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Optical conductivity and transparency in an effective model for graphene
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Motivated by experiments confirming that the optical transparency of graphene is defined through the fine
structure constant and that it could be fully explained within the relativistic Dirac fermions in a two-dimensional
picture, we investigate in this article how this property is affected by next-to-nearest-neighbor coupling in the
low-energy continuum description of graphene. A detailed calculation within the linear response regime allows
us to conclude that, somewhat surprisingly, the optical conductivity at zero temperature that determines the
transparency remains robust up to this correction.
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I. INTRODUCTION

Graphene is a two-dimensional allotrope of carbon, ar-
ranged as a honeycomb lattice with a C3v ⊗ Z2 symmetry
[1] that determines its remarkable physical properties [2–5].
In particular, the electronic spectrum arising from an atom-
istic tight-binding model displays two nonequivalent points
K+, K− where the conduction and valence bands touch and in
whose vicinity the dispersion relation is approximately linear.
This leads to an effective, low-energy continuum model where
the electronic properties of the material are well captured
by those of relativistic Dirac fermions in two dimensions.
Among the plethora of physical consequences of this fact
that have been already predicted and measured [2–8], we
noticed an interesting experiment that measures the opti-
cal transparency of single- and few-layer graphene [9]. The
transparency is a physical property that is determined by
the optical conductivity, i.e., the linear response to an exter-
nal electromagnetic field. A variety of experiments confirm
[9–13] that the measured transmittance is indeed compatible
with the effective single-particle model of relativistic Dirac
fermions in graphene. A number of different theoretical works
have exploited this fact to calculate the light absorption rate
in graphene from a “relativistic” quantum electrodynamics
perspective [14–22].

An interesting question that remains open is up to what
extent is this effective model valid in the representation of this
optical property, since it arises from a tight-binding micro-
scopic atomistic model that involves only the nearest-neighbor
hopping. A number of possible physical effects may induce
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deviations from this minimal model, and many of them have
been thoroughly studied in the literature, such as electron-
electron Coulomb interactions [7,23], lattice phonons
[2,24–27], impurities [3,28,29], and different forms of
quenched disorder [7,29]. In this article, we shall leave some
of these phenomena aside, to be discussed in a future work. In-
stead, we shall focus on the contribution to the optical conduc-
tivity that arises from the next-to-nearest-neighbor coupling in
the atomistic Hamiltonian, included as a quadratic correction
to the kinetic energy operator within a continuum effective
model for graphene. Such a model has been considered in
Ref. [30] to fully account for the anomalous integer quantum
Hall effect in this material and the underlying wave equation is
referred to in the literature as the second-order Dirac equation
[31]. Notice that this is an isotropic model in which the
quadratic (anisotropic next-to-leading) term in the dispersion
relation coming from the nearest-neighbor sites has been
shown to give a vanishing contribution to the Hamiltonian
spectrum at first order in perturbation theory, thus justifying
the consideration of the quadratic (isotropic) leading contribu-
tion of next-to-nearest neighbors in the honeycomb array [30].

For our purposes, let us recall that within the linear re-
sponse theory, general Kubo relations [32–34] allow us to ex-
press the transport coefficients in terms of retarded correlators
[33], which for a pair of observables Ô1, Ô2 are defined by
(ζ = ± for bosons and fermions, respectively)

CR
O1,O2

(t − t ′) = −iθ (t − t ′)〈[Ô1(t ), Ô2(t ′)]−ζ 〉
= −iθ (t − t ′)〈Ô1(t )Ô2(t ′)〉

− iθ (t − t ′)ζ 〈Ô2(t ′)Ô1(t )〉. (1)

These retarded correlators differ from the usual time-ordered
ones that, by construction, are obtained via functional dif-
ferentiation of the standard generating functional constructed
from a path-integral formulation in quantum field theory. This
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FIG. 1. Crystal structure of graphene. The honeycomb array is
described in terms of two overlapping triangular sublattices.

rather technical inconvenience can be overcome by connect-
ing the different propagators using a Lehmann representation,
or alternatively to work in the Matsubara formalism at finite
temperature and use analytic continuation a posteriori [33].
There is, however, a third and more direct alternative, which
is to express the generating functional in the contour time path
(CTP), also known as the Keldysh formalism in the condensed
matter literature [34,35]. In this work, we choose the CTP
formalism to explicitly calculate the polarization tensor as a
retarded correlator of the current operators, which provides
the correct definition of the optical conductivity within linear
response theory.

With these ideas in mind, we have organized this article
as follows: In Sec. II, we present the details of the model.
In Sec. III we present the Keldysh formalism to calculate
the current-current correlator and in Sec. V we obtain the
optical conductivity from the vacuum polarization tensor. We
discuss our findings in Sec. VI. Some calculational details are
presented in the Appendix.

II. LAGRANGIAN, CONSERVED CURRENT, AND
GENERATING FUNCTIONAL

Graphene consists of a one-atom-thick membrane of
tightly packed carbon atoms in a honeycomb array. Its crys-
tal structure, sketched in Fig. 1, is described in terms of
two overlapping triangular (Bravais) sublattices so that for a
given atom belonging to any of these sublattices, its nearest
neighbors belong to the second sublattice, the next-to-nearest
neighbors to the original sublattice, and so on. The band
structure at the next-to-nearest approximation is of the form

E±(k) = ±t
√

f (k) − t ′[f (k) − 3], (2)

where t and t ′ are the nearest and next-to-nearest hopping
parameters and

f (k) = 3+4 cos

(
3kxa

2

)
cos

(√
3kya

2

)
+2 cos(

√
3kya),

(3)

where a � 1.42 Å is the interatomic distance. The points K+
and K− at which f (K±) = 0 define the so-called Dirac points.

Around K+,

E±(k + K+) = ± t

[
3

2
a|k| − 3

8
a2k2 sin(3ϑ )

]

+ t ′
[
−9

4
a3k2 + 3

]
+ O(|k|3), (4)

with tan(ϑ ) = ky/kx . Around K− one merely has to replace
ϑ → −ϑ in Eq. (4). The isotropic portion of the model
in Eq. (4) was first considered in Ref. [30] as a natural
framework to explain the anomalous integer quantum Hall
effect in graphene. Moreover, as previously mentioned, the
anisotropic quadratic term, so-called trigonal warping, in this
effective dispersion relation was shown not to contribute to
the energy spectrum at first order in perturbation theory [30],
thus justifying the retention of just the isotropic terms up to
this order in the pseudomomenta.

In the presence of electromagnetic interactions, the model
is described by the Lagrangian [30]

L := i

2
[ψ† ∂tψ − ∂tψ

† ψ] + ψ†eA0ψ − 1

2m
{[(p − eA

+ θσ )ψ]† · [(p − eA + θσ )ψ] − 2θ2ψ†ψ}
= i

2
[ψ† ∂tψ − ∂tψ

† ψ] − 1

2m
{∇ψ† · ∇ψ

+ i∇ψ† · (−eA + θσ )ψ − iψ†(−eA + θσ ) · ∇ψ

+ψ†[(−eA + θσ )2 − 2θ2]ψ}, (5)

where θ = mvF and m = ±2/(9t ′a2), where the sign de-
pends on each Dirac cone K±. Here, the 3-momentum is
pμ = (p0, p), with p = (p1, p2). The vector potential A =
(A1, A2), whereas σ = (σ 1, σ 2) are Pauli matrices. Here, ψ†

and ψ are regarded as independent fields whose equations
of motion are derived from the variation of the action with
respect to these fields, namely,

∂L
∂ψ† − ∂t

(
∂L

∂
(
∂tψ†

)
)

− ∇ ·
(

∂L
∂
(∇ψ†

)
)

= i∂tψ − 1

2m
[(p − eA + θσ )2 − 2θ2]ψ = 0, (6)

and similarly for ψ .
The Lagrangian in Eq. (5) remains invariant against the

local change in the dynamical variables and the external
electromagnetic field

ψ (x) → eieα(x)ψ (x) ⇒ δψ (x) = ieα(x)ψ (x),

ψ†(x) → ψ†(x)e−ieα(x) ⇒ δψ†(x) = −ieα(x)ψ†(x),

Aμ(x) → Aμ(x) + ∂μα(x), (7)

that is, it has a U (1) gauge symmetry. Nœther’s theorem leads
to the existence of the locally conserved current

αjμ := −δψ†

(
∂L

∂
(
∂μψ†

)
)

−
(

∂L
∂
(
∂μψ

)
)

δψ . (8)

The corresponding charge density is

j 0 = e ψ†ψ (9)
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FIG. 2. Contour γ = γ+ ⊕ γ−. The double folding of the time
axis is displayed by showing that always two points t− and t+, located
in the time-ordered t− ∈ γ− and anti-time-ordered t+ ∈ γ+ branches
of the contour, correspond to the same chronological time instant t .

and the current density

jk = e

2m
{i(∂kψ† ψ − ψ† ∂kψ ) + 2ψ†(−eAk + θσ k )ψ}.

(10)

It is straightforward to verify, from the equations of motion,
that jμ is conserved,

∂μjμ = ∂tj
0 − ∇ · j = 0 . (11)

Notice also that we can write

jμ(x) = δ

δAμ(x)

∫
L(y) d3y . (12)

With these ingredients, we can formulate the corresponding
current-current correlator.

III. GENERATING FUNCTIONAL IN THE
CONTOUR TIME PATH.

We seek to calculate the polarization tensor, defined as
a retarded current-current correlator that, in linear response,
determines the optical conductivity. For that purpose, we
choose to represent the field theory described in the previous
section on the contour time path [34–36] (CTP). Also known
as the Keldysh formalism [37] in the condensed matter com-
munity, the CTP is a versatile approach to calculate correlation
functions in equilibrium as well as in nonequilibrium quan-
tum systems [38–40]. It is particularly convenient to study
transport coefficients in quantum many-body systems [36,40],
both in the linear response regime as well as beyond, allowing
to study non-linearities arising in strongly correlated heavy
fermions such as the Kondo effect [39,41,42].

Let us define the contour γ = γ− ⊕ γ+, where γ− rep-
resents the time-ordered branch while γ+ is the anti-time-
ordered branch, as depicted in Fig. 2. Therefore, we define
a contour evolution parameter τ ∈ γ , such that [34]

τ =
{

t−, τ ∈ γ− ,

t+, τ ∈ γ+ .
(13)

Also notice that, as depicted in Fig. 2, both t+ and t− have
a unique correspondence to a given chronological instant of
time t ∈ IR. Correspondingly, for operators and fields de-
fined with their time arguments along the CTP, we have the

definitions [34,36]

ψ (x, τ ) =
{
ψ (x, t−) ≡ ψ−(x, t ), τ ∈ γ− ,

ψ (x, t+) ≡ ψ+(x, t ), τ ∈ γ+ .
(14)

Then, the generating functional of (current) Green’s functions
of this two-dimensional system, defined on the CTP, reads
[35,36]

Zγ [A] = ei�γ [A] :=
∫

Dψ†(x, τ )Dψ (x, τ )

× e
i
∫
γ

dτ
∫

d2xL[ψ†(x,τ ),ψ (x,τ )]
, (15)

where �γ [A] is the effective contribution to the action for the
electromagnetic field. The path integral on the CTP induces by
construction the contour ordering between the fields, defined
by the operation T between two operators Ô1(τ ) and Ô2(τ )
in the Heisenberg picture (ζ = ± for bosons and fermions,
respectively)

〈T Ô1(τ1)Ô2(τ2)〉 = θ (τ1 − τ2)〈Ô1(τ1)Ô2(τ2)〉
+ ζθ (τ2 − τ1)〈Ô2(τ2)Ô1(τ1)〉. (16)

Here, we have defined the contour Heaviside function as [34]

θ (τ1 − τ2) =
{

1, τ1 >c τ2 ,

0, τ2 >c τ1 ,
(17)

with the symbol >c indicating the relation “later than in the
contour”. In general physical situations where the sources
and external fields do not break time-reversal invariance,
ψ−(x, t ) = ψ+(x, t ), and the CTP becomes just a useful trick
to express at once all the different correlators. Consider for
instance the contour-ordered correlator between two fields,

�(x1, τ1; x2, τ2) ≡ −i〈T ψ (x1, τ1)ψ†(x2, τ2)〉
= θ (τ1 − τ2)(−i)〈ψ (x1, τ1)ψ†(x2, τ2)〉

+ ζθ (τ2 − τ1)(−i)〈ψ†(x2, τ2)ψ (x1, τ1)〉.
(18)

This single definition, depending on the location of the param-
eters τ1, τ2 ∈ γ , generates at once four different propagators
[35,36]:

�−−(x1, t1; x2, t2) = −i〈T ψ (x1, t1−)ψ†(x2, t2−)〉
= −i〈T ψ−(x1, t1)ψ†

−(x2, t2)〉
= −i〈T̂ ψ−(x1, t1)ψ†

−(x2, t2)〉
= −i〈T̂ ψ (x1, t1)ψ†(x2, t2)〉 , (19)

�−+(x1, t1; x2, t2) = −i〈T ψ (x1, t1−)ψ†(x2, t2+)〉
= −i〈T ψ−(x1, t1)ψ†

+(x2, t2)〉
= −iζ 〈ψ†

+(x2, t2)ψ−(x1, t1)〉
= −iζ 〈ψ†(x2, t2)ψ (x1, t1)〉 , (20)

�+−(x1, t1; x2, t2) = −i〈T ψ (x1, t1+)ψ†(x2, t2−)〉
= −i〈T ψ+(x1, t1)ψ†

−(x2, t2)〉
= −i〈ψ+(x1, t1)ψ†

−(x2, t2)〉
= −i〈ψ (x1, t1)ψ†(x2, t2)〉 , (21)
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�++(x1, t1; x2, t2) = −i〈T ψ (x1, t1+)ψ†(x2, t2+)〉
= −i〈T ψ+(x1, t1)ψ†

+(x2, t2)〉
= −i〈T̃ ψ+(x1, t1)ψ†

+(x2, t2)〉
= −i〈T̃ ψ (x1, t1)ψ†(x2, t2)〉 . (22)

Here, we have defined the usual time-order T̂ and anti-time-
order T̃ operators. Notice that not all correlators are indepen-
dent, since they satisfy [34–36]

�+−(x, y) + �−+(x, y) = �−−(x, y) + �++(x, y). (23)

It is customary to organize the correlators above in the matrix
form [35,36]

�(x, y) =
[
�−−(x, y) �−+(x, y)

�+−(x, y) �++(x, y)

]
. (24)

Using the definitions above, the retarded (R) and advanced
(A) correlators can be expressed as linear combinations of the
previous ones [35,36]

�A(x1, t1; x2, t2) = iθ (t2 − t1)〈[ψ (x1, t1), ψ†(x2, t2)]−ζ 〉
= �−−(x1, t1; x2, t2) − �+−(x1, t1; x2, t2)

= �−+(x1, t1; x2, t2) − �++(x1, t1; x2, t2),

(25)

�R (x1, t1; x2, t2) = −iθ (t1 − t2)〈[ψ (x1, t1), ψ†(x2, t2)]−ζ 〉
= −iθ (t1 − t2)[〈ψ (x1, t1)ψ†(x2, t2)〉

− ζ 〈ψ†(x2, t2)ψ (x1, t1)〉]
= �−−(x1, t1; x2, t2) − �−+(x1, t1; x2, t2)

= �+−(x1, t1; x2, t2) − �++(x1, t1; x2, t2).

(26)

IV. APPLICATION OF THE CTP FORMALISM TO THE
ANALYSIS OF THE OPTICAL CONDUCTIVITY

IN GRAPHENE

From the CTP generating functional defined in Eq. (15), it
is possible to generate the average current components

−i
δ ln Zγ [A]

δAμ(x)
= 1

Zγ [A]

∫
Dψ†Dψ e

i
∫
γ

d3yL(y)
jμ(x),

= 〈jμ(x)〉 =: Jμ[A](x) , (27)

while the second functional derivative gives the current-
current correlation function,

(−i)2 δ2 ln Zγ [A]

δAμ(x)δAν (y)
= −i

δJ μ[A](x)

δAν (y)

= −i

〈
δjμ(x)

δAν (y)

〉
+ 〈T jμ(x)jν (y)〉

− 〈jμ(x)〉〈jν (y)〉, (28)

where the first term is the diamagnetic contribution [43]〈
δjμ(x)

δAν (y)

〉
= δμkδν

k

(
− e2

m2

)
〈ψ†(x)ψ (x)〉δ(3)(x − y)

= − e

m2
δμkδν

k 〈j 0(x)〉δ(3)(x − y), (29)

and the others are the paramagnetic ones.
We take the currents in normal order with respect to the

fermionic field, so that Jμ[A = 0] = 0. The linear response
of the system to the external electromagnetic field is described
by the second derivative in Eq. (28) evaluated at Aμ = 0 [43],

Kμν (x, y) = (−i)2 δ2 ln Zγ [A]

δAμ(x)δAν (y)

∣∣∣∣
A=0

= Kνμ(y, x)

= 〈T jμ(x)jν (y)〉0. (30)

Then, the density response is

K00(x, y) = 〈T j 0(x)j 0(y)〉0

= e2〈T ψ†(x)ψ (x) ψ†(y)ψ (y)〉0. (31)

The spatial components of the current are given by

jk (x)|A=0 = e

2m
{i∂kψ†(x)ψ (x) − iψ†(x)∂kψ (x)

+ 2θψ†(x)σ kψ (x)}

= ψ†(x)

(
e

2m
{−i

←→
∂ k + 2θσ k}

)
ψ (x)

≡ ψ†
a (x)D̂k

abψb(x). (32)

Here, we have defined the differential operators

D̂k
ab = e

2m
{−i

←→
∂ kδab + 2θ [σ k]ab}. (33)

Applying Wick’s theorem [34–36] on the CTP for the
definition of the current correlator (correlators associated with
disconnected diagrams vanish):

〈T jk (x)j l (y)〉 = 〈
T ψ†

a (x)D̂k
abψb(x)ψ†

c (y)D̂l
cdψd (y)

〉 = −D̂k
abD̂

l
cd〈T ψb(x)ψ†

c (y)〉〈T ψd (y)ψ†
a (x)〉. (34)

The previous relation allows us to define the corresponding components of the polarization tensor in the CTP contour indices
α, β = ±,

Kkl
αβ (x, y) = 〈

T jk
α (x)j l

β (y)
〉 = −D̂k

abD̂
l
cd�

αβ

bc (x, y)�βα

da (y, x). (35)

The retarded component of the polarization tensor is obtained following the general prescription explained in Eq. (26),

Kkl
R (x, y) = Kkl

−−(x, y) − Kkl
−+(x, y) = D̂k

abD̂
l
cd{�−−

bc (x, y)�−−
da (y, x) − �−+

bc (x, y)�+−
da (y, x)}

= D̂k
abD̂

l
cd

{
�F

bc(x, y)�F
da (y, x) − [

�F
bc(x, y) − �R

bc(x, y)
][

�F
da (y, x) − �A

da (y, x)
]}

= D̂k
abD̂

l
cd

{
�F

bc(x, y)�A
da (y, x) + �R

bc(x, y)�F
da (y, x) − �R

bc(x, y)�A
da (y, x)

}
. (36)
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In terms of Fourier transforms,

ψ (x) = 1

(2π )3/2

∫
d3p e−ipxψ̃ (p), ψ†(x) = 1

(2π )3/2

∫
d3p eipxψ̃†(p), (37)

we have

�
αβ

ab (x, y) ≡ �
αβ

ab (x − y) =
∫

d3p

(2π )3
ei(x−y)p�̃

αβ

ab (p). (38)

Here, the different propagators for the Hamiltonian model considered are, in Fourier space (F: Feynman, R: Retarded, A:
Advanced),

�̃F (p) = �̃−−(p) = i
p0 − p2

2m
+ vF p · σ(

p0 − p2

2m

)2 − v2
F p2 + iε′

= i
p0 − p2

2m
+ vF p · σ(

p0 + iε − p2

2m
− vF |p|)(p0 − iε − p2

2m
+ vF |p|) , (39)

�̃R (p) = i
p0 − p2

2m
+ vF p · σ(

p0 + iε − p2

2m

)2 − v2
F p2

, (40)

�̃A(p) = i
p0 − p2

2m
+ vF p · σ(

p0 − iε − p2

2m

)2 − v2
F p2

. (41)

In particular, for the linear response theory [33–36,39,41], we need the retarded component of the polarization tensor

K
μν

R (x − y) =
∫

d3p

(2π )3
ei(x−y)p �

μν

R (p) . (42)

Here, after Eq. (36) the Fourier transform of the retarded component is given by

�kl
R (p) = �kl

FA(p) + �kl
RF (p) − �kl

RA(p) , (43)

where the different terms are defined by

�kl
FA(p) = e2

4m2

∫
d3q

(2π )3
�k

ab(p + 2q )�̃F
bc(p + q )�l

cd (p + 2q )�̃A
da (q ),

�kl
RF (p) = e2

4m2

∫
d3q

(2π )3
�k

ab(p + 2q )�̃R
bc(p + q )�l

cd (p + 2q )�̃F
da (q ), (44)

�kl
RA(p) = e2

4m2

∫
d3q

(2π )3
�k

ab(p + 2q )�̃R
bc(p + q )�l

cd (p + 2q )�̃A
da (q ),

with the symbol

�k
ab(p + 2q ) = [δab(p + 2q )k + 2θ [σ k]ab], (45)

and a similar expression for �l
cd (p + 2q ). Below we obtain the polarization tensor explicitly.

V. POLARIZATION TENSOR

The polarization tensor �kl (p) contains the information about the conductivity on the plane of this two-dimensional system
and also about its properties of transmission of light through it [16,43]. We are interested in the consequences of the application
of harmonic homogeneous electric fields which, in the temporal gauge, are related with the vector potential by Ek = −∂Ak/∂t =
iωAk . Since the conductivity is determined by the linear relation between the current and the applied electric field, Jk = σklE

l ,
from Eqs. (27), (30), and (43), we can write for the conductivity as a function of the frequency [16,43]

σkl (ω) = �R
kl (p)

p0

∣∣∣∣
p→(ω,0)

. (46)

So, in the following we evaluate �R
kl (ω, 0) from Eq. (43), which hence requires the evaluation of the three integrals defined in

Eq. (44). Let us start with �FA
kl (p),

�FA
kl (p) = e2

4m2

∫
d3q

(2π )3
Tr{[pk + 2qk + 2θσk]�F (p + q )[pl + 2ql + 2θσl]�

A(q )}. (47)
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Specializing this expression to the case p = (ω, 0), we write

�FA
kl (ω, 0) = e2

4m2

∫
d3q

(2π )3

Tr{A}
BFA

, (48)

with

A = [2qk + 2θσk]

[
ω + q0 − q2

2m
+ vF q · σ

]
[2ql + 2θσl]

[
q0 − q2

2m
+ vF q · σ

]
,

BFA =
(

ω + q0 + iε − q2

2m
− vF |q|

)(
ω + q0 − iε − q2

2m
+ vF |q|

)[(
q0 − iε − q2

2m

)2

− v2
F q2

]
. (49)

By writing q1 = Q cos ϕ and q2 = Q sin ϕ, and noticing that the denominator is independent of ϕ, it is straightforward to get for
the trace in the numerator integrated over ϕ,∫ 2π

0
Tr{A}dϕ = −8π

(
Q2 + 2m2v2

F

)
q2

0 + 8
π

m

[
Q4 − ω

(
mQ2 + 2m3v2

F

) − 2m2Q2v2
f

]
q0

+ 2
π

m2
Q2[2mω

(
Q2 − 2m2v2

F

) + 2m2Q2v2
F − Q4], (50)

for k, l = 1, 1 or 2,2, and a vanishing result for k, l = 1, 2
or 2,1.

Since the previous result is a quadratic polynomial in q0,
and the denominator in Eq. (49) is a quartic expression in
the integration variable, the integral over q0 can be done on
the complex plane, taking into account the position of the
simple poles of the integrand with respect to the real axis.
The resulting integrand for the radial integral is a rather
involved expression. Although the complete integral exists
and gives a finite result, the individual terms in this expression
lead to ultraviolet divergent integrals. So, we implement a
“dimensional regularization” (formally going to dimension
d = 2 − s for s > 0 sufficiently large) which allows us to
evaluate the integral of each term separately in an easier way,
and then to sum up these partial results to get the final result as
an analytic continuation to dimension 2 (s = 0), as described
in detail in the Appendix. Of course, the expression of the
polarization tensor so obtained is finite. As a result of this
procedure one finds

�FA
11 (ω, 0) = e2

4m2

{
i
m2ω

4πs
− i

m2ω

4π
ln

[
− (ω + 2iε)

2|m|vF

]}
.

(51)

A similar procedure, as described in the Appendix, leads to
the corresponding expressions for the other two pieces of the
retarded polarization tensor

�RA
11 (ω, 0) = e2

4m2

{
i
m2ω

2πs
− i

m2ω

4π
ln

[
− (ω + 2iε)

2|m|vF

]

− i
m2ω

4π
ln

[
(ω + 2iε)

2|m|vF

]}
, (52)

�RF
11 (ω, 0) = e2

4m2

{
i
m2ω

4πs
− i

m2ω

4π
ln

[
− (ω + 2iε)

2|m|vF

]}
.

(53)

We notice that the three separate parts above, which together
yield the retarded polarization tensor, display a pole at s =
0. However, when added together according to Eq. (43), the
poles exactly cancel to yield a finite result

�R
11(ω, 0) = lim

ε→0+
�RF

11 (ω, 0) + �FA
11 (ω, 0) − �RA

11 (ω, 0)

= e2

4m2

m2ω

4
= e2ω

16
, (54)

independent of m. The result above must be multiplied by a
factor of 2 due to the spin degeneracy, and another factor of 2
due to valley degeneracy. Thus, the final result of the optical
conductivity is

σ11(ω) = 2 × 2
�R

11(ω, 0)

ω
= e2

4
. (55)

The previous result was expressed in natural units h̄ = 1,
and in normal SI units it corresponds to σ11(ω) = e2/(4h̄).
Remarkably, this is the same value of the ac conductivity
that is obtained for the usual linear dispersion approximation
[44,45], which is verified experimentally [46]. Notice that our
result indicates that the optical conductivity in the zero tem-
perature limit is frequency independent. Moreover, the final
result is independent of the m parameter and then universal
in the sense that this magnitude is robust against quadratic
perturbations as those here considered, and in agreement
with experiment [46]. Therefore, we conclude that the optical
conductivity, and hence the transparency in graphene, are
not affected by next-to-nearest-neighbor contributions to the
tight-binding microscopic model that translate into a quadratic
correction to the kinetic energy, as considered in this work.
We notice that analytical results at finite chemical potential
and temperature have been reported in [47,48]. Another work
that explores finite temperature effects is Ref. [49], which also
coincides with our result in the low-temperature limit. Small
corrections to the previous result, of the order of 0.01α (with
α the finite structure constant) due to Coulomb interactions
have been reported in the literature [50,51].
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VI. CONCLUSIONS

Among the many outstanding properties of graphene which
can be described within the Dirac limit, its optical trans-
parency is entirely explained in terms of the fine structure
constant. A natural question is to ask the extent to which such
a picture deviates from the experimental measurements. In
this regard, in this article we considered the next-to-nearest-
neighbor contribution which in the continuum corrects the ki-
netic term with a quadratic contribution. Introducing the CTP
formalism, we calculate the linear response current-current
correlator from which the optical conductivity is derived.
Within this formalism, it is straightforward to obtain the re-
tarded part of the polarization tensor after a dimensional regu-
larization of the involved integrals. Remarkably and somehow
unexpectedly, we found the conductivity of the Dirac limit to
be robust against such quadratic corrections. This encouraging
result opens the possibility of testing deviations of the Dirac
limit in graphene in other physical phenomena. These results
are currently under scrutiny and those results will be reported
elsewhere.
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APPENDIX: REGULARIZATION OF THE
MOMENTUM INTEGRALS

In this Appendix, we present in detail the dimensional reg-
ularization method used to calculate the momentum integrals
defined in the main text. Let us consider the term in Eq. (48).
After taking the trace and performing the angular integral as
shown in Eq. (50), we have to evaluate

�FA
11 (ω, 0) = e2

4m2

∫ ∞

0

dQ

(2π )3
Q

∫ ∞

−∞

dq0

BFA

{
−8π

(
Q2 + 2m2v2

f

)
q2

0 + 8
π

m

[
Q4 − ω

(
mQ2 + 2m3v2

f

) − 2m2Q2v2
f

]
q0

+ 2
π

m2
Q2

[
2mω

(
Q2 − 2m2v2

f

) + 2m2Q2v2
f − Q4

]}
, (A1)

with BFA given in Eq. (49) with |q| = Q. Clearly, on the q0 plane, the integrand has three poles on the positive imaginary
plane at q

(1,2)
0 = iε + Q2

2m
± vF Q and q

(3)
0 = iε − ω + Q2

2m
− vF Q, and a single pole on the negative imaginary plane at q

(4)
0 =

−iε − ω + Q2

2m
+ vF Q. We evaluate the q0 integral by means of the residue theorem, closing the contour on the lower plane. The

result of this procedure can be expressed as

�FA
11 (ω, 0) = e2

4m2

∫ ∞

0

dQ

(2π )3

QP FA(Q,ω)

(ω + 2iε)(ω − 2vF Q + 2iε)(ivF Q + ε)
. (A2)

Here, we have defined the numerator as the polynomial function

P FA(Q,ω) = (−16π2m2v4
F + 16π2mωv2

F + 32iπ2mv2
F ε − 8iπ2ωε + 8π2ε2

) + Q
(
16π2m2ωv3

F + 32iπ2m2v3
F ε

)
+Q2

(
16π2m2v2

F ε2 − 16iπ2m2ωv2
F ε

) + Q3
(−32π2mv3

F + 8π2ωvF + 16iπ2vF ε
) − 16Q4

(
π2v2

F

)
. (A3)

By simply counting powers in numerator and denominator, it is clear that the remaining integral is divergent and needs
regularization. For this purpose, we first perform a partial fraction decomposition of the denominator as follows:

1

(ω + 2iε)(ω − 2vF Q + 2iε)(ivF Q + ε)
= 1

2iωv2
F (ω + 2iε)

(
1

Q − Q1
− 1

Q − Q2

)
, (A4)

with Q1 = iε/vF and Q2 = (ω + 2iε)/(2vF ). After this, the integral splits into two contributions:

�FA
11 (ω, 0) = e2

4m2

1

2iωv2
F (ω + 2iε)

{ ∫ ∞

0

dQ

(2π )3
Q

P FA(Q,ω)

Q − Q1
−

∫ ∞

0

dQ

(2π )3
Q

P FA(Q,ω)

Q − Q2

}
. (A5)

For each integral (i.e., Qj = Q1,Q2 respectively), let us analyze the asymptotic behavior of the integrand at large momentum
values, say for Q > Q∗, with Q∗ an arbitrary but large momentum scale. In this regime,

P FA(Q,ω)

Q − Qj

∼ 8π2Qj

Q2

{
Q2

j

[−2m2v4
F + 2mv2

F (ω + 2iε) + ε(ε − iω)
] + 2m2Qjv

3
F (ω + 2iε) − 2im2ωv2

F ε + 2m2v2
F ε2

+Q3
j vF

(−4mv2
F + ω + 2iε

) − 2Q4
j v

2
F

}
+ 8π2Q

[−2m2v4
F + ω

(
2mv2

F + QjvF − iε
) − 4mQjv

3
F + 4imv2

F ε − 2Q2
j v

2
F + 2iQjvF ε + ε2

]
+ 8π2

Q

{
Q2

j

[−2m2v4
F + 2mv2

F (ω + 2iε) + ε(ε − iω)
] + 2m2Qjv

3
F (ω + 2iε) − 2im2ωv2

F ε + 2m2v2
F ε2
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+Q3
j vF

(−4mv2
F + ω + 2iε

) − 2Q4
j v

2
F

} + 8π2
{
Qj

[−2m2v4
F + 2mv2

F (ω + 2iε) + ε(ε − iω)
]

+ 2m2ωv3
F + 4im2v3

F ε + Q2
j vF

(−4mv2
F + ω + 2iε

) − 2Q3
j v

2
F

} + 8π2Q2vF

(−4mv2
F + ω − 2QjvF + 2iε

)
− 16π2q3v2

F + O[Q−3]

≡ P
asymp
FA (Q,ω,Qj ) + O[Q−3] , (A6)

where we have defined P
asymp
FA (Q,ω,Qj ) as the polynomial obtained by truncating the asymptotic expansion above up to

O[Q−3], for Q > Q∗. Therefore, using this expansion, we regularize each of the integrals using the prescription (d = 2 − s)∫ ∞

0

dQ

(2π )3
Q

P FA(Q,ω)

Q − Qj

→
∫ Q∗

0

dQ

(2π )3
Q

P FA(Q,ω)

Q − Qj

+
∫ ∞

Q∗

dQ

(2π )3
Q

[
P FA(Q,ω)

Q − Qj

− P
asymp
FA (Q,ω,Qj )

]

+
∫ ∞

Q∗

dQ

(2π )3
|m|sQ1−sP

asymp
FA (Q,ω,Qj ) . (A7)

After lengthy but straightforward algebra, we obtain in the limit ε → 0+

�FA
11 (ω, 0) = e2

4m2

{
i
m2ω

4πs
− i

m2ω

4π
ln

[
− (ω + 2iε)

2|m|vF

]}
. (A8)

Let us now consider the expression for �RF
11 (ω, 0), as obtained after calculating the trace and angular integration according

to Eq. (50)

�RF
11 (ω, 0) = e2

4m2

∫ ∞

0

dQ

(2π )3
Q

∫ ∞

−∞

dq0

BRF

{
− 8π

(
Q2 + 2m2v2

f

)
q2

0 + 8
π

m

[
Q4 − ω

(
mQ2 + 2m3v2

f

) − 2m2Q2v2
f

]
q0

+ 2
π

m2
Q2

[
2mω

(
Q2 − 2m2v2

f

) + 2m2Q2v2
f − Q4

]}
, (A9)

with

BRF =
(

q0 + iε − Q2

2m
− vF Q

)(
q0 − iε − Q2

2m
+ vF Q

)[(
ω + q0 + iε − Q2

2m

)2

− v2
F Q2

]
. (A10)

In this case, on the q0 plane the integrand has three poles on the negative imaginary plane, q
(1,2)
0 = −iε − ω + Q2/(2m) ±

vF Q, q
(3)
0 = −iε + Q2/(2m) + vF Q, and a single pole on the positive imaginary plane at q

(4)
0 = iε + Q2

2m
− vF Q. Therefore,

we calculate the integral over q0 using the residue theorem by choosing a contour that closes on the upper complex plane.
Thus,

�RF
11 (ω, 0) = e2

4m2

∫ ∞

0

dQ

(2π )3

QP RF (Q,ω)

(ω + 2iε)(ω − 2vF Q + 2iε)(ivF Q + ε)
. (A11)

The numerator of the resulting integrand is defined by the quartic polynomial function

P RF (Q,ω) = (
16π2m2v2

F ε2 − 16iπ2m2ωv2
F ε

) + Q
(
16π2m2ωv3

F + 32iπ2m2v3
F ε

)
+Q2

(−16π2m2v4
F − 16π2mωv2

F − 32iπ2mv2
F ε − 8iπ2ωε + 8π2ε2

)
+Q3

(
32π2mv3

F + 8π2ωvF + 16iπ2vF ε
) − 16Q4

(
π2v2

F

)
, (A12)

and then the integral is clearly divergent. A consistent regularization procedure is applied in this case as well. By performing the
same partial fraction expansion of the denominator, as in Eq. (A4), we find that the integral splits into two pieces [Q1 = iε/vF ,
Q2 = (ω + 2iε)/(2vF )]

�RF
11 (ω, 0) = e2

4m2

1

2iωv2
F (ω + 2iε)

{∫ ∞

0

dQ

(2π )3
Q

P RF (Q,ω)

Q − Q1
−

∫ ∞

0

dQ

(2π )3
Q

P RF (Q,ω)

Q − Q2

}
. (A13)

For each integral (i.e., Qj = Q1,Q2 respectively), we analyze the asymptotic behavior of the integrand at large momentum
values, say for Q > Q∗. In this regime,

P RF (Q,ω)

Q − Qj

∼ 8π2 Qj

Q2

{ − 2im2ωv2
F ε + 2m2v2

F ε2 + 2m2Qjv
3
F (ω + 2iε) + Q2

j

[−2m2v4
F − 2mv2

F (ω + 2iε) + ε(ε − iω)
]

+Q3
j vF

(
4mv2

F + ω + 2iε
) − 2Q4

j v
2
F

} + 8π2

Q

{
Q2

j

[−2m2v4
F − 2mv2

F (ω + 2iε) + ε(ε − iω)
]

+ 2m2Qjv
3
F (ω + 2iε) − 2im2ωv2

F ε + 2m2v2
F ε2 + Q3

j vF

(
4mv2

F + ω + 2iε
) − 2Q4

j v
2
F

}
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+ 8π2
{
Qj

[−2m2v4
F − 2mv2

F (ω + 2iε) + ε(ε − iω)
] + 2m2ωv3

F + 4im2v3
F ε

+Q2
j vF

(
4mv2

F + ω + 2iε
) − 2Q3

j v
2
F

} + 8π2Q
[−2m2v4

F + ω
(−2mv2

F + QjvF − iε
) + 4mQjv

3
F

− 4imv2
F ε − 2Q2

j v
2
F + 2iQjvF ε + ε2

] + 8π2Q2vF

(
4mv2

F + ω − 2QjvF + 2iε
) − 16π2Q3v2

F + O[Q−3]

≡ P
asymp
RF (Q,ω,Qj ) + O[Q−3], (A14)

where we have defined P
asymp
RF (Q,ω,Qj ) as the polynomial obtained by truncating the asymptotic expansion above up to

O[Q−3], for Q > Q∗. Therefore, using this expansion, we regularize each of the integrals using the prescription (d = 2 − s)∫ ∞

0

dQ

(2π )3
Q

P RF (Q,ω)

Q − Qj

→
∫ Q∗

0

dQ

(2π )3
Q

P RF (Q,ω)

Q − Qj

+
∫ ∞

Q∗

dQ

(2π )3
Q

[
P RF (Q,ω)

Q − Qj

− P
asymp
RF (Q,ω,Qj )

]

+
∫ ∞

Q∗

dQ

(2π )3
|m|sQ1−sP

asymp
RF (Q,ω,Qj ) . (A15)

After straightforward manipulations, we obtain in the limit ε → 0+

�RF
11 (ω, 0) = e2

4m2

{
i
m2ω

4πs
− i

m2ω

4π
ln

[
− (ω + 2iε)

2|m|vF

]}
. (A16)

Finally, let us consider the term in Eq. (44). After tracing and performing the angular integral,

�RA
11 (ω, 0) = e2

4m2

∫ ∞

0

dQ

(2π )3
Q

∫ ∞

−∞

dq0

BRA

{
−8π

(
Q2 + 2m2v2

f

)
q2

0 + 8
π

m

[
Q4 − ω

(
mQ2 + 2m3v2

f

) − 2m2Q2v2
f

]
q0

+ 2
π

m2
Q2

[
2mω

(
Q2 − 2m2v2

f

) + m2Q2v2
f − Q4

]}
, (A17)

with

BRA =
[(

ω + q0 + iε − Q2

2m

)2

− v2
F Q2

][(
q0 − iε − Q2

2m

)2

− v2
F Q2

]
. (A18)

Clearly, on the q0 plane, the integrand has two poles on the positive imaginary plane at q
(1,2)
0 = iε + Q2

2m
± vF Q, and two poles

on the negative imaginary plane at q
(3,4)
0 = −iε − ω + Q2

2m
± vF Q. We evaluate the q0 integral by the residue theorem, closing

the contour on the upper plane. Thus,

�RA
11 (ω, 0) = e2

4m2

∫ ∞

0

dQ

(2π )3
Q

P RA(Q,ω)

(ω + 2iε)(ω − 2vF Q + 2iε)(ω + 2vF Q + 2iε)
. (A19)

The numerator of the resulting integrand is defined by the quartic polynomial function

P RA(Q,ω) = −16iπ2
[
ω2

(
2m2v2

F + Q2
) + 2iωε

(
2m2v2

F + Q2
) − 2ε2

(
2m2v2

F + Q2
) − 4Q2v2

F

(
m2v2

F + Q2
)]

, (A20)

and hence the diverging integral needs also a regularization. As in the former two cases, we first do a partial fraction
decomposition of the denominator to obtain

�RA
11 (ω, 0) = e2

4m2

(Q3 − Q4)−1

−4v2
F (ω + 2iε)

{∫ ∞

0

dQ

(2π )3
Q

P RA(Q,ω)

Q − Q3
−

∫ ∞

0

dQ

(2π )3
Q

P RA(Q,ω)

Q − Q3

}
, (A21)

where we have defined Q3 = (ω + 2iε)/(2vF ), Q4 = −Q3. For each integral (i.e., Qj = Q3,Q4 respectively), we analyze the
asymptotic behavior of the integrand at large momentum values, say for Q > Q∗. In this regime,

P RA(Q,ω)

Q − Qj

∼ −16iπ2 Qj

Q2

{
ω2

(
2m2v2

F + Q2
j

) + 2iωε
(
2m2v2

F + Q2
j

) − 2
[
Q2

j

(
2m2v4

F + ε2
) + 2m2v2

F ε2 + 2Q4
j v

2
F

]}
− 16iπ2Q

[−2
(
2m2v4

F + 2Q2
j v

2
F + ε2

) + ω2 + 2iωε
]

− 16iπ2

Q

{
ω2

(
2m2v2

F + Q2
j

) + 2iωε
(
2m2v2

F + Q2
j

) − 2
[
Q2

j

(
2m2v4

F + ε2
) + 2m2v2

F ε2 + 2Q4
j v

2
F

]}
− 16iπ2Qj

[−2
(
2m2v4

F + 2Q2
j v

2
F + ε2

) + ω2 + 2iωε
] + 64iπ2v2

F Q3 + 64iπ2Qjv
2
F Q2 + O[Q−3]

≡ P
asymp
RA (Q,ω,Qj ) + O[Q−3], (A22)
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where we have defined P
asymp
RA (Q,ω,Qj ) as the polynomial obtained by truncating the asymptotic expansion above up

to O[Q−3], for Q > Q∗. Therefore, using this expansion, we regularize each of the integrals using the prescription
(d = 2 − s)∫ ∞

0

dQ

(2π )3
Q

P RA(Q,ω)

Q − Qj

→
∫ Q∗

0

dQ

(2π )3
Q

P RA(Q,ω)

Q − Qj

+
∫ ∞

Q∗

dQ

(2π )3
Q

[
P RA(Q,ω)

Q − Qj

− P
asymp
RA (Q,ω,Qj )

]

+
∫ ∞

Q∗

dQ

(2π )3
|m|sQ1−sP

asymp
RA (Q,ω,Qj ) . (A23)

After lengthy but straightforward algebra, we obtain in the limit ε → 0+

�RA
11 (ω, 0) = e2

4m2

{
i
m2ω

2πs
− i

m2ω

4π
ln

[
− (ω + 2iε)

2|m|vF

]
− i

m2ω

4π
ln

[
(ω + 2iε)

2|m|vF

]}
. (A24)

Notice that the final result does not depend on either the arbitrary scale Q (as it must) or the sign of the m parameter.
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