PHYSICAL REVIEW B 98, 201108(R) (2018)

Rapid Communications Editors’ Suggestion

Solution of the sign problem for the half-filled Hubbard-Holstein model

Seher Karakuzu,! Kazuhiro Seki,

12,3 and Sandro Sorella!?

!International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
2Computational Materials Science Research Team, RIKEN Center for Computational Science (R-CCS), Hyogo 650-0047, Japan
3Computational Condensed Matter Physics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama 351-0198, Japan

® (Received 24 August 2018; revised manuscript received 26 October 2018; published 14 November 2018)

We show that, by an appropriate choice of auxiliary fields and exact integration of the phonon degrees of
freedom, it is possible to define a “sign-free” path integral for the so-called Hubbard-Holstein model at half
filling. We use a statistical method, based on an accelerated and efficient Langevin dynamics, for evaluating all
relevant correlation functions of the model. Preliminary calculations at U/t =4 and U/t = 1, for wy/t =1,

g2

indicate a region around U =~ > without either antiferromagnetic or charge-density-wave orders that is much
wider compared to previous approximate calculations. The elimination of the sign problem in a model without
explicit particle-hole symmetry may open different perspectives for strongly correlated models, even away from

the purely attractive or particle-hole symmetric cases.

DOI: 10.1103/PhysRevB.98.201108

Introduction. One of the most successful methods to obtain
exact properties of strongly correlated models on a lattice is
certainly the statistical (Monte Carlo) method based on the
evaluation of a corresponding path integral defined in imagi-
nary time. In particular, most successful applications are based
on auxiliary fields o/ introduced for each site j of the model
and imaginary-time slice / of the path integral by means of
the so-called “Hubbard-Stratonovich” transformation (HST)
[1-4]. Since Hirsch’s seminal work in 1985 [5], several mod-
els have been studied, and their phase diagrams have been
solved numerically for a large enough number N of sites, in
very particular cases when the so-called sign problem does not
affect the simulation of the corresponding partition function
Z = [[do/1W ({0}'}) that is evaluated by standard statistical

methods, as long as W({o;'}) > 0. The first example was the
Hubbard model in the square lattice, displaying a trivial phase
diagram for the insulating antiferromagnetic phase that turned
out to be stable as soon as U > 0. More recently the method
was extended to the honeycomb lattice displaying a less trivial
transition at a critical value U, between a semimetallic and an
antiferromagnetic insulating or superconducting phase [6-9].
Other models are worth mentioning, such as the negative-U
model [10,11], spinless fermions with a repulsive nearest-
neighbor interaction at half filling [12,13], the Anderson
impurity model at half filling [14,15], the Kondo-lattice model
at half filling [16,17], the Holstein model [18], and several
others.

Most of the models so far solved without a sign problem
are characterized by (i) an explicit spin-independent attractive
interaction and/or (ii) a particular particle-hole symmetry of
the electronic degrees of freedom, implying that the corre-
sponding weight W({o/'}) in the path-integral formulation
can be written as the square of a quantity, and is therefore
positive. All these models have been recently classified in
Refs. [19,20]. For instance, in the Hubbard model with U > 0,
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the particle-hole transformation
el e (1
s i

(CJ; L) for sites j in the A (B) sublattice of a bipartite
lattice, maps the positive-U model to the negative-U one with
an equal number of spin-up and spin-down electrons, where
c;G (cj o) creates (destroys) a fermion with spin o = 1, | at
a given site j. In such a case the weight factorizes into two
independent and identical contributions for different spins,
thus W({o;}) > 0.

The Hubbard-Holstein Hamiltonian is one of the sim-
plest models describing the competition between an attractive
interaction mediated by an optical phonon and the strong
electron repulsion, defined by the Hubbard U, acting when
two electrons of opposite spins occupy the same site. The
Hubbard-Holstein model represents the key model to under-
stand how the retarded interaction mediated by phonons can
circumvent the strong electron-electron repulsion and give
rise to superconductivity. It may be relevant not only to
understand standard electron-phonon superconductivity, but
also high-temperature superconductivity, because the isotope
effect has been clearly detected [21] in cuprates, and the
so-called kinks observed in photoemission experiments [22]
clearly indicate the role of phonons, even in these strongly
correlated materials.

The phase diagram of the model has been studied using
several techniques, such as the Gutzwiller approximation [23],
variational Monte Carlo (VMC) [24,25], dynamical mean-
field theory (DMFT) [26-28], finite-temperature determinant
quantum Monte Carlo (DQMC) [29-31], also in one dimen-
sion (1D) [32], but no unbiased zero-temperature calculation
is known in two dimensions (2D).

In the present Rapid Communication we are able to es-
tablish ground-state benchmark results in the thermodynamic
limit for this model, and some aspects of its zero-temperature
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phase diagram, by using a determinantal method, which, as
we are going to show, is not vexed by the so-called “sign
problem.”

Model and method. The Hubbard-Holstein model is defined
by the following Hamiltonian,

H = Hyx + Hey,
7-[K—K+—ZP2,

Z(nj—l)z—i—gZX (n,—1)+—ZX2
-7 2

2
wy— g /U 50
- 14 = X) —l—T E X3,

(@)

where K =—t3 jacm +Hec, nj, = c;,gcj,(, indi-
cates the electron number with spin o at the site j, and n; =
>, Njo. t is the hopping integral, U is the repulsive electron-
electron interaction, whereas @y is the phonon frequency, g
is the electron-phonon coupling term, and )A(j and ﬁj are
the phonon position and momentum degrees of freedom,
respectively.

At finite inverse temperature 8 the partition function of an
electronic system described by the Hamiltonian H is given by

Z = Trle P = Tr[(e 2")"], A3)

where At = 8/ T and the symbol Tr[ O] associates a number
to any operator O and is defined by

_ | Trace[O]
ol = {<w|0|w>

where W is a chosen trial function that may be conveniently
introduced for evaluating the trace (up to an irrelevant con-
stant) in the zero-temperature limit, as long as W has a nonzero
overlap with the ground state of H. The latter case is known
as zero-temperature projection, which is adopted in all the
forthcoming calculations. However, for the sake of generality,
we derive the method in the general case, as it is defined also
within the more conventional finite-temperature scheme.

The imaginary-time propagator e #* can be written after
Trotter decomposition as

— e—A‘E‘]’(rye—Ar'/‘{«K + O(Afz), (5)

for the standard case,
for the projection case,

“

e—Ar(H

In order to derive the path integral, the phonon degrees of
freedom, introduced for each site j and time slice /, are dealt
with as in a conventional Feynmann path integral where the
phonon positions X; are changed at different time slices, just

due to the phonon kinetic energy % ; P2, with associated
matrix elements,

Atw P2
< 1+1|eXP( 3 - )|Xj>
1
X eXp I:_M(Xl+l X]) ] (6)

After that the operators X j turn onto classical real variables
X é to be integrated from —oo to oo in the corresponding path

integral. For the remaining interaction term in Hq we can
use a properly chosen HST coupled to the operator n; — 1 +

£X /, namely,

. 00 J
67“3’(n_,71+5X/>2=/ doj_ -
—o00 V 27'[
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where o are indicating the auxiliary fields in the /th time
slice. We thus get that the partition function can be expressed
as a 2N x T dimensional integral over the classical real
variables o/ and X7,

Z=/[dX]/[da]

1 i v j f
x exp| -5 > (A X{ X) + 81m(07)’]

Lm,j

T
xTe[[{exp| D ( \/UA‘L'O‘Z)( l—i—UX’)
=1 j

x exp(—AtK)}, (8)

where the product of noncommuting operators is meant from

left to right with increasing [, [dX] = ]_[qu dX,J, [do] =

[, do/, and
Al,m -

[281,m - 81,m+1 - 6m,l-ﬁ-l]

LL)()A‘L’
+ At(wy — g%/ U)S1 .- )

Here, the boundary conditions for the phonon fields are
X/ = X] for the standard finite-temperature case (periodic
in imaginary time) and X{ = X7, = 0 for the projection
case (open boundaries in imaginary time, within appropriate
trial function W [33]). In the path integral the dependence of
the action on the fields X; is just quadratic and determined by
the matrix A. After simple inspection, the eigenvalues of A
are given by

E, = [2 — 2cos(w, AT)] + AT(wy — g2/U), (10)

(,()()A‘L'

where w, At = 2”7” (w, At = 777) for the finite-temperature

(projection) case and n =1, ..., T. Therefore this matrix A
is positive definite (E, > O‘v’n) if U> g?/wy and all the
integrals in {X; J } can be carried out before the {al } ones, as
they are certainly converging,

Zx / [do]exp —% > (Pimo/ o)

Lm,j

xTrl_[ exp ivUAtZalj(nj—l) exp(—ATK) ¢,
l J

Y
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where
Atg?
U
is real and providing a positive weight in Eq. (11). On the
other hand, the remaining part contributing to the path-integral
weight W({o/'}), and resulting from the Tr operation is cer-
tainly positive, because the spin-up and spin-down contri-
butions factorize and, after the particle-hole transformation
in Eq. (1), turn out to be complex-conjugate factors (with
appropriate W in the projection case). Thus we have finally
determined a path integral for the Hubbard-Holstein model
with a non-negative real weight W({o/ D >0forU > g%/wy.
A standard approach to evaluate correlation functions de-
fined by the partition function Z is the Monte Carlo (MC)
method. Unfortunately, the standard technique with local up-
dates is very inefficient in this case, due to the difficulty to
sample the stiff harmonic part. A better method was recently
introduced [30], including global updates of the phonon fields.
Global updates are numerically very demanding as they re-
quire the computation of several determinants from scratch.
Here, in order to define an efficient sampling, we will use
the first-order accelerated Langevin dynamics [34], reviewed
and generalized recently in Ref. [35]. The auxiliary fields at
the nth Markov chain iteration are updated via the discretized
Langevin equation,

Gus1 = 0n + ApS~ fo +V2A0S 2%, (13)

where & = {6!} are shorthand notations for the fields
represented as an N x T dimensional vector, Arp is the

Langevin-dynamics (LD) time step, S,i:,{l is the acceleration

Piym = 8m+ [A™ " m (12)

matrix that is chosen diagonal in the spatial indices S,/ =
Py x6;,j and corresponding to the harmonic classical pa{rt of
the partition function, 7,, are normally distributed random vec-
tors, and fn ={f/ }, are generalized forces with components,

{7}, =8, m[w({o/},)] (14)

It has been shown [36] that, within the complex auxiliary-
field technique, the LD is free of ergodicity issues and we
are able therefore to reproduce the results for the standard
Hubbard model with g = 0 (see Fig. 1), which represents the
most difficult case in our approach as the acceleration matrix S
turns out to be the trivial identity matrix. Better choices should
be possible but this study is beyond the main purpose of this
work.

Results. In order to access the information about the order
parameters, we examine the charge and spin correlations of
the model for different values of the Hubbard interaction and
electron-phonon coupling on L x L square lattices, at wg/t
=1.

We adopt the recently proposed dynamic scaling [37]. We
break the spin symmetry with a mean-field magnetic wave
function W, so that the antiferromagnetic order remains in the
z direction for the chosen projection times 8¢ = L. The ther-
modynamic limit 8t = L = oo remains unbiased, whereas
the finite-size results do not recover the singlet finite- L ground
state, reachable only for much larger projection times. This
technique has the considerable advantage to allow very sta-
ble simulations without the so-called “spikes” (samples of
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FIG. 1. Antiferromagnetic order parameters mag at U/t =4 asa
function of the LD time step Arp (a) ona 12 x 12 cluster at 8¢ = 12
and different values of the electron-phonon coupling strength A.
The A = Arp = 0 result (solid circle) in (a) is obtained with the
standard Monte Carlo algorithm for the Hubbard model that is clearly
consistent with the LD data, extrapolated to A;p — 0. (b) Same as
(a) for A = 4 with various system sizes N = L x L, with gt = L.
The inset shows the equilibration of mxf to its average value (blue
line) for the largest cluster as a function of the LD time .

correlation functions much farther from their average values)
implying infinite variance problems [38]. Within this setup
map can be computed as

1 .
mar = Xije’Q*wsn, (15)

where S; = %(”M —n;) is the value of the spin at site i and
the charge structure factor is given by

1 R
Scow(Q) = = > 'V nin), (16)
ij
— Trlexp(—BH/2)--- exp(—BH/2)]

where (- - ) = , and the pitching vec-
tor Q = (;r, w). We consider the evolution of these quanti-
ties as a function of the coupling A = sz. For U > A we
have a Mott insulator with a finite antiferromagnetic (AF)
order parameter mar > 0. As it is shown in Fig. 1(b), the
dependence of this quantity on the LD time step Arp is
rather smooth and can be safely extrapolated to the unbiased
Arp — 0 limit. Similar behavior is obtained for all the other
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quantities considered in this work. The LD is particularly
efficient just in the interesting region A >~ U where phase
transitions or at least competitions between antiferromagnetic,
charge-density-wave (CDW), or metallic and superconducting
phases are expected [28]. In this case, the chosen acceleration
matrix is particularly efficient because it allows short correla-
tion times ~~ 1 [see Fig. 1(b) and the inset] and a very weak
time-step dependency, allowing large-scale simulations in this
region.

As far as the systematic error implied by a finite Trotter
time Art, this becomes negligible provided measurements
are evaluated at the middle of the kinetic-energy propagator
exp(—A7K) [39], because in this way the error turns out
quadratic in A7r. We have adopted At¢ = 0.1 in all forthcom-
ing calculations with an estimated error of less than 1% in all
quantities studied.

We have performed a finite-size scaling of map and
Scow(Q) for U/t =4 and U/t = 1 using clusters of sizes
ranging from 6 x 6 to 18 x 18 for several couplings A < U
and report these quantities extrapolated to the thermodynamic
limit in Fig. 2. As it is seen, the antiferromagnetic order drops
continuously to much smaller values when we increase A and
suggests a continuous transition to a nonmagnetic phase at
A = AAF ~ U. Within this assumption, and considering that
the pure Holstein model for U =0 (i.e., A > U) displays
CDW order, Scpw(Q) should diverge for A — ASPY from
below, because the finite values reported in Fig. 2 imply no
CDW order up to A/U = 1. Quite interestingly, the results
reported in Fig. 2 suggest that APV is significantly larger
than A2F, because at small U/t there is no evidence of the
Scow (Q) divergence, whereas for U/t = 4, despite the fit of
the data being consistent with a very small critical exponent
6 that is very likely underestimated, A% is about 8% larger
than AAF. Indeed, if we fix 6 to a larger value in the fit, we
obtain an even larger value of APV,

Conclusions. In this Rapid Communication we have pre-
sented an original way to get rid of the sign problem in the
Hubbard-Holstein model by using an appropriate auxiliary-
field transformation combined with an exact integration of the
phonon degrees of freedom. The Hubbard-Holstein model has
been considered so far with algorithms affected by the sign
problem, because, though at half filling, it does not satisfy
the particle-hole transformation in the electronic degrees of
freedom,

cly=(=1cj . (17)

where (—1)/ =1 (—1) if j belongs to the A (B) sublat-
tice. This transformation leaves the model unchanged without
electron-phonon coupling but changes its sign when present.
The key idea of this work is to employ an exact integration
of the phonon degrees of freedom that allows us to recover
this property and get rid of the sign problem, at least in a
relevant parameter region U > A. As we have shown, the
region A >~ U is important because it is close to the phase
transition of the model, and was previously inaccessible by
numerical methods due to very severe sign problems [30]. On
the other hand, in realistic materials the Coulomb energy is
much larger than the electron-phonon coupling, as well as
the phonon frequency wg, and therefore the region A < U

1. ‘ ‘ ‘ : :
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FIG. 2. Ground-state properties of the Hubbard-Holstein model
obtained by extrapolating the antiferromagnetic order parameters to
the thermodynamic limit for (a) U = 1 and (b) U = 4. The solid
lines in (b) are the fit to mr and Scpw (Q) of the form y(%)g with
y, 6, and X, being the fitting parameters determined by the least-
squares method. The parameters are found to be y = 0.256(8), 6 =
0.4, and A, = AAF = 4.02(2) for mar and y = 0.407(2), 6 = —0.29,
and A, = APV = 4.33(4) for Scpw(Q). The values of the exponent
6 are just indicative, as we do not have enough data close to the
transitions.

that can be studied with the present technique is certainly the
most important region for modeling realistic materials with
the Hubbard-Holstein Hamiltonian.

Though the Hubbard-Holstein model is highly idealized,
it is interesting to establish some benchmark results for the
magnetic order parameter and the density structure factor
(see Table I). We see that our estimated mar compares well

TABLE 1. Values of mar and Scpw(Q) in the thermodynamic
limits, for different values of A, U/t at wy = t.

U/t=1 U/t =4
AU LN Scow(Q) MAR Scow(Q)
0 0.0280(2) 0.238(3)
0.25 0.0215(3) 0.838(4) 0.232(2) 0.433(7)
0.50 0.0138(3) 0.862(4) 0.202(4) 0.475(4)
0.75 0.0068(4) 0.890(5) 0.146(2) 0.557(9)
1 0.0009(1) 0.924(5) 0.031(2) 0.83(1)
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with the established benchmarks [40] for A = 0, and remains
approximately the same for A <« U, but with no evidence
of CDW order, because Scpw(Q) is clearly finite. Thus,
as soon as A > 0, the electron-phonon coupling breaks the
pseudo-SU(2) symmetry of the pure Hubbard model, and
kills the CDW, leaving the AF order alone, in agreement
with a rigorous theorem, recently proved [41]. This feature is
reminiscent of the phase diagram of the negative-U Hubbard
model where the CDW order disappears immediately by a tiny
amount of doping [10].

Finally, since the transition to a nonmagnetic phase is very
close to A ~ U, we have been able to determine some aspects
of its phase diagram, namely, that the transition is most likely
continuous, at least up to U/t = 4, as no evidence of a first-
order transition has been found for the U values studied so far.
Also, rather unexpectedly, an intermediate phase A < 4 <
AEPV with no AF and CDW orders appears to be rather robust
and wide, in contrast with previous DMFT and VMC results.

This technique can be possibly extended to many other
models, so far affected by the sign problem, and may open
the way to tackle other important models where the particle-
hole symmetry is not satisfied, such as the Hubbard model
at finite doping. Though we do not expect that the sign
problem in this model can be definitively removed, this work

certainly suggests that the sign of the weight W ({o/'}) can
be very likely improved, being a property of the appropriate
auxiliary field chosen, and the degrees of freedom selected in
the path integral, where enormous freedom still needs to be
explored.
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