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Topological quantum phase transition between Fermi liquid phases
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We study a generalized Anderson model that mixes two localized configurations—one formed by two
degenerate doublets and the other by a triplet with single-ion anisotropy DS2

z —by means of two degenerate
conduction channels. The model has been derived for a single Ni impurity embedded into an O-doped Au chain.
Using the numerical renormalization group, we find a topological quantum phase transition, at a finite value Dc,

between two regular Fermi liquid phases of high (low) conductance and topological number 2IL/π = 0 (+1)
for D < Dc (D > Dc), where IL is the well-known Luttinger integral. At finite temperature the two phases are
separated by a non-Fermi liquid phase with fractional impurity entropy 1

2 ln2 and other properties which are
similar to those of the two-channel Kondo model.

DOI: 10.1103/PhysRevB.98.195435

Introduction. Quantum phase transitions (QPTs) observed
in transport through molecular systems in which two electrons
play a relevant role have been a subject of interest recently
[1–3]. In general, in nanoscopic systems with more than one
electron, the spin-orbit coupling is important and leads to
the single-ion anisotropy DS2

z , where Sz is the total spin of
the nanosystem [2–6]. The relative magnitude of D can be
tuned experimentally [2,6–8]. On the other hand, experiments
with mechanically controllable break junctions have made it
possible to create one-dimensional atomic chains of several
elements and measure the conductance through them [9,10].

Some QPTs are topological QPTs (TQPTs): Even if some
other properties vary continuously at the transition, a topo-
logical quantum number (related with a geometrical Berry
phase or the topology of each thermodynamic phase) jumps at
the TQPT. Examples of these kinds of transitions are several
charge and spin TQPTs observed in one-dimensional models
in which the nearest-neighbor hopping depends on the occu-
pation [11,12], as in cold-atom lattices [13], or the Hubbard
model with alternative on-site energies [14,15], for which
the topological transition might be observable in transport
through arrays of quantum dots or molecules [16].

On the other hand, in condensed matter physics, the
Luttinger theorem [17,18], which states that the volume of
the Fermi surface is determined by the particle density and
remains unaltered by interactions, and Friedel sum rules
[19,20], which relate the occupancy of impurity states with
the corresponding spectral density at the Fermi energy, have
been crucial for our present understanding of many interacting
systems that behave as Fermi liquids at zero temperature.
The so-called Luttinger integral IL [21] enters the demon-
strations in these works and it was generally assumed to
vanish. In non-Fermi liquid phases, it has been found that
IL can take nontrivial values [22,23]. However, recently a
group of researchers found that IL can take three different

values in an impurity model in phases with regular low-
energy Fermi liquid behavior [24,25]. This is surprising since
only IL = 0 was expected in a regular Fermi liquid, accord-
ing to its perturbative calculation in the seminal work by
Luttinger and Ward [18], where the Fermi liquid was con-
sidered adiabatically connected to a system of noninteracting
electrons. More recently, Seki and Yunoki [26] showed that
the Luttinger integral, which is the deviation of the Luttinger
volume from the noninteracting limit, can be interpreted as
a winding number of the ratio between the determinants
of the noninteracting and interacting single-particle Green’s
functions. The combination of this topological interpretation
of IL and the finding of its nonzero values [24,25] opens the
possibility of topologically nontrivial Fermi liquid phases that
are not adiabatically connected with noninteracting systems
and, therefore, they can be termed non-Landau Fermi liquids.

In this work, we describe the TQPT that, driven by the
single-ion anisotropy D, takes place in a simple impurity
model which, in the Kondo limit, consists of a spin 1 screened
by two conduction channels. This model has been derived
from ab initio calculations and describes transport through Ni
atoms in O-doped Au chains [27,28] (see Supplemental Fig.
S1 of Ref. [29]). The oxygen doping has the effect of pushing
up the 5dxz and 5dyz bands of Au (with z along the chain
direction), which are below the Fermi energy in pure Au
chains [28,35,36]. The two conduction channels correspond
to the degenerate orbitals of xz and yz symmetry, and they
hybridize with the corresponding Ni 3d orbitals. Solving
the model by means of the numerical renormalization group
(NRG), we find that the transition occurs at the finite critical
anisotropy Dc ≈ 2.57 T 0

K , where T 0
K is the Kondo temperature

for D = 0. This TQPT separates two regular Fermi liquid
phases: For D < Dc the impurity spin is Kondo screened,
while for D > Dc it is quenched by the anisotropy. For
D < Dc, as the temperature T → 0, the electrical
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conductance is large and agrees with the usual Friedel
sum rule with IL = 0, as in Fermi liquids adiabatically
connected with a noninteracting system. Instead, for
D > Dc and T = 0, the conductance is small and satisfies a
generalized Friedel sum rule with IL = π

2 , corresponding to
a non-Landau Fermi liquid. Furthermore, for D ≈ Dc and
in a finite interval of temperatures T ∗(D) � T � T 0

K, where
T ∗(D) → 0 as D → Dc [37], there is a critical quantum
regime whose electrical transport and thermodynamics
properties correspond to a non-Fermi liquid behavior. It is
worthwhile to mention that T 0

K can be tuned by stretching the
gold chains, rendering it possible to observe the transition
experimentally.

Model. We consider the Hamiltonian that describes a sys-
tem containing a Ni atom in a substitutional position within
a Au chain doped with a small amount of oxygen (∼14%)
between two Au conducting leads [27,28], describing charge
fluctuations between 3d8 and 3d9 Ni configurations. It can be
written as [29]

H =
∑
M2

(
E2+DM2

2

)|M2〉〈M2| +
∑
αM1

E1|αM1〉〈αM1|

+
∑
νkασ

ενkc
†
νkασ cνkασ

+
∑
M1M2
ανkσ

Vν〈1M2|1

2

1

2
M1σ 〉(|M2〉〈αM1|cνkασ + H.c.),

(1)

where Ei and Mi indicate the energies and the spin projections
along the chain, respectively, of states with i = 1, 2 holes
in the 3d shell of the Ni impurity; |αM1〉 is the state with
one hole with symmetry α (xz, yz) and spin M1. D is the
Ni uniaxial magnetic anisotropy. The operator c

†
νkασ creates

a hole with symmetry α and energy ενk (relative to the
Fermi level εF = 0) in the 5d shell of the Au atom, where
ν = L,R denotes the left or the right side of the Ni atom,
respectively. 〈1M2| 1

2
1
2M1σ 〉 are Clebsh-Gordan coefficients.

The hopping Vν characterizes the tunneling between the Ni
and Au states, and it enters the hybridization function � =
π

∑
νk |Vν |2δ(ω − ενk ), assumed independent of energy.

The ground-state configuration of the Ni atom has two
holes in the degenerate 3dxz, 3dyz orbitals coupled to spin
S = 1. The state |M2〉 with M2 = 0 is lower in energy than
those with M2 = ±1 by an energy that has been estimated
in D ≈ 8.5 meV solving exactly the atomic model for the
3d8 configuration including all interactions and spin-orbit
coupling [27].

We solve the Hamiltonian (1) by means of NRG, as im-
plemented in the Ljubljana open source code [38]. We use
a discretization parameter � = 3, and we keep up to 10 000
states. The results are z averaged with Nz up to 4. In this work,
we have chosen εd ≡ E2 − E1 = −0.02 and � = 0.1 in units
of the conduction half-bandwidth W . For this ratio εd/�, the
system is in the Kondo regime, but close to the mixed valence
regime (MVR), and the different regimes that we want to dis-
play come out more clearly. The corresponding Kondo tem-
perature is T 0

K 	 1.245 × 10−3 for D = 0, obtained through

the usual condition G(T 0
K ) = 1

2G(T → 0), where G(T ) is
the differential conductance G = dI/dV . However, the occu-
pancy found in ab initio calculations [27,28] indicates that the
system is closer to the MVR and with a Kondo temperature
near 6 meV, as explained in the Supplemental Material [29].
The corresponding value Dc 	 2.57T 0

K ∼ 15 meV roughly
falls in the range of the estimated D for Ni atoms in O-doped
Au chains, particularly taking into account that D can be
reduced by stretching or tuned by further doping the gold
chains.

Generalized Friedel sum rule. Using conservation laws, the
impurity spectral function per orbital and spin, at the Fermi
level and T = 0, is given by [20]

Adασ (ω = 0) = 1

π�
sin2(δασ ), (2)

where, taking into account explicitly the spin degeneracy, the
phase shift is

δασ = π

2
〈ndα〉 − IL. (3)

ndα = ∑
M2

|M2〉〈M2| + ∑
M1

|αM1〉〈αM1| is the hole occu-
pation number of the Ni α orbital [39], and the Luttinger
integral IL, which in our case is independent of orbital and
spin indices, is defined as [21]

IL = Im
∫ 0

−∞
dωGdασ (ω)

∂�dασ (ω)

∂ω
, (4)

where Gdασ (ω) is the impurity Green function for orbital α

and spin σ and �dασ (ω) is the corresponding self-energy.
As explained above, IL vanishes for a Fermi liquid, when

it is perturbatively calculated from a noninteracting electronic
system [18]. However, recently [24,25] it was found that this is
not always the case for local Fermi liquids, while a topological
interpretation of IL was provided for extended systems [26].

NRG results. To localize the TQPT we use the differential
conductance, which is easily accessible experimentally [9,10].
The conductance per channel is given by

Gα (T ) = G0

∑
σ

π�

2

∫
dω

[
−∂f (ω)

∂ω

]
Adασ (ω), (5)

where f (ω) is the Fermi function and G0 = 2e2/h is the
quantum of conductance. Using Eqs. (2) and (3) we have,
at zero temperature, the generalized Friedel sum rule for the
conductance

Gα (0) = G0 sin2
(π

2
〈ndα〉 − IL

)
. (6)

In Fig. 1, the conductance per channel as a function of
T/T 0

K for several positive values of the single-ion anisotropy
D is shown. Gα has an abrupt change as D is varied across
its critical value Dc 	 0.003196, and two regimes are easily
characterized according to the behavior of Gα at the lowest
temperatures. For D < Dc, Gα (T →0) takes a large value,
which corresponds to the Friedel sum rule (6) with IL = 0.
In this case, for low temperatures we expect a fully Kondo
screened impurity, leading to the usual Fermi liquid phase.
Note that, as we are working far away from the particle-
hole symmetric point (only 3d8 and 3d9 Ni configurations
are considered), the occupation number per impurity orbital
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FIG. 1. Electrical differential conductance as a function of T/T 0
K

for several values of the single-ion anisotropy D.

is less than 1 (〈ndα〉 	 0.788, almost constant with varying
D) and Gα does not reach the unitary limit. It can be seen
that, for small D, the conductance exhibits fingerprints of the
magnetic anisotropy for temperatures of the order of D, like
the shoulder that develops before it goes to its Kondo limit
with decreasing T .

On the other hand, for D > Dc, Gα (T → 0) goes to a low
value, corresponding to IL = π

2 in (6). This case corresponds
to the impurity spin quenched by D, as its ground state has
spin projection Sz = 0. Again, we expect a Fermi liquid at
low T , but now this phase yields the nontrivial Luttinger
integral IL = π

2 . For D � Dc, Gα takes small values for any
temperature.

For D close to Dc, below and above, the conductance has
a clear plateau at the precise value G0/2, characteristic of the
two-channel Kondo (2CK) effect.

Around Dc we define a characteristic energy for each
phase. For D < Dc, T

∗
K (D) is computed through the condi-

tion Gα[T ∗
K (D)] = [Gα (T →0) − 0.5G0]/2, corresponding

to the onset of the fully Kondo screening of the impurity, while
for D > Dc, we take T ∗

q (D) which satisfies Gα[T ∗
q (D)] =

[0.5G0 − Gα (T →0)]/2, and it signals the onset of the im-
purity spin quenching. We find that, as it corresponds to a
quantum critical point [37], these energies vanish as D → Dc.
Surprisingly for a Kondo screening energy scale, T ∗

K (D) has
a potential law dependence on D:

T ∗
K (D) ∝ T 0

K

(
Dc − D

Dc

)2

.

On the other hand,

T ∗
q (D) ∝ T 0

K exp

[
−c

(
T 0

K

D − Dc

)1/4
]
,

where c is a constant of order of one; a similar result was
found in the S = 1 underscreened Kondo model [40].

The impurity spectral function Adασ (ω) near the Fermi
level is presented in the main panel of Fig. 2, for three different

ω

πΔ
ω

)

π

FIG. 2. Impurity spectral function Adασ (ω) for three different
anisotropies D, at T 	 10−6T 0

K . Inset: Luttinger integral IL as a
function of D.

values of D, at the very low temperature T 	 10−6T 0
K. A

Kondo resonance is clearly visible for all D < Dc. As D

increases, the Kondo peak moves towards the Fermi level and
its width decreases. At Dc the resonance abruptly disappears,
and it is replaced by a narrow dip just at ω = 0. In the
supplemental material [29], we show that for the related
S = 1 Kondo impurity model with two conduction channels,
very close to its critical point, the spectral function (defined
through the t matrix) takes half of its Kondo-screened value,
and this is another hallmark of the 2CK.

With the NRG technique it is not an easy task to obtain
reliable values of IL by computing it directly from Eq. (4), due
to numerical inaccuracies in the self-energy evaluation [24].
Instead, we calculate IL through the generalized Friedel sum
rule for the conductance (6). The obtained IL is displayed as
a function of D in the inset of Fig. 2. It can be seen that IL

takes only two discrete values: IL = 0, π/2, with an abrupt
jump at Dc. This is not fortuitous as IL is closely related with
the winding number of the ratio Dd (z) = G0

dασ (z)/Gdασ (z)
between the noninteracting and interacting impurity Green’s
functions, around the origin in the complex plane Dd (see
supplemental material [29]):

IL = π lim
T →0

∮
�

dz

2πi
nF (z)

∂ ln Dd (z)

∂z
, (7)

where the contour � encloses the real axis. So, the Fermi
liquids for D < Dc and D > Dc can be topologically distin-
guished by IL, being topologically trivial (non-trivial) synony-
mous of adiabatically (non-adiabatically) connected to a non-
interacting system. As a consequence, the quantum critical
transition between the two Fermi liquids (a Landau and a
non-Landau Fermi liquid) at Dc has a topological character.
We confirm the Fermi liquid character of both phases through
the analysis of their NRG spectra, that point out that for
D < Dc (D > Dc) the Fermi liquid, corresponds to a strong-
coupling (weak-coupling) fixed point [29]. Furthermore, with
the necessary caution due to the difficulties of the NRG
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FIG. 3. Impurity entropy as a function of temperature for several
single-ion anisotropy D close to the TQPT.

computation of the self-energy [29,41], we have checked that
its imaginary part Im �dασ (ω) behaves quadratically as a
function of frequency close to the Fermi level, for both Fermi
liquids IL = 0, π/2 [29]. However, for D 	 Dc a singularity
appears just on the Fermi level, being responsible for the
nontrivial IL. We conjecture that this singularity is related
with the simultaneous creation, as D → Dc from below, of a
zero and a pole of the impurity Green’s function at the Fermi
level, as it happens in an analogous way in other topological
transitions in extended systems [42,43].

In order to further characterize the critical region, the im-
purity contribution to the entropy as a function of temperature
is plotted in Fig. 3. It can be clearly seen that, for D close to
Dc, there is a plateau at Simp = 1

2 ln(2), the fractional entropy
usually associated with the 2CK physics [44]. Also, a shoulder
at S 	 3 is noticeable, corresponding to the threefold degener-
acy of the S = 1 impurity states at intermediate temperature.
For other parameters (not shown in this work), this shoulder
transforms in a clear plateau. At higher temperatures, out of
the figure, there is a plateau at Simp = 7 corresponding to the
total number of localized impurity states in the model.

Another signature of 2CK-like behavior close to Dc is
the fact that the NRG spectrum, as a function of the NRG
iteration number N (see supplemental material [29]), has
an extended plateau for intermediate N, corresponding to a

 π/2

FIG. 4. Sketch of the phase diagram of the S = 1 impurity model
as a function of temperature and anisotropy. The solid lines indicate
crossover regions between Fermi and non-Fermi liquid behaviors,
while the dashed one signals the onset of nonuniversal behavior at
higher temperatures.

(unstable) fixed point without the typical odd-even alterna-
tion and uniform level spacing of the conventional Kondo
effect [45].

Using the energy scales T ∗
K and T ∗

q , we can summarize
our findings in the phase diagram sketched in Fig. 4, with its
“classical” Fermi liquid regions at both sides of the critical
point, while the usual (non-Fermi liquid) quantum critical
wedge emerges from the quantum critical point Dc at zero
temperature.

Summary. We have found a topological quantum phase
transition between two Fermi liquids through an intermediate
non-Fermi liquid 2CK-like phase in a simple model consisting
of an S = 1 impurity coupled to two conduction bands, where
the driving parameter of the transition is the single-ion mag-
netic anisotropy D. This model has experimental relevance
for transport through nanostructures formed by Ni impurities
in O-doped gold chains. The relative magnitude of anisotropy
to the Kondo temperature T 0

K can be experimentally tunable,
rendering it possible to observe the transition: D/T 0

K can be
modified by changing the effective εd of the Ni atom by
doping or it can be increased by mechanically streching the
gold chains [2]. We expect that our work will stimulate further
experimental work in similar systems. In particular, it would
be interesting to find experimental probes that can distinguish
between Fermi liquids characterized by different values of the
topological invariant Luttinger integral.
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