, 246402 (2017).

[11] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang,
S. S. P. Parkin, B. A. Bernevig, and T. Neupert, Higher-order
topological insulators, Sci. Adv. 4, 0346 (2018).

[12] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A.
Murani, S. Sengupta, A. Yu. Kasumov, R. Deblock, S. Jeon, I.
Drozdov, H. Bouchiat, S. Guéron, A. Yazdani, B. A. Bernevig,
and T. Neupert, Higher-order topology in bismuth, Nat. Phys.
14, 918 (2018).

[13] Y. Wang, M. Lin, and T. L. Hughes, Weak-pairing higher order
topological superconductors, Phys. Rev. B 98, 165144 (2018).

[14] M. Ezawa, Higher-Order Topological Insulators and Semimet-
als on the Breathing Kagome and Pyrochlore Lattices, Phys.
Rev. Lett. 120, 026801 (2018).

[15] M. Ezawa, Magnetic second-order topological insulators and
semimetals, Phys. Rev. B 97, 155305 (2018).

[16] M. Ezawa, Strong and weak second-order topological insulators
with hexagonal symmetry and Z3 index, Phys. Rev. B 97,
241402(R) (2018).

[17] E. Khalaf, Higher-order topological insulators and supercon-
ductors protected by inversion symmetry, Phys. Rev. B 97,
205136 (2018).

[18] V. Dwivedi, C. Hickey, T. Eschmann, and S. Trebst, Majorana
corner modes in a second-order Kitaev spin liquid, Phys. Rev.
B 98, 054432 (2018).

[19] G. van Miert and C. Ortix, Higher-order topological insulators
protected by inversion and rotoinversion symmetries, Phys. Rev.
B 98, 081110 (2018).

[20] M. Ezawa, Minimal models for Wannier-type higher-order
topological insulators and phosphorene, Phys. Rev. B 98,
045125 (2018).

[21] C.-H. Hsu, P. Stano, J. Klinovaja, and D. Loss, Majorana
Kramers Pairs in Higher-Order Topological Insulators, Phys.
Rev. Lett. 121, 196801 (2018).

[22] Z. Yan, F. Song, and Z. Wang, Majorana Corner Modes in
a High-Temperature Platform, Phys. Rev. Lett. 121, 096803
(2018).

[23] Q. Wang, C.-C. Liu, Y.-M. Lu, and F. Zhang, High-Temperature
Majorana Corner States, Phys. Rev. Lett. 121, 186801
(2018).

[24] L. Trifunovic and P. Brouwer, Higher-order bulk-boundary
correspondence for topological crystalline phases,
arXiv:1805.02598.

[25] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,
Second-order topological insulators and superconductors with
an order-two crystalline symmetry, Phys. Rev. B 97, 205135
(2018).

[26] T. Liu, J. J. He, and F. Nori, Majorana corner states in a
two-dimensional magnetic topological insulator on a high-
temperature superconductor, arXiv:1806.07002.

[27] M. Serra-Garcia, R. Süsstrunk, and S. D. Huber, Observation
of quadrupole transitions and edge mode topology in an LC

network, arXiv:1806.07367.
[28] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen,

L. G. Villanueva, and S. D. Huber, Observation of a phononic
quadrupole topological insulator, Nature (London) 555, 342
(2018).

[29] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl,
A quantized microwave quadrupole insulator with topologically
protected corner states, Nature (London) 555, 346 (2018).

[30] X. Zhang, H.-X. Wang, Z.-K. Lin, Y. Tian, B. Xie, M.-H.
Lu, Y.-F. Chen, and J.-H. Jiang, Observation of second-order
topological insulators in sonic crystals, arXiv:1806.10028.

[31] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp,
T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert,
and R. Thomale, Topolectrical-circuit realization of topological
corner modes, Nat. Phys. 14, 925 (2018).

[32] P. Sessi, D. D. Sante, A. Szczerbakow, F. Glott, S. Wilfert,
H. Schmidt, T. Bathon, P. Dziawa, M. Greiter, T. Neupert, G.
Sangiovanni, T. Story, R. Thomale, and M. Bode, Robust spin-
polarized midgap states at step edges of topological crystalline
insulators, Science 354, 1269 (2016).

[33] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological
characterization of periodically driven quantum systems, Phys.
Rev. B 82, 235114 (2010).

[34] N. H. Lindner, G. Refael, and V. Galitski, Floquet topological
insulator in semiconductor quantum wells, Nat. Phys. 7, 490
(2011).

[35] T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E.
Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White,
Observation of topologically protected bound states in photonic
quantum walks, Nat. Commun. 3, 882 (2012).

201114-5

https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1007/s00220-018-3229-2
https://doi.org/10.1007/s00220-018-3229-2
https://doi.org/10.1007/s00220-018-3229-2
https://doi.org/10.1007/s00220-018-3229-2
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1103/PhysRevB.98.165144
https://doi.org/10.1103/PhysRevB.98.165144
https://doi.org/10.1103/PhysRevB.98.165144
https://doi.org/10.1103/PhysRevB.98.165144
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevB.97.155305
https://doi.org/10.1103/PhysRevB.97.155305
https://doi.org/10.1103/PhysRevB.97.155305
https://doi.org/10.1103/PhysRevB.97.155305
https://doi.org/10.1103/PhysRevB.97.241402
https://doi.org/10.1103/PhysRevB.97.241402
https://doi.org/10.1103/PhysRevB.97.241402
https://doi.org/10.1103/PhysRevB.97.241402
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.98.054432
https://doi.org/10.1103/PhysRevB.98.054432
https://doi.org/10.1103/PhysRevB.98.054432
https://doi.org/10.1103/PhysRevB.98.054432
https://doi.org/10.1103/PhysRevB.98.081110
https://doi.org/10.1103/PhysRevB.98.081110
https://doi.org/10.1103/PhysRevB.98.081110
https://doi.org/10.1103/PhysRevB.98.081110
https://doi.org/10.1103/PhysRevB.98.045125
https://doi.org/10.1103/PhysRevB.98.045125
https://doi.org/10.1103/PhysRevB.98.045125
https://doi.org/10.1103/PhysRevB.98.045125
https://doi.org/10.1103/PhysRevLett.121.196801
https://doi.org/10.1103/PhysRevLett.121.196801
https://doi.org/10.1103/PhysRevLett.121.196801
https://doi.org/10.1103/PhysRevLett.121.196801
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.121.186801
https://doi.org/10.1103/PhysRevLett.121.186801
https://doi.org/10.1103/PhysRevLett.121.186801
https://doi.org/10.1103/PhysRevLett.121.186801
http://arxiv.org/abs/arXiv:1805.02598
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.97.205135
http://arxiv.org/abs/arXiv:1806.07002
http://arxiv.org/abs/arXiv:1806.07367
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
http://arxiv.org/abs/arXiv:1806.10028
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1126/science.aah6233
https://doi.org/10.1126/science.aah6233
https://doi.org/10.1126/science.aah6233
https://doi.org/10.1126/science.aah6233
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1038/ncomms1872


S. FRANCA, J. VAN DEN BRINK, AND I. C. FULGA PHYSICAL REVIEW B 98, 201114(R) (2018)

[36] F. Nathan and M. S. Rudner, Topological singularities and the
general classification of Floquet–Bloch systems, New J. Phys.
17, 125014 (2015).

[37] A. C. Potter, T. Morimoto, and A. Vishwanath, Classification
of Interacting Topological Floquet Phases in One Dimension,
Phys. Rev. X 6, 041001 (2016).

[38] D. V. Else and C. Nayak, Classification of topological phases
in periodically driven interacting systems, Phys. Rev. B 93,
201103 (2016).

[39] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Anoma-
lous Edge States and the Bulk-Edge Correspondence for Pe-
riodically Driven Two-Dimensional Systems, Phys. Rev. X 3,
031005 (2013).

[40] P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H. Lind-
ner, Anomalous Floquet-Anderson Insulator as a Nonadiabatic
Quantized Charge Pump, Phys. Rev. X 6, 021013 (2016).

[41] F. Nathan, D. Abanin, E. Berg, N. H. Lindner, and M. S. Rudner,
Stability of anomalous Floquet insulators, arXiv:1712.02789.

[42] A. Kundu, M. Rudner, E. Berg, and N. H. Lindner, Quantized
large-bias current in the anomalous Floquet-Anderson insulator,
arXiv:1708.05023 .

[43] L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, Ob-
servation of photonic anomalous Floquet topological insulators,
Nat. Commun. 8, 13756 (2017).

[44] S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P.
Öhberg, N. Goldman, and R. R. Thomson, Experimental obser-
vation of anomalous topological edge modes in a slowly driven
photonic lattice, Nat. Commun. 8, 13918 (2017).

[45] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Poly-
acetylene, Phys. Rev. Lett. 42, 1698 (1979).

[46] F. Wilczek and A. Zee, Appearance of Gauge Structure in
Simple Dynamical Systems, Phys. Rev. Lett. 52, 2111 (1984).

[47] M. V. Berry, Quantal phase factors accompanying adiabatic
changes, Proc. R. Soc. London, Ser. A 392, 45 (1984).

[48] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.98.201114, which contains Refs.
[6,7,46,47,49,50,69,70], for a detailed description of the
procedure used to compute the Wilson loops, the polarizations,
and the code used for our simulations. In addition, we provide
more details on the two models and show topological phase
transitions of the Wannier bands.

[49] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and
Majorana Bound States in Quantum Wires, Phys. Rev. Lett. 105,
177002 (2010).

[50] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Ma-
jorana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures, Phys. Rev.
Lett. 105, 077001 (2010).

[51] A. Yu. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[52] J. C. Y. Teo and C. L. Kane, Topological defects and gapless
modes in insulators and superconductors, Phys. Rev. B 82,
115120 (2010).

[53] J. C. Budich and E. Ardonne, Equivalent topological invariants
for one-dimensional Majorana wires in symmetry class D,
Phys. Rev. B 88, 075419 (2013).

[54] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker,
G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P.
Zoller, Majorana Fermions in Equilibrium and in Driven
Cold-Atom Quantum Wires, Phys. Rev. Lett. 106, 220402
(2011).

[55] A. Kundu and B. Seradjeh, Transport Signatures of Floquet
Majorana Fermions in Driven Topological Superconductors,
Phys. Rev. Lett. 111, 136402 (2013).

[56] Q.-J. Tong, J.-H. An, J. Gong, H.-G. Luo, and C. H.
Oh, Generating many Majorana modes via periodic driv-
ing: A superconductor model, Phys. Rev. B 87, 201109(R)
(2013).

[57] S. Yao, Z. Yan, and Z. Wang, Topological invariants of Floquet
systems: General formulation, special properties, and Floquet
topological defects, Phys. Rev. B 96, 195303 (2017).

[58] X. Yang, B. Huang, and Z. Wang, Floquet topological super-
fluid and Majorana zero modes in two-dimensional periodically
driven Fermi systems, Sci. Rep. 8, 2243 (2018).

[59] L. D’Alessio and M. Rigol, Dynamical preparation of Floquet
Chern insulators, Nat. Commun. 6, 8336 (2015).

[60] L. D’Alessio and M. Rigol, Long-time Behavior of Isolated
Periodically Driven Interacting Lattice Systems, Phys. Rev. X
4, 041048 (2014).

[61] A. Lazarides, A. Das, and R. Moessner, Equilibrium states of
generic quantum systems subject to periodic driving, Phys. Rev.
E 90, 012110 (2014).

[62] G. Ortiz and R. M. Martin, Macroscopic polarization as a
geometric quantum phase: Many-body formulation, Phys. Rev.
B 49, 14202 (1994).

[63] S.-S. Lee and S. Ryu, Many-Body Generalization of Z2 Topo-
logical Invariant for the Quantum Spin Hall Effect, Phys. Rev.
Lett. 100, 186807 (2008).

[64] M. Lin and T. L. Hughes, Topological quadrupolar semimetals,
arXiv:1708.08457.

[65] L. Zhou, C. Chen, and J. Gong, Floquet semimetal with
Floquet-band holonomy, Phys. Rev. B 94, 075443 (2016).

[66] R. W. Bomantara, G. N. Raghava, L. Zhou, and J. Gong, Floquet
topological semimetal phases of an extended kicked Harper
model, Phys. Rev. E 93, 022209 (2016).

[67] H. Wang, L. Zhou, and Y. D. Chong, Floquet Weyl phases in
a three-dimensional network model, Phys. Rev. B 93, 144114
(2016).

[68] S. Higashikawa, M. Nakagawa, and M. Ueda, Floquet chiral
magnetic effect, arXiv:1806.06868.

[69] R. Resta, Quantum-Mechanical Position Operator in Extended
Systems, Phys. Rev. Lett. 80, 1800 (1998).

[70] L. Fidkowski, T. S. Jackson, and I. Klich, Model Characteriza-
tion of Gapless Edge Modes of Topological Insulators Using
Intermediate Brillouin-Zone Functions, Phys. Rev. Lett. 107,
036601 (2011).

201114-6

https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevX.6.021013
http://arxiv.org/abs/arXiv:1712.02789
http://arxiv.org/abs/arXiv:1708.05023
https://doi.org/10.1038/ncomms13756
https://doi.org/10.1038/ncomms13756
https://doi.org/10.1038/ncomms13756
https://doi.org/10.1038/ncomms13756
https://doi.org/10.1038/ncomms13918
https://doi.org/10.1038/ncomms13918
https://doi.org/10.1038/ncomms13918
https://doi.org/10.1038/ncomms13918
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
http://link.aps.org/supplemental/10.1103/PhysRevB.98.201114
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.88.075419
https://doi.org/10.1103/PhysRevB.88.075419
https://doi.org/10.1103/PhysRevB.88.075419
https://doi.org/10.1103/PhysRevB.88.075419
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevLett.111.136402
https://doi.org/10.1103/PhysRevLett.111.136402
https://doi.org/10.1103/PhysRevLett.111.136402
https://doi.org/10.1103/PhysRevLett.111.136402
https://doi.org/10.1103/PhysRevB.87.201109
https://doi.org/10.1103/PhysRevB.87.201109
https://doi.org/10.1103/PhysRevB.87.201109
https://doi.org/10.1103/PhysRevB.87.201109
https://doi.org/10.1103/PhysRevB.96.195303
https://doi.org/10.1103/PhysRevB.96.195303
https://doi.org/10.1103/PhysRevB.96.195303
https://doi.org/10.1103/PhysRevB.96.195303
https://doi.org/10.1038/s41598-018-20604-w
https://doi.org/10.1038/s41598-018-20604-w
https://doi.org/10.1038/s41598-018-20604-w
https://doi.org/10.1038/s41598-018-20604-w
https://doi.org/10.1038/ncomms9336
https://doi.org/10.1038/ncomms9336
https://doi.org/10.1038/ncomms9336
https://doi.org/10.1038/ncomms9336
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1103/PhysRevB.49.14202
https://doi.org/10.1103/PhysRevB.49.14202
https://doi.org/10.1103/PhysRevB.49.14202
https://doi.org/10.1103/PhysRevB.49.14202
https://doi.org/10.1103/PhysRevLett.100.186807
https://doi.org/10.1103/PhysRevLett.100.186807
https://doi.org/10.1103/PhysRevLett.100.186807
https://doi.org/10.1103/PhysRevLett.100.186807
http://arxiv.org/abs/arXiv:1708.08457
https://doi.org/10.1103/PhysRevB.94.075443
https://doi.org/10.1103/PhysRevB.94.075443
https://doi.org/10.1103/PhysRevB.94.075443
https://doi.org/10.1103/PhysRevB.94.075443
https://doi.org/10.1103/PhysRevE.93.022209
https://doi.org/10.1103/PhysRevE.93.022209
https://doi.org/10.1103/PhysRevE.93.022209
https://doi.org/10.1103/PhysRevE.93.022209
https://doi.org/10.1103/PhysRevB.93.144114
https://doi.org/10.1103/PhysRevB.93.144114
https://doi.org/10.1103/PhysRevB.93.144114
https://doi.org/10.1103/PhysRevB.93.144114
http://arxiv.org/abs/arXiv:1806.06868
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.107.036601
https://doi.org/10.1103/PhysRevLett.107.036601
https://doi.org/10.1103/PhysRevLett.107.036601
https://doi.org/10.1103/PhysRevLett.107.036601



