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General theory of the topological Hall effect in systems with chiral spin textures
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We present a consistent theory of the topological Hall effect (THE) in two-dimensional magnetic systems with
a disordered array of chiral spin textures, such as magnetic skyrmions. We focus on the scattering regime when
the mean-free path of itinerant electrons exceeds the spin texture size, and THE arises from the asymmetric
carrier scattering on individual chiral spin textures. We calculate the resistivity tensor on the basis of the
Boltzmann kinetic equation taking into account the asymmetric scattering on skyrmions via the collision integral.
Our theory describes both the adiabatic regime when THE arises from a spin Hall effect and the nonadiabatic
scattering when THE is due to purely charge transverse currents. We analyze the dependence of THE resistivity
on a chiral spin texture structure, as well as on material parameters. We discuss the crossover between spin and
charge regimes of THE driven by the increase of skyrmion size, the features of THE due to the variation of the
Fermi energy, and the exchange interaction strength; we comment on the sign and magnitude of THE.
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I. INTRODUCTION

Among rich variety of transport phenomena in magnetic
materials the special attention is now focused on the topologi-
cal Hall effect (THE). THE is the appearance of an additional
transverse voltage due to itinerant carrier exchange interaction
with chiral spin textures, such as magnetic skyrmions [1–4].
During the recent extensive experimental studies the detection
of THE signal has proved itself as an indicator that a sample
magnetization acquires a chiral structure. The observation
of THE has been reported for various systems exhibiting
different chiral ordering of spins: skyrmion crystals [5–8],
antiferromagnets (AFM) [9,10], spin glasses [11,12], and
arrays of magnetic skyrmions [13–21].

Naturally, an appropriate microscopic theory of THE has
to take into account the particular type of chiral spin or-
dering. In the case of a regular noncollinear spin structure
with periodic or quasiperiodic spin arrangement [22–24], such
as AFM lattices [9] or skyrmion crystals [6,25,26], THE is
usually described via the mean-field approach and using the
adiabatic approximation [6,22,27]. The adiabatic theory is
based on the geometric Berry phase interpreted as an effective
magnetic field acting on an electron. Although the Berry
phase description of THE has been widely applied for various
systems [28–35], it is, however, invalid for a weak exchange
coupling [36,37]. The latter case has been recently studied
using different theoretical methods [38–42].

Another class of chiral spin systems studied experimentally
is a disordered array of localized small chiral spin textures
such as magnetic skyrmions [14–16,20,43]. The description
of THE in terms of an effective mean magnetic field fails in
this case as there is no regular long-range chiral spin structure
which can be described by a homogeneous effective magnetic
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field. On the contrary, a carrier moves freely most of the
time with an occasional scattering on localized magnetization
vortices. The important feature of the individual scattering
regime is that the properties of THE strongly depend on
whether the carrier spin-flip processes are activated or not
corresponding to weak coupling regime and adiabatic regime,
respectively [44]. The transverse electric response arises from
the spin Hall effect [22,34] in the adiabatic regime and from
the charge Hall effect in the weak coupling regime [38,41].
Thus, the complete theory of THE for the irregular dilute chi-
ral systems requires an accurate treatment of carrier scattering
on a single chiral spin texture.

In this paper we develop the theory of the topological
Hall effect in disordered systems of chiral spin textures. We
consider a two-dimensional (2D) metal with both electron
spin subbands populated when THE can be generated either
by charge or by spin transverse currents. Our approach is
based on the calculation of the exact scattering parameters on
individual spin textures presented in Ref. [44]. The paper is
organized as follows: in Sec. II the kinetic theory of THE is
described accounting for the carrier scattering on host impu-
rities and noncollinear spin textures, in Sec. III the properties
of the exchange asymmetric scattering are discussed, Sec. IV
covers the dependence of THE on material and spin texture
parameters, we also describe the crossover between charge
and spin Hall regimes of THE driven by the suppression of
spin-flip scattering; in Sec. V we discuss the obtained results
in the view of some real skyrmion systems.

II. KINETIC THEORY

Let us consider two-dimensional degenerate electron gas
(2DEG) described by the Hamiltonian:

H = p2

2m
− α0 S(r ) · σ +

∑
i

u(r − r i ), (1)
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where the first term describes the electron free motion with
an effective in-plane mass m, the second term represents
the electron exchange interaction with a magnetic texture
described by a static spin field S(r ), where α0 is an exchange
coupling constant, σ is the vector of Pauli matrices, and the
last term describes scattering on host nonmagnetic impurities
located at r i . The topological Hall effect appears when S(r )
has a noncollinear structure characterized by a nonzero spin
chirality.

We consider the case, when the spin field S(r ) consists of
two contributions:

S(r ) = S0ez +
∑

j

δS(r − rj ). (2)

The first term is a background homogeneous field directed
perpendicular to the 2DEG plane leading to the spin splitting
� = α0S0, we assume ferromagnetic exchange interaction
(� > 0). The energy dispersion for the two spin branches
s = ±1/2 is εs

p = p2/2m − s�; the spin-dependent velocity
is given by vs = √

2(ε + s�)/m, where ε is the electron
energy. We further assume that the Fermi energy EF exceeds
the spin splitting so that both spin subbands are populated
(EF > �/2). The second contribution in Eq. (2) describes
localized chiral spin textures δS of a few nanometer size
located at rj and causing an additional elastic scattering
of the carriers. While magnetic skyrmions are the typical
example of such spin texture, our consideration covers a much
wider class of chiral spin textures, not necessarily having a
nonzero topological charge [44]. The feature of the chiral spin
structures is that for a given incident electron flux there is
a difference in scattering rates to the left and to the right,
eventually leading to the Hall effect.

We consider the classic transport regime (kF � � 1, where
kF = √

2mEF /h̄ is the Fermi wave vector, and � is the mean
free path) on the basis of the Boltzmann kinetic equation:

eE · ∂fs ( p)

∂ p
= St[fs ( p)],

St[fs ( p)] =
∑
p′,s ′

(
W ss ′

p p′fs ′ ( p′) − W s ′s
p′ pfs ( p)

)
, (3)

where fs ( p) is the distribution function, p is 2D momentum,
and s = ±1/2 is the carrier spin projection on the axis normal
to the motion plane, E is an in-plane electric field, W ss ′

p p′ is
the elastic scattering rate from ( p′, s ′) to ( p, s) state, and e is
the electron charge. We solve Eq. (3) in linear approximation
with respect to E.

Expressing the scattering rate W ss ′
p p′ in the form of the

Fermi’s golden rule we assume that it has two contributions:

W ss ′
p p′ = 2π

h̄

(
ni |u p p′ |2δss ′ + nsk

∣∣T ss ′
p p′

∣∣2)
δ
(
εs
p − εs ′

p′
)
, (4)

where the first term in parentheses describes the electron spin-
independent scattering on nonmagnetic impurities, and the
second term is driven by the scattering on chiral spin textures;
interference effects between the two types of scatterers are
neglected. Here ni , nsk are the surface densities of impurities
and localized magnetic textures, respectively, u p p′ is Fourier
transform of the nonmagnetic impurity potential u(r ) from
Eq. (1), T ss ′

p p′ is the exact T matrix of electron scattering

on the spin texture, and the delta function ensures energy
conservation in the elastic scattering. Two contributions can
be distinguished in the square modulus of the T matrix:

ν2
∣∣T ss ′

p p′
∣∣2 = Gss ′ (θ ) + Jss ′ (θ ),

Gss ′ (θ ) = Gss ′ (−θ ), Jss ′ (θ ) = −Jss ′ (−θ ). (5)

Gss ′ (θ ), Jss ′ (θ ) are dimensionless symmetric and asymmetric
scattering rates, respectively, θ = ϕ − ϕ′ is the scattering
angle, ϕ, ϕ′ are the polar angles of p, p′, and ν = m/2πh̄2

is the 2D density of states (per one spin). In the introduced
notation we omit the dependence of Gss ′ ,Jss ′ on the electron
energy ε.

It is the asymmetric part Jss ′ (θ ) of an electron scattering on
chiral spin textures that gives rise to the transversal current as
the scattering rates to the left and to the right become unequal.
The scattering asymmetry acts as an effective magnetic field,
which sign can be either the same for both spin projections of
an incident electron, hence leading to a charge Hall effect, or
opposite for the opposite electron spin projections, leading to
the spin Hall effect. The properties of Jss ′ (θ ) are discussed in
Ref. [44] and summarized in Sec. III.

The distribution function fs ( p) = f 0
s (ε) + gs ( p) contains

equilibrium f 0
s (ε) and nonequilibrium gs ( p) parts; the latter

describes the appearance of the electric current in an external
electric field E. Below the direction of E is assumed along x

axis, and the polar angle ϕ of momentum p is counted from
x axis. In order to solve the kinetic equation (3) one should
expand gs ( p) and W ss ′

p p′ in a series of angular harmonics
cos nϕ, sin nϕ and perform the integration over the angle ϕ′ in
the collision integral. The details of this calculation are given
in Appendix A.

In this paper we focus on the linear regime in E, so gs

contains only first angular harmonics:

gs ( p) = g+
s cos ϕ + g−

s sin ϕ. (6)

The terms g+
s , g−

s determine the longitudinal and transverse
electric currents, respectively. Indeed, as E is along x axis,
we get for the electric current j :

(
jx

jy

)
= e

∑
p,s

gs ( p)v

(
cos ϕ

sin ϕ

)

= e
ν

2

∑
s

∫
vs (ε)dε

(
g+

s (ε)
g−

s (ε)

)
, (7)

where the integration goes over the energy ε. The topological
Hall effect related to the transverse electric current jy is thus
determined by g−

s coefficients. The explicit integration of the
collision integral in Eq. (3) over p′ brings us to the following
system of equations on g±

s (see details in Appendix A):

eE

⎛
⎜⎜⎜⎝

v↑
∂f 0

↑
∂ε

0

v↓
∂f 0

↓
∂ε

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−τ−1
↑ �↑↑ τ−1

↑↓ �↑↓
−�↑↑ −τ−1

↑ −�↑↓ τ−1
↑↓

τ−1
↓↑ �↓↑ −τ−1

↓ �↓↓
−�↓↑ τ−1

↓↑ −�↓↓ −τ−1
↓

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

g+
↑

g−
↑

g+
↓

g−
↓

⎞
⎟⎟⎟⎠.

(8)
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Here we introduced the following parameters:

τ−1
s = τ−1

0 + ωs, τ−1
0 = ni

2π

h̄
ν

∫ 2π

0
|u p p′ |2(1 − cos θ )

dθ

2π
,

ωs = nsk
2π

h̄

∫ 2π

0
[(1 − cos θ )Gss (θ ) + Gs̄s]

1

ν

dθ

2π
,

(9)

τ−1
ss̄ = nsk

2π

h̄

∫ 2π

0
Gss̄ (θ ) cos θ

1

ν

dθ

2π
,

�ss ′ = eBss ′

mc
, Bss ′ = (nskφ0)

∫ 2π

0
Jss ′ (θ ) sin θdθ,

where τs is the total transport lifetime, τ0 is the transport
lifetime for the scattering on nonmagnetic impurities, and ω−1

s

and τss̄ are the transport lifetimes for the scattering on chiral
textures (here s̄ is the spin subband index opposite to s). The
transverse Hall current due to the asymmetric scattering is
driven by �ss ′ , which is analogous to the cyclotron frequency
in the ordinary Hall effect; Bss ′ is the corresponding effective
magnetic field, φ0 = hc/|e| is the magnetic flux quantum,
and c is the speed of light. Solving the system Eq. (8) and
finding g±

s allow us to calculate the resistivity tensor ρ for
various transport scenarios as further discussed in Sec. IV.
We would like to emphasize that both spin-conserving and
spin-flip scattering channels contain asymmetric parts �ss ′

and thus contribute to g−
s and jy .

III. ASYMMETRIC ELECTRON SCATTERING
ON A CHIRAL SPIN TEXTURE

In this section we consider the features of asymmetric
electron scattering on a single chiral magnetic texture. We
express the scattering potential in the form

V (r ) = −α0δS(r ) · σ . (10)

Outside the localized spin texture of a characteristic diameter
a the magnetization is unperturbed so that δS(r > a/2) → 0
and the scattering potential vanishes. The topological Hall
effect appears due to the asymmetry in the electron scattering
when the potential (10) can be characterized by a nonzero
chirality. The details of the asymmetric scattering depend on
the particular distribution of spins in the texture and its size as
well as on the exchange interaction strength and the incident
electron wavevector [44].

A. Chiral spin textures

To describe a chiral spin texture in 2D the following
parametrization is commonly used:

δS(r ) =
⎛
⎝δS‖(r ) cos (�φ + γ )

δS‖(r ) sin (�φ + γ )
δSz(r )

⎞
⎠, (11)

where r = (r, φ) is the polar radius vector, and r = 0 corre-
sponds to the center of the texture. The functions δS‖, δSz 	= 0
depend on the distance from the center r . The vorticity �

describes the in-plane spin rotation with an initial phase γ .
In what follows we consider that δSz is counted from the
background magnetization S0, whose sign we denote as η =
sgn(S0). In the last section we will also consider the case when
S0 and δSz are independent.

η = +1

a/2δSz

S
z
(r

)

S0

−S0

r

skyrmion Q = 1

Λ1 = π 1 − 2r

a

Λ2 = π sin2
⎡
⎣π

2
1 +

2r

a

⎤
⎦ chiral

spin ring Q = 0

Λ3 = π
2r

a
1 − 2r

a

FIG. 1. The typical profiles Sz(r ) = S0 cos �(r ) of chiral spin
textures. Note that for η = +1, the δSz(r ) < 0 is negative.

Figure 1 shows the profiles Sz(r ) = S0 cos �(r ) for three
examples of chiral spin textures with η = +1 (we assume that
δS2

‖ = S2
0 − S2

z ). Two of them describe a magnetic skyrmion
(�1(r ) = π (1 − 2r/a), �2(r ) = π sin2 [(π/2)(1 + 2r/a)]).
The skyrmion has an opposite sign of spins in its center
with respect to the background magnetization, which leads
to the appearance of a nonzero topological charge called
winding number Q. The nonzero Q is particularly important
for the thermal stability of skyrmions in ferromagnetic thin
films [45–52]. The third magnetization profile Fig. 1 [�3(r ) =
(2r/a)π (1 − 2r/a)] corresponds to a chiral spin ring with
the orientation of spins in the center parallel to S0. Chiral
rings have zero winding number, but they exhibit a similar
topological Hall effect [44]. Such spin textures can appear in
a material with spin-orbit interaction functionalized by mag-
netic impurities, in a vicinity of a defect or impurity [53–56].
Let us notice that for the positive background spin orientation
(η = +1) δSz is negative.

Substituting (11) into (10) we get for the scattering
potential:

V(r ) = −α0

(
δSz(r ) e−i�φ−iγ δS‖(r )

ei�φ+iγ δS‖(r ) −δSz(r )

)
. (12)

The potential V (r ) is a 2 × 2 matrix, which depends on a
polar angle φ via the off-diagonal components. When both
functions Sz, S‖ are nonzero, the angular dependence of the
potential leads to the appearance of the asymmetric part in
electron scattering rates Jss ′ (θ ) = −Jss ′ (−θ ), where θ is the
scattering angle. The sign of Jss ′ depends on �. The phase
parameter γ is an important characteristic of a skyrmion
structure, i.e., γ = π/2, γ = 0 correspond to Bloch and Néel
skyrmions, respectively. However, γ does not affect the scat-
tering cross section and, therefore, appears to play no role in
THE. The role of η is more complicated; we further explicitly
specify the dependence of Jss ′ (θ, η) on η.

B. Asymmetric scattering features

We consider the case when Fermi energy exceeds the
background exchange splitting EF > �/2 so that both spin
subbands are populated with electrons (� = α0S0). The
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symmetry upon the time inversion allows us to present the
asymmetric scattering rates Jss ′ (θ, η) introduced in Eq. (5) in
the form (see the details in Appendix B)

J↑↑(θ, η) = η�1(θ ) + �(θ ),

J↓↓(θ, η) = η�1(θ ) − �(θ ), (13)

J↑↓(θ, η) = J↓↑(θ, η) = η�2(θ ),

where �1,2(θ ) and �(θ ) have no dependence on the back-
ground polarization η = sgn(S0). This representation is con-
venient for treating the topological charge and spin Hall
effects independently. Indeed, the terms η�1,2 describe the
asymmetric scattering in the same transverse direction de-
termined by the texture orientation η and independent of an
initial carrier spin state. These terms, therefore, lead to the
charge Hall effect. On the contrary, the term � describes the
scattering of spin up and spin down electron in the opposite
transverse directions independent of η. This process leads to
spin Hall effect, it is absent for spin-flip channels. Both �1,2

and � change their sign upon � → −�.
Which of the two contributions to the topological Hall

effect (charge or spin) dominate strongly depends on whether
the spin-flip processes are activated or not. Away from the
threshold EF � �/2 the rate of the spin-flip scattering is
controlled by the adiabatic parameter λa = (α0S0/h̄)τa, where
τa = a/vF is an electron time of flight through the texture of
diameter a with Fermi velocity vF = √

2EF /m.
In the case of λa � 1 the spin-flip processes are ef-

fective, the asymmetric scattering arises from the interfer-
ence between double spin-flip and single spin-conserving
scattering events (so-called spin-chirality driven mecha-
nism [36,37,39,41,42]). This process is sensitive to the spin
chirality χ defined for any three spins δS1, δS2, δS3 forming
the spin texture as χ = (δS1 · [δS2 × δS3]). The nonzero chi-
rality of the spin texture in the weak coupling regime leads to
the charge Hall effect. The spin chirality based contribution is
described by �1,2. At λa � 1 these terms dominate �1,2 � �,
with spin-flip scattering prevailing �2 = 2�1.

In the opposite case of large adiabatic parameter λa � 1
the spin-flip processes are suppressed in accordance with the
adiabatic theorem. In this regime the scattering asymmetry
is due to the Berry phase acquired by the wave function
of the electron moving through a noncollinear spin field in
the real space. The hallmark of this mechanism is that the
sign of the effective magnetic field associated with the Berry
phase appears to be opposite for spin up and spin down
electrons, thus leading to the spin Hall effect [22,30,32,33].
This adiabatic contribution to the Hall response is, therefore,
described by �. At λa � 1 the spin Hall effect dominates
� � �1,2, and the charge Hall effect appears only due to
nonzero carrier spin polarization Ps .

The interplay between charge and spin topological Hall
effects leads to a few nontrivial features discussed in the
following section.

IV. TOPOLOGICAL HALL EFFECT

In this section we discuss the topological contribution to
the Hall resistivity ρT

yx in the diffusive regime for different
systems.

A. Dilute array of chiral spin textures

Let us consider a two-dimensional film containing spatially
localized chiral spin textures such as magnetic skyrmions or
chiral magnetic rings (see Fig. 1). We assume that all the
textures have the same vorticity �, and the orientation η =
sgn(S0) = +1 is fixed, being determined by the background
magnetization S0. We consider the dilute regime, when the
scattering rate on spin textures is much smaller than that on
nonmagnetic impurities ωsτ0 
 1, �ss ′τ0 
 1, so the trans-
port lifetime is given by τs = τ0. Solving the system (8) for
g±

s in the lowest order in (�ss ′τ0) we express the topological
Hall resistivity ρT

yx as a sum of two contributions (see details
in Appendix C):

ρT
yx = ρc + ρa,

ρc = 1

nec
(φ0nsk)

∫ 2π

0
(�1 + �2) sin θdθ,

ρa = Ps

1

nec
(φ0nsk)

∫ 2π

0
� sin θdθ. (14)

The term ρc describes the charge transverse current (charge
Hall effect) generated due to carrier asymmetric scattering
due to spin-independent terms �1,2 [Eq. (13)]. The term ρa

describes the transverse spin current (spin Hall effect) driven
by the spin-dependent contribution to the asymmetric scatter-
ing � [Eq. (13)]. The spin current does not lead to a charge
separation unless there is unequal number of spin up and spin
down carriers in the system. Therefore, this contribution to
the Hall resistivity is proportional to the carrier spin polar-
ization Ps = (n↑ − n↓)/(n↑ + n↓) = �/2EF . In Eq. (14) the
notation n = n↑ + n↓ stands for the 2DEG sheet density.

The relative importance of the two contributions ρa and ρc

in the appearance of the transverse charge current depends on
the texture diameter a or the Fermi level EF as discussed in
the following sections.

1. Crossover between charge and spin Hall effect

Let us trace the dependence of ρT
yx (14) on the spin texture

diameter a. We assume that the Fermi energy EF substantially
exceeds the exchange spin splitting so that both spin subbands
are populated and the spin polarization of the carriers is
far below 100%: Ps = �/2EF 
 1. The adiabatic parameter
can be expressed as λa = Ps (ka), where k =

√
2EF m/h̄2.

Figure 2 shows the calculated dependence of charge ρc,
adiabatic ρa , and total ρT

yx Hall resistivities on the skyrmion
diameter a for the magnetic skyrmion with magnetization spa-
tial profile �1(r ) shown in Fig. 1. For the calculation results
shown in Fig. 2 the spin polarization was taken Ps = 0.4,
and the skyrmion surface density nsk = 2 × 1011 cm−2. The
scattering rates Jss ′ were calculated using the phase function
method [44]. As can be seen in Fig. 2, for λa � 1.8 the charge
contribution ρc exceeds ρa , at that ρT

yx is dominated by the
purely charge current. For λa � 4.5 the adiabatic term prevails
ρa � ρc and ρT

yx appears due to the spin current converted
into the charge current. In addition to the adiabatic parameter,
the change of the texture size at the same time affects the
wave parameter ka, which determines the properties of the
scattering. As a result, the topological Hall resistivity ρT

yx
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ρ
T y
x

(a
.u

.)

FIG. 2. The dependence of ρT
yx on magnetic skyrmion diameter

ka for �1 profile, and the crossover between charge and spin topo-
logical Hall effects. The parameters Ps = 0.4, nsk = 2 × 1011 cm−2.

exhibits a nontrivial dependence on a in the intermediate
region 4.5 � λa � 1.8. As the spin-flip processes become
suppressed, first the charge contribution ρc is decreased, and
only later the adiabatic term ρa starts to increase. This effect
results in the appearance of the local minimum for ρT

yx in the
crossover regime.

The behavior of ρT
yx in the crossover regime is highly

sensitive to a particular magnetic texture profile. In Fig. 3
we present the dependence of ρT

yx on a for three different
spin texture spatial profiles shown in Fig. 1. As can be seen
in Fig. 3 the oscillating structure of ρT

yx upon increasing
ka exhibits a significant variation even for two very similar
skyrmion configurations �1 and �2. The strong dependence
of ρT

yx on �(r ) observed in the crossover regime is due to the
significance of the interference in electron scattering as the
wave parameter ka ∼ π [44]. The texture described by �2 has
larger spin gradients, so the adiabatic term activates at larger
ka, and the magnitude of ρT

yx for �2 in the crossover regime
is smaller than that of �1.

We would also like to stress out that the topological Hall
effect exists as well due to scattering on chiral spin rings
having zero winding number (orange curve in Fig. 3). The
transverse conductivity ρT

yx due to scattering on chiral spin
rings possesses all the features described above including the
the existence of charge and spin Hall limiting regimes.

Λ1
Λ2
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B
T
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ρ
T y
x

(a
.u

.)

FIG. 3. The dependence of ρT
yx on chiral texture diameter ka for

different texture profiles in the region of crossover. The parameters
Ps = 0.4, nsk = 2 × 1011 cm−2.

ρT
yx/Δ3

ka = 2

ρT
yx/Δ3

ka = 3

ρ
T y
x
/Δ

3
(a

.u
.)

0.4

0.6

0.8

1

ρ
T y
x
/Δ

3
(a

.u
.)

0 0.2 0.4 0.6 0.8
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5

10

Δ/2EF

FIG. 4. The dependence of ρT
yx/�

3 on the variation of �/2EF at
ka = 2 (blue curve) and ka = 3 (red curve) for �1 profile.

2. The magnitude of the topological Hall effect

The magnitude of THE for the dilute systems can be ex-
pressed in terms of the effective magnetic field BT introduced
as

ρT
yx = BT

nec
,

BT = (φ0nsk)
∫ 2π

0
(�1 + �2 + Ps�) sin θdθ. (15)

The field BT shows the magnitude of the external magnetic
field applied to the sample, at which the ordinary Hall effect
contribution to the transverse resistivity ρO

yx becomes compa-
rable with ρT

yx .
Usually in the THE estimates it is assumed that each

skyrmion contributes via a magnetic flux quantum, so that in
the adiabatic regime |BT | ≈ Ps (φ0nsk)Q. However, our analy-
sis shows that such an estimate does not take into account the
important features of the scattering. According to Eq. (15),
ρT

yx and BT linearly depend on both the skyrmion surface
density nsk and the dimensionless scattering rates �1,2,�.
Therefore, the magnitude of BT is renormalized differently
depending on the scattering regime.

For instance, in the weak coupling regime (λa � 1) BT

scales as �3, as the perturbation theory couples �1,2 with spin
chirality [36,41] and, therefore, THE requires the third order
in the exchange interaction. In Fig. 4 the quantity ρT

yx/�
3 is

shown for two values of ka = 2, 3. As can be seen from the
figure, the scaling �3 holds up to �/2EF ≈ 0.2, the deviation
from the scaling relation indicates that the perturbation theory
becomes invalid departing from the weak coupling regime.

Let us note that although the asymmetrical scattering
rates �1,2 are small in the weak coupling regime [�1,2 are
proportional to (�/2EF )3(ka/2)8 at λa < 1], the magnitude
of BT can be enhanced by increasing nsk. For example, for
nsk = 5 × 1012 cm−2 and λa = 0.8 (ka = 2, Ps = 0.4) one
gets BT ≈ 0.7 T.

The magnitude of BT in the intermediate and strong cou-
pling regimes for nsk = 2 × 1011 cm−2 can be seen in Figs. 2
and 3 and Figs. 6 and 7. At nskφ0 ≈ 8 T the value of BT in the
intermediate regime is of the order of several kG; while in the
strong coupling regime (λa � 1) it can go as high as several
Tesla [57]. It is worth noticing that the conventional estimate
|BT | ≈ Ps (φ0nsk)Q widely used in the literature is applicable
only in the adiabatic limit λa � 1 for a large skyrmion size
ka � 1. In Fig. 5 we show the dependence of ρT

yx on ka for
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FIG. 5. The dependence of ρT
yx on chiral texture diameter ka for

different texture profiles in the adiabatic region. The parameters Ps =
0.4, nsk = 2 × 1011 cm−2. The saturation magnitude Ps (φ0nsk ) ≈
3.3 T.

three texture profiles from Fig. 1 at ka � 1. Let us mention
that BT starts to saturate at ka � 30 for the textures with
nonzero topological charge (�1,2) approaching its maximum
value Ps (φ0nsk) at ka � 35. On the contrary, THE resistivity
asymptotically falls to zero for �3 spin texture having Q = 0.
Therefore, the topological charge is indeed important for THE
in the quasiclassical limit ka � 1, while in all other cases the
local chirality of the spin texture leads to emergence of THE
independently of Q.

3. The sign of the topological Hall effect

In a real experiment when electron transport in a system
with chiral spin textures is studied as a function of the
external magnetic field B0, it is often difficult to extract
different contributions to the Hall effect. The total transverse
resistivity ρyx contains three contributions ρyx = ρO

yx + ρA
yx +

ρT
yx , where ρO

yx , ρA
yx , and ρT

yx are attributed to the ordinary,
anomalous, and topological Hall effects, respectively. Here
we focus on the sign difference between ρT

yx = (BT /nec) and
ρO

yx = (B0/nec), thus we should compare the signs of BT

and B0.
We assume that the background magnetization S0 is di-

rected along the external magnetic field B0 > 0. In gen-
eral, there is no any fixed relation between the signs of the
topological Hall resistivity ρT

yx , charge ρc, and adiabatic ρa

contributions as can be seen in Fig. 2. In this figure ρa changes
its sign with increase of ka. For some spin texture profiles the
total topological resistivity ρT

yx can also change its sign in the
crossover regime. This is the case for �3 spin configuration as
can be seen in Fig. 3. However, it is possible to specify the sign
of BT in the limiting regimes, i.e., away from the threshold
EF � �/2 and outside the adiabatic crossover λa ≈ 1. Let
us consider the weak coupling regime (λa � 1), in which the
charge current contribution to THE dominates (ρc � ρa). In
this regime, the effective magnetic field is proportional to
the chirality of the spin texture BT ∝ δS1 · [δS2 × δS3]. For
� = +1, η = +1 the sign of the mixed vector product of any
three spins δS1, δS2, δS3 forming the skyrmion is negative
and BT < 0 due to δSz < 0 (see Fig. 1), thus the sign of BT

appears to be opposite to B0. In the adiabatic regime (ρa �
ρc) the electrons with positive spin projection (co-aligned with
S0) retain the same type of scattering asymmetry as for small
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FIG. 6. The dependence of ρT
yx on Fermi energy EF at different

βex =
√

m�/h̄2a parameter for �1 profile, nsk = 2 × 1011 cm−2.

λa . As these electrons constitute the majority at a positive
spin polarization (Ps > 0), the effective magnetic field is also
negative BT < 0.

We conclude that for � = +1, η = +1 configurations, the
topological field BT usually has the opposite sign to the sign
of the external field B0. For chiral spin configurations with
negative vorticity � < 0 the fields BT and B0 have the same
sign. However, in the crossover regime λa ∼ 1 and near the
threshold EF ≈ �/2 there is no any fixed relation between
B0 and BT signs.

4. Effect of the Fermi energy variation

The dependence of ρT
yx on the variation of the Fermi energy

EF exhibits a number of distinctive features. At EF < �/2
only one spin subband is occupied and spin polarization is
Ps = 1. We start the analysis from the threshold EF � �/2,
when the electrons start populating the second spin subband.
In further consideration we keep � and a constant changing
only the Fermi energy EF . For this analysis it is convenient
to combine � and a into a single parameter βex = λa/

√
Ps =√

m�/h̄2a, which is independent of EF . Figure 6 shows the
dependence of ρT

yx on EF calculated for the �1 skyrmion
configuration for three different values of βex. As can be seen
from the figure, ρT

yx depends nonmonotonically on EF , with
a maximum near the threshold and decreasing at a larger
EF . The magnitude of ρT

yx near the threshold is controlled
by skyrmion size a. As the spin-chirality driven mechanism
relevant for a small skyrmion size does not work at EF < �/2
(there is no spin-flip processes below the spin down subband
edge), the decrease of a (and hence βex) suppresses ρT

yx at
EF = �/2. The suppression of ρT

yx at a large EF occurs from
the one hand due to decrease of the spin polarization factor Ps

in ρa , and from the other hand due to decrease of the scattering
cross section as the kinetic energy of the scattering electron
exceeds the characteristic energy of the scattering potential
(provided that λa � 1) [44].

The variation of the Fermi energy affects the asymmetric
part of the scattering cross section simultaneously through
ka and λa factors and, therefore, gives rise to a number
of interesting features in the transverse resistivity behavior.
We demonstrate these peculiarities in Fig. 7, where the de-
pendence of ρT

yx , ρc, and ρa on EF is plotted for βex = 3
and βex = 6. For βex = 3 [Fig. 7(a)] the adiabatic term ρa is
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FIG. 7. The dependence of ρT
yx , ρc, ρa on Fermi energy EF at

βex = 3 (a) and βex = 6 (b) for �1 profile, nsk = 2 × 1011 cm−2.

negative when far from the threshold. This is due to the com-
plex scattering pattern typical for the intermediate range of
the adiabatic parameter values (1 � λa � 2). We have already
encountered this effect considering the behavior of THE in
the crossover regime: ρa is negative in Fig. 2 for the same
range of λa as in Fig. 7(a). For βex = 6 [Fig. 7(b)] λa is larger
and the interference in the carrier scattering manifests itself
through the oscillation of ρc, ρa magnitudes superimposed
on the global suppression upon increasing of EF . The same
oscillating peculiarities of transverse response can be seen in
Fig. 2 in the range 4 � λa � 5.

Let us finally comment on the scattering rates behavior
in the vicinity of the threshold EF ≈ �/2. Since the spin
down and spin-flip scattering channels are absent for EF <

�/2, we conclude that at EF ≈ �/2 the following relations
are fulfilled: �2 ≈ 0, and �1(θ ) ≈ �(θ ). At that, only spin
up scattering channel is activated with J↑↑ ≈ 2�(θ ) (i.e.,
ρa ≈ ρc). It is worth mentioning that this relation holds in the
vicinity of the threshold for any magnitude of the adiabatic
parameter.

B. Dense array of skyrmions

In this section we apply the developed theory of THE to
the case when the dominating scattering mechanism changes
from scattering on nonmagnetic impurities to scattering on
magnetic textures. This transition affects the spin-dependent
scattering time τ−1

s = τ−1
0 + ωs , and correspondingly the be-

havior of both the longitudinal and transverse resistivities.
Let us consider the adiabatic regime of an electron scattering
assuming that the spin-flip scattering channels are completely

τ−1
0

ρxx

〈τ〉−1 ∝ nsk

Ms

Ps

nsk/ni

ρ
T y
x
/(

φ
0
n

sk
)

10−2 10−1 100 101 102
0

0.2

0.4

0.6

ρ
x
x

(a
.u

.) (a
.u

.)

FIG. 8. The dependence of ρxx and Ms on skyrmion surface
density nsk.

suppressed (�↑↓ = τ−1
↑↓ = 0) and THE originates solely from

the spin Hall effect (ρa � ρc). At that the spin up and spin
down channels are uncoupled and contribute independently
to the conductivity. While �ssτ0 
 1 in the dilute regime
ωsτ0 
 1, the ratio �ssτs ≈ �ss/ωs remains small even in the
dense skyrmion system ωsτ0 � 1, as the symmetric scattering
is more effective than the asymmetric one [57]. Thus, we can
still solve the kinetic equation in the lowest order in �ssτs as
described in the previous section. Keeping only the leading
terms with respect to �ssτs we get for the resistivity tensor
(see details in Appendix C):

ρxx = m

ne2〈τ 〉 , ρT
yx = Ms

1

nec
(φ0nsk)

∫ 2π

0
� sin θdθ,

〈τ 〉 = 1

2
[(1 + Ps )τ↑ + (1 − Ps )τ↓],

Ms = 1

2

[
(1 + Ps )

τ 2
↑

〈τ 〉2
− (1 − Ps )

τ 2
↓

〈τ 〉2

]
. (16)

Here Ps = (n↑ − n↓)/(n↑ + n↓) is the spin polarization of the
2D free carriers. We have also introduced an averaged scatter-
ing time 〈τ 〉. The parameter Ms controls the conversion of the
spin Hall to the charge Hall current.

In Fig. 8 we plot the dependence of ρxx and the spin/charge
Hall factor Ms on the skyrmion surface density nsk via the
parameter ωsτ covering the transition between scattering on
nonmagnetic impurities and skyrmions.

The switching of the dominant scattering mechanism af-
fects the spin dependent scattering time τs [Eq. (9)]. In the
dilute regime of low skyrmion surface density ωsτ0 
 1 con-
sidered in the previous section, the total transport scattering
time τs is independent of the carrier spin, being determined by
scattering on host nonmagnetic impurities τs = τ0. Therefore
ρxx does not depend on nsk. Increasing the skyrmion surface
density turns the system into the dense skyrmionic regime
ωsτ0 � 1, when the total transport scattering time is deter-
mined solely by the magnetic skyrmions and, hence, depends
on the carrier spin state τs = ω−1

s . When ωs exceeds τ−1
0 , the

longitudinal resistivity ρxx ∝ 〈τ 〉−1 increases linearly with nsk

as shown in Fig. 8.
According to Eq. (16) the topological Hall resistivity ρT

yx

is proportional to the skyrmion surface density nsk. The
crossover in the dominating scattering mechanism affects ρT

yx

only via the Ms factor. In the dilute regime (ωsτ0 
 1)
this parameter coincides with the carrier spin polarization
Ms = Ps as the scattering time on host impurities τ0 is spin
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FIG. 9. Two chiral spin textures with opposite orientation ξ =
±1 and � = −1 connected by the time-inversion T .

independent. However, in the dense regime (ωsτ0 � 1) the
scattering time τs depends on the carrier spin, this dependence
creates an additional spin imbalance favoring the conversion
of spin to charge currents. As a result, the Ms factor is
renormalized accounting for τ↑ 	= τ↓.

The general expressions for ρxx and ρT
yx in the adiabatic

regime (16) are applicable for any spin-dependent scattering
mechanisms, not necessarily due to skyrmions. We point out
that in the leading order with respect to �ssτs the effect of
τs on ρT

yx can be fully described by the replacement of the
carriers spin polarization Ps by an effective Ms factor, which
accounts for τ↑ 	= τ↓.

C. Paramagnetic chiral systems

In the previous sections we considered THE in a 2D mag-
netic layer with a background magnetization S0 and local de-
viations forming chiral magnetic textures. Unlike anomalous
Hall effect, THE does not necessarily require macroscopic
spin polarization of the carriers in the sample. Therefore, THE
is allowed in a system with no background magnetization
provided it still has localized chiral spin textures. We will refer
to this situation as to a chiral paramagnetic case.

In the absence of a preferred magnetization direction the
chiral spin textures with opposite orientations can be created
in the same sample. We denote them by the orientation of
spins in the center ξ = sgn(Sz|r→0) = ±1. However, these
two spin configurations are not independent, they must be
connected by the time-inversion symmetry. The example of
such a Kramers doublet of spin textures with � = −1 is shown
in Fig. 9.

The presence of two spin textures with opposite orientation
ξ = ±1 in the same layer modifies the expression for the
charge contribution ρc to THE (14). Indeed, as S0 ≈ 0 the sign
of the spin-chirality driven contributions �1,2 to the carrier
asymmetric scattering on the spin texture depends on its
orientation and the contributions to ρc from textures with ξ =
±1 have opposite sign. We arrive at the modified expression
for ρc accounting for both texture orientations ξ = ±1:

ρc = Pξ

1

nec
(φ0nsk)

∫
(�1 + �2) sin θdθ,

(17)
Pξ = n+ − n−

n+ + n−
,

where n± are surface densities of ξ = ±1 spin textures,
respectively, nsk = n+ + n− is the total surface density, and
Pξ is the polarization of the texture array in terms of their

orientations. Here we consider the dilute regime with τs = τ0.
It follows from (17) that observation of THE in chiral param-
agnetic systems is possible only when there is an imbalance
in the texture orientations, i.e., Pξ 	= 0.

Let us note that for the positive texture polarization Pξ > 0,
the sign of ρc is different to that of ρc for magnetic skyrmions,
or noncollinear rings in Fig. 1. Indeed, as we already men-
tioned, δSz < 0 for the magnetic skyrmions case leading to
ρc > 0. On the contrary, δSz > 0 is positive for ξ = +1 shown
in Fig. 9, so that ρc < 0.

V. DISCUSSION

Let us summarize the hallmarks of the developed THE the-
ory and consider some of the experimentally studied skyrmion
systems. First, the THE contribution to the resistivity ρT

yx =
ρc + ρa consists of two terms: the first one ρc describes the
transverse charge current due to spin-independent asymmetric
scattering, while the second one ρa appears due to spin Hall
effect converted to the charge transverse current via nonzero
2DEG spin polarization. Domination of one of the two terms
is controlled by the adiabatic parameter λa , the crossover from
charge Hall dominating to spin Hall dominating regime occurs
at λa ∼ 1 and is accompanied by a local minimum in the
dependence of ρT

yx on the skyrmion size.
Let us estimate the characteristic values of λa for some

real skyrmion systems. Skyrmions extensively studied by
Panagopoulos’ group [16,17,47] in Ir/Fe/Co/Pt multilayers
systems are in the range 40–80 nm in size. For an estimate we
take [58] a = 50 nm, � = 0.6 eV, EF = 5 eV, the effective
in-plane mass m = m0 and obtain λa ≈ 30.

Skyrmions studied by Fert’s group [2,3,15] in similar Co/Pt
multilayers systems are somewhat larger so that the adia-
batic parameter is also in a strong coupling range λa ≈ 60.
This is also typical for other Co/Pt systems with the size
of the skyrmions being around 100 nm [59]. An example
of substantially different system is Ta/FeCoB/TaOx structure
with skyrmionic bubbles of ∼1 μm size [60]. The electron
transport in such systems is also in the adiabatic regime.

It is worth discussing the role of the ratio Ps = �/2EF

in these systems. According to Fig. 6, ρT
yx is significantly

reduced when Ps 
 1 as discussed in Sec. IV A 4. For the
parameters used in the estimation above Ps ≈ 0.06, thus even
at seemingly large skyrmion diameters ρT

yx can be rather
small. Therefore, THE is expected to be more pronounced in
systems with higher �/2EF ratio.

The decrease of λa down to the order of unity leading to the
nonadiabatic transport regime is expected for nanometer-size
chiral magnetic textures in metallic systems with typical fer-
romagnets such as Co or Fe. In the recent studies of Weisen-
danger’s group a few-nanometer size skyrmions were suc-
cessfully stabilized [61]. For such nanoscale skyrmions the
THE is rather sensitive to band structure parameters, i.e.
taking a = 5 nm and Ps = 0.5 one gets λa ≈ 30 so the THE
is size-independent [57], while for the smaller ratio of the
exchange coupling to the Fermi energy Ps = 0.06 one gets
λa ≈ 3 suggesting that the system is in the vicinity of the
crossover from adiabatic to weak coupling regimes.

Alternatively, the nonadiabatic scenario of THE can be
achieved in the dilute magnetic semiconductors (DMS). The
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existence of chiral spin textures in DMS with spin-orbit inter-
action has been suggested both experimentally [18,19,62] and
theoretically on the basis of chiral magnetic polaron [53,56]
via the chiral paramagnet scenario discussed in Sec. IV C. The
solid advantage of DMS is that both the Fermi energy and
the exchange interaction strength can be tuned, allowing us to
control the adiabatic parameter in a wide range covering the
weak coupling and adiabatic regimes of THE.

For example, taking a n-type Cd1−xMnxTe-based quantum
well (electron effective mass m ≈ 0.1m0, the exchange inter-
action constant x × 220 meV) with a chiral spin texture radius
equal to a typical Bohr radius of an impurity bound state
3 nm, for x = 0.08 and the electron sheet density n1 = 5 ×
1011 cm−2 we get λa ≈ 2.5. By decreasing the sheet density
down to n2 = 1 × 1011 cm−2 or decreasing Mn fraction down
to x = 0.02 the adiabatic parameter can be adjusted to λa ≈ 6
and λa ≈ 0.8, respectively.

Let us comment on material systems where the electron
transport is affected by dense array of chiral spin textures.
According to the results of Sec. IV B, the THE resistivity
in the adiabatic regime ρT

yx ∝ Ms (φ0nsk) linearly depends
on the textures surface density, while the coefficient Ms is
renormalized differently depending on whether the carrier
scattering is dominated by host impurities or skyrmions. The
interplay between the two scattering mechanisms, on the
contrary, manifests itself in ρxx .

One example is a ferromagnetic film in the vicinity
of the phase transition, when thermally activated critical
magnetic fluctuations lead to the peak in the longitudinal
resistivity [28,63–65]. When spin-orbit interaction makes
the critical fluctuations chiral a pronounced THE signal is
expected, as suggested in Refs. [28,29,65]. Let us mention
that to describe the scaling properties of the resistivities
ρyx (ρxx ) in the vicinity of FM transition one should specify
a specific model of the chiral fluctuations adequate for the
considered material system.
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APPENDIX A: INTEGRATION OF THE COLLISION
INTEGRAL AND THE BOLTZMANN EQUATION

In this Appendix we calculate the collision integral in
Eq. (3) and derive the system of equations Eq. (8) for the
function g±

s from Eq. (6). We start from the collision integral

St[gs ( p)] =
∑
p′,s ′

(
W ss ′

p p′gs ′ ( p′) − W s ′s
p′ pgs ( p)

)
, (A1)

where gs ( p) is a nonequilibrium part of the full distribution
function. The angular asymmetry of the transport responsible
for THE arises from a complex dependence of gs ( p) on
the polar angle of the momentum p = (p, ϕ), thus in what
follows we denote this dependence explicitly as gs (ϕ). Let us
write the scattering rates W ss ′

p p′ in the form

W ss ′
p p′ = 1

ν
Ass ′ (θ )δ

(
εs
p − εs ′

p′
)
,

Ass ′ (θ ) = 2π

h̄
ν
(
ni |u p p′ |2δss ′ + nsk

∣∣T ss ′
p p′

∣∣2)
, (A2)

where θ = ϕ − ϕ′ is the scattering angle, δ is the delta func-
tion, and ν = m/2πh̄2 is the 2D density of states, we omit the
dependence of Ass ′ on the electron energy ε. After integrating
Eq. (A1) over ε we arrive at

St[gs (ϕ)] =
∑
s ′

∫
dϕ′

2π
(Ass ′ (θ )gs ′ (ϕ′) − As ′s (−θ )gs (ϕ)).

(A3)
The next step is to expand gs (ϕ) and Ass ′ (θ ) in angular
harmonics:

gs (ϕ) =
∑
n�1

g+
s,n cos nϕ + g−

s,n sin nϕ,

Ass ′ (θ ) = �0,ss ′ + 2
∑
n�1

�+
n,ss ′ cos nθ + �−

n,ss ′ sin nθ, (A4)

where

�+
n,ss ′ = 2π

h̄
ν

∫ 2π

0

dθ

2π
cos nθ

(
ni |u p p′ |2δss ′ + nsk

∣∣T ss ′
p p′

∣∣2)
,

�0,ss ′ = 2π

h̄
ν

∫ 2π

0

dθ

2π

(
ni |u p p′ |2δss ′ + nsk

∣∣T ss ′
p p′

∣∣2)
,

�−
n,ss ′ = 2π

h̄
νnsk

∫ 2π

0

dθ

2π
sin nθ

∣∣T ss ′
p p′

∣∣2
.

The terms �−
n,ss ′ mix odd (−) and even (+) angular parts of

the nonequilibrium distribution function gs , hence they are
responsible for the asymmetric scattering. In these terms we
take into account only the scattering on chiral spin textures
(i.e., skew scattering due to host impurities leading to the
anomalous Hall effect is neglected). It is especially convenient
to write the asymmetric coefficients �−

n,ss ′ using the dimen-
sionless rates Jss ′ (θ ) introduced in Eq. (5):

�−
n,ss ′ = − e

mc
(nskφ0)

∫ 2π

0
Jss ′ (θ ) sin nθdθ, (A5)

where e is a negative electron charge, and φ0 = hc/|e| is the
flux quantum. After substituting the expansions Eq. (A4) and
integrating it over the angle ϕ′ we arrive at the following
expression for the collision integral:

St[gs (ϕ)] =
∑

n

I+
s,n cos nϕ + I−

s,n sin nϕ,

I+
s,n =

∑
s ′

[�+
n,ss ′g

+
s ′,n − �−

n,ss ′g
−
s ′,n − �0,s ′sg

+
s,n],

I−
s,n =

∑
s ′

[�+
n,ss ′g

−
s ′,n + �−

n,ss ′g
+
s ′,n − �0,s ′sg

−
s,n]. (A6)
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The number of nonzero angular harmonics g±
n,s in the Boltz-

mann equation Eq. (3) is determined by a particular transport
scenario. For the considered in this paper linear response on
the electric field E, the field-driven part of Eq. (3) contains
only the first angular harmonics n = 1; therefore g±

s,n = 0,
I±

s,n = 0 for n � 2, and only the index n = 1 is relevant, so
we simplify the notation [see Eq. (6)] g±

s ≡ g±
1,s . The terms of

the collision integral for n = 1 are given by

I+
s,1 = −τ−1

s g+
s + �ssg

−
s + τss̄g

+
s̄ + �ss̄g

−
s̄ ,

(A7)
I−

s,1 = −τ−1
s g−

s − �ssg
+
s + τss̄g

−
s̄ − �ss̄g

+
s̄ ,

where we introduced τ−1
s = �0,ss − �+

1,ss + �0,s̄s , �ss ′ =
−�−

1,ss ′ , and τ−1
ss̄ = �+

1,ss̄ ; s̄ denotes the spin state opposite to s.
The detailed expressions for τs, τss̄ ,�ss ′ parameters are given
in Eq. (9). Assuming that E is directed along the x axis the
Boltzmann equation for s spin subband is given by

eEvs

∂f 0
s

∂ε
cos ϕ = I+

s,1 cos ϕ + I−
s,1 sin ϕ. (A8)

Equating eEvs
∂f 0

s

∂ε
= I+

s,1, and I−
s,1 = 0 brings us to the system

of algebraic equations Eq. (8) for g±
1,s .

APPENDIX B: SYMMETRY OF SCATTERING RATES

In this Appendix we derive the relations (13) for the
dimensionless asymmetric scattering rates Jss ′ (θ, η). The
background polarization η = sgn(S0) = ±1 also determines
the orientation of spins inside the core of a chiral spin texture.
The starting point is the time-reversal invariance, which states
that the scattering rate from ( p′, s ′) → ( p, s) with a scattering
angle θ = ϕ − ϕ′ should be equal to that from (− p, s̄ ) →
(− p′, s̄ ′) with the scattering angle −θ and reversed polariza-
tion of the spin texture S(r ) → −S(r ) (s̄ denotes the carrier
spin state opposite to s). The spin texture reversal S(r ) →
−S(r ) implies η → −η, � → �, and γ → γ + π . Collecting
these operations together we obtain

Gss ′ (θ, η) + Jss ′ (θ, η) = Gs̄ ′ s̄ (−θ,−η) + Js̄ ′ s̄ (−θ,−η).
(B1)

Taking into account that Gss ′ (θ, η) = Gss ′ (−θ, η) and
Jss ′ (θ, η) = −Jss ′ (−θ, η) we get that the symmetric and
asymmetric scattering rates satisfy

Gss ′ (θ, η) = Gs̄ ′ s̄ (θ,−η),

Jss ′ (θ, η) = −Js̄ ′ s̄ (θ,−η). (B2)

We further focus on Jss ′ . The relations (B2) couple the two
scattering channels with the opposite spin orientations. For the
spin-conserving channels we have

J↑↑(θ, η) = −J↓↓(θ,−η). (B3)

Let us introduce the symmetrized and antisymmetrized com-
binations of J↑↑(θ, η), J↑↑(θ,−η) with respect to η:

�(θ, η) = 1
2 [J↑↑(θ, η) − J↑↑(θ,−η)],

�(θ ) = 1
2 [J↑↑(θ, η) + J↑↑(θ,−η)]. (B4)

Since the background polarization can take only two values
η = ±1, the function � does not depend on η, while �(−η) =

−�(η). The dependence of � on η can be specified explicitly
as �(η, θ ) ≡ η�1(θ ), where �1 depends only on θ and on the
energy of the incident electron.

Expressing the rates of the spin-conserving channels and
using the symmetry (B3) we arrive at the relations (13)

J↑↑(θ, η) = η�1(θ ) + �(θ ),

J↓↓(θ, η) = η�1(θ ) − �(θ ). (B5)

As for the spin-flip scattering channels, there is an addi-
tional symmetry J↑↓(θ, η) = J↓↑(θ, η) as the Hamiltonian is
Hermitian, this symmetry leads to the absence of a spin Hall
part:

J↓↑(θ, η) = J↑↓(θ, η) = η�2(θ ), (B6)

where �2(θ ) does not depend on η.

APPENDIX C: DERIVATION OF
THE RESISTIVITY TENSOR ρ

In this Appendix we solve the system of Eq. (8) and calcu-
late the longitudinal (ρxx) and transverse (ρT

yx) resistivities for
dilute and dense skyrmion systems [see Eqs. (14) and (16)].

1. Dilute regime

In the dilute regime the scattering is dominated by host
nonmagnetic impurities: τs ≈ τ0 
 ω−1

s ,�−1
ss ′ . In this case the

longitudinal component g+
s is determined only by τ0:

g+
s = τ0eEvs

(
−∂f 0

s

∂ε

)
. (C1)

The transverse part g−
s in the lowest order in �ss ′τ0 is given by

g−
s = −τ0[�ssg

+
s + �ss̄g

+
s̄ ]. (C2)

The electric current j calculated according to Eq. (7) appears
to be

jx = σ0E, jy = σT
yxE, σ0 = ne2τ0

m
,

σT
yx = −σ0

∑
s

ns

n
(�ss + �ss̄ )τ0, (C3)

where ns = ν(EF + s�) is the electron sheet density for the s

subband, n = n↑ + n↓ is the total electron sheet density, and s̄

denotes the spin state opposite to s. Inverting the conductivity
tensor and keeping only the leading terms with respect to
�ss ′τ0 we get for the resistivities:

ρxx = σ−1
0 , ρT

yx = −σ−2
0 σT

yx = ρc + ρa, (C4)

where ρc, ρa are given by Eq. (14).

2. Transport in the adiabatic regime

In the adiabatic regimes the spin-flip scattering on
skyrmions is suppressed (τ−1

↑↓ = �↑↓ = 0) and the spin Hall
term prevails over the charge one � � �1,2. The absence
of spin-flip scattering suggests that the two spin subbands
in Eq. (8) are uncoupled and contribute independently to the
electric current. Below we do not put any restrictions on ωsτ0

assuming that the scattering time can be dominated either by
impurities or by skyrmions. The product �ss ′τs 
 1 leading

195439-10
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to the Hall effect remains small as the asymmetric scattering
rates are always smaller than the symmetric ones. Keeping
these conditions we get for g+

s and g−
s :

g+
s = τseEvs

(
−∂f 0

s

∂ε

)
, g−

s = −g+
s (�sτs ). (C5)

The electric current in Eq. (7) calculated with g±
s from above

is given by

jx = σxxE, jy = σT
yxE,

σxx = σ↑ + σ↓, σs = nse
2τs

m
, (C6)

σT
yx = −(σ↑�τ↑ − σ↓�τ↓),

where we take into account � ≡ �↑↑ = −�↓↓ for the adia-
batic scattering regime. The resistivities ρxx, ρ

T
yx in the lowest

order of �τs are given by

ρxx = σ−1
xx = m

ne2

1

〈τ 〉 , 〈τ 〉 = n↑
n

τ↑ + n↓
n

τ↓,

ρT
yx = −σ−2

xx σ T
yx = m

ne2
Ms�, (C7)

Ms =
[

n↑
n

τ 2
↑

〈τ 〉2
− n↓

n

τ 2
↓

〈τ 〉2

]
,

where we introduced the parameters 〈τ 〉, Ms following the
notations in Eq. (16). Taking into account that ns/n = (1 +
s�/EF )/2 we arrive at the expressions for ρxx, ρ

T
yx in the

form as in Eq. (16).
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