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We study the thermoelectric response of a device containing a pair of helical edge states contacted at the
same temperature T and chemical potential μ and connected to an external reservoir, with different chemical
potential and temperature, through a side quantum dot. Different operational modes can be induced by applying
a magnetic field B and a gate voltage Vg at the quantum dot. At finite B, the quantum dot acts simultaneously as
a charge and a spin filter. Charge and spin currents are induced, not only through the quantum dot, but also along
the edge states. We focus on linear response and analyze the regimes, which we identify as charge heat engines
or refrigerator, spin heat engine, and spin refrigerator.
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I. INTRODUCTION

One of most remarkable properties of topological insu-
lating phases is the existence of conducting edge states. In
two-dimensional systems, such as in the quantum Hall state
or the spin quantum Hall (QSH) state, these edge states are
single or multiple one-dimensional (1D) channels through
which charge and energy propagate only in one direction. In
the case of the quantum Hall, the edge states are chiral [1–5] as
a consequence of the broken time-reversal symmetry. Instead,
the QSH hosts Kramers pairs of helical counterpropagating
edge states with opposite spin orientation [6–11]. In situations
where the electron-electron interactions play a role, these sys-
tems exhibit another extraordinary feature: the fractionaliza-
tion of the charge and spin in the low-energy excitations. This
has an impact in the unidirectional transport properties along
the edges [1,5,12,13], as well as through tunneling contacts
to other edge states or to other structures like quantum dots
[14–20]. The edge states of the fractional quantum Hall effect
are well described as chiral Luttinger liquids and the fractional
charge is directly related to the magnetic filling factor [1,5]. A
pair of edge states of the QSH is effectively described by a
Luttinger liquid of left and right moving electrons where spin
and charge fractionalization can take place as a consequence
of the Coulomb interaction represented by a parameter K

[5,21].
Thermal transport in edge states of the quantum Hall

regime has received a great deal of attention for some time.
Since the pioneer works by Kane and Fisher [12,13], several
studies were reported on heat transport in the integer [22–25]
and in the fractional regimes [26–35]. More recently, thermo-
electric effects have also been explored in the integer [36,37],
as well as in the fractional case [20,38]. Relatively less is
presently known about thermal transport and thermoelectric
effects in the quantum spin Hall regime [39–45].

Tunneling contacts to quantum dots in mesoscopic struc-
tures play a crucial role in the thermoelectric response of these
systems. This is because they enable transport with broken
particle-hole symmetry, which is a necessary condition for
realizing the charge to energy conversion characteristic of
thermoelectricity [46–50]. Charge transport in helical edges of
the quantum spin Hall regime with tunneling contacts between
edge states and quantum dots or antidots is a subject of very
active theoretical investigation [51–67].

The aim of the present work is to analyze the thermo-
electric response of quantum spin Hall helical edges real-
ized in the structure sketched in Fig. 1. It consists of a
pair of helical edge states of a quantum spin Hall system
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FIG. 1. Sketch of the setup. A Kramers pair of helical edge
states of the spin Hall effect is ballistically contacted to terminals at
temperature T1 and chemical potential μ1, while tunneled contacted
to an external reservoir at a different temperature T2 and chemical
potential μ2 through a quantum dot. The transport through the
quantum dot can be controlled by means of a gate voltage and a weak
magnetic field B.
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connected to an external reservoir at a different temperature
and chemical potential, through a tunneled-coupled quantum
dot. The transport through the quantum dot is controlled by
means of a gate voltage and a magnetic field. As we will
discuss, the physics of this device is very rich, allowing for
the implementation of a variety of thermoelectric regimes,
taking advantage of the helical nature of the edge states. The
possibility of the magnetic control of the charge flow in helical
edges was explored in other setups with magnetic islands in
direct contact to the edge states [68–70]. Here we consider
the effect of a Zeeman field on the side-coupled dot of the
structure of the figure, in order to introduce spin filtering of the
electrons injected from the external reservoir. The magnetic
field is localized at the quantum dot and it is weak enough to
leave the helical edge states unaffected. With these ingredients
we have not only heat-charge conversion, but also heat-spin
conversion.

Without the ingredient of the magnetic field at the quantum
dot, the setup of the figure may operate as a charge heat
engine, or refrigerator, as is usual in thermoelectric devices
where heat flows induced by temperature differences can be
used to generate charge currents against chemical potential
differences and vice versa. The magnetic field at the quantum
dot adds the possibility of inducing spin currents, not only
through the quantum dot, but also through the helical channels
between the left and right terminals of the QSH bar. This
comes along with heat flow between these two terminals,
even when they are assumed to be at the same temperature
and chemical potential. We identify two relevant operational
regimes introduced by the spin filtering, which we name the
spin heat engine and and the spin refrigerator, respectively.
We analyze in detail all these regimes. On the other hand,
the fractionalization of charge and energy in chiral Luttinger
liquids has the consequence of enhancing the thermoelectric
performance of the fractional quantum Hall regime, relative
to the integer case, described by noninteracting electrons
[20]. We show that the Coulomb repulsion represented by the
Luttinger parameter K has a similar effect in the present case.

The paper is organized as follows. In Sec. II we present
the theoretical model for the setup of Fig. 1. In Sec. III we
present the theoretical framework to analyze its thermoelectric
response. We present results for the different operational
modes in Sec. IV. Summary and conclusions are presented
in Sec. V.

II. MODEL

The theoretical model for the setup of Fig. 1 is defined by
the following Hamiltonian:

H = Hedges + Hdot + Htun, (1)

where the first term correspond to the pair of helical edges. It
is modeled as a Luttinger liquid as follows [5,21]:

Hedges = v

4πK

∫
dx{[∂xφ↑(x)]2 + [∂xφ↓(x)]2}. (2)

Notice that due to the helical nature of the edge states, the
direction of propagation is determined by the spin orientation.
Hence, the spin labels ↑ and ↓ denote at the same time left

and right moving excitations propagating with velocity v.
The Coulomb electron-electron interaction is characterized by
the parameter K , such that K < 1 (K > 1) corresponds to
repulsive (attractive) interactions and K = 1 corresponds to
the noninteracting case. The densities ∂xφσ (x) are expressed
in terms of bosonic modes obeying a Kac Moody algebra

[φ↓(x), φ↓(x ′)] = −[φ↑(x), φ↑(x ′)] = iπKsgn(x − x ′).
(3)

They are related to fermionic fields through

ψ↓,↑(x) = F↓,↑√
2πa

ei[K±φ↓(x)+K∓φ↑(x)], (4)

with a being a characteristic length and

K± = (K−1 ± 1)/2. (5)

The Klein factors Fσ ensure {ψσ (x), ψ†
σ ′ (x ′)} = δσ,σ ′δ

(x − x ′).
The second term of Eq. (1) describes a quantum dot side

coupled to the QSH bar. It is controlled by a gate voltage Vg

and a magnetic field B, which has components B||, parallel,
and B⊥, perpendicular, to the direction of the spin-orbit cou-
pling of the QSH system. We focus on the situation where
the magnetic field is strongly localized at the side-coupled
quantum dot and weak enough to preserve the time-reversal
invariance of the QSH bar. For simplicity we consider a
single-level quantum dot,

Hdot =
∑

σ

εdσ d†
σ dσ + ε⊥(d†

↑d↓ + H. c.), (6)

with εd,σ = eVg + sσμBB||/2, s↑,↓ = ±, and ε⊥ = μBB⊥/2.
It is convenient to diagonalize the Hamiltonian for the dot as
follows:

Hdot =
∑
s=±

Esd
†
s ds . (7)

The local energies in the diagonal basis read

Es = eVg ± μB

B

2
, B =

√
B2

|| + B2
⊥. (8)

The change of basis is ds = ∑
σ us,σ dσ , with

u+,↑ = cos(θ/2), u−,↑ =
√

1 − u2
+,↑,

(9)
u+,↓ = −u−,↑, u−,↓ = u+,↑,

where the angle θ is determined by cos(θ ) = B||/B.
The quantum dot is tunneled coupled to the helical edges

with amplitudes wσ [18] and also to an external reservoir of
ordinary fermions with amplitude w. The Hamiltonian reads

Htun =
∑

σ

wσd†
σψσ (x = 0) + w

∑
σ,k

d†
σ ckσ + H.c. (10)

III. LINEAR THERMOELECTRIC DESCRIPTION

A. Spin-dependent fluxes and Onsager matrix

We assume that the quantum dot is strongly coupled to the
external reservoir, so that it has the same chemical potential
μ2 = μ and temperature T2 = T + �T of this system. The
edge states are contacted to left and right reservoirs at chem-
ical potential μ1 = μ + eV and T1 = T . The charge and heat
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currents between the quantum dot and the helical edges is
composed of fluxes of ↑ electrons flowing to the L channel
and ↓ electrons flowing to the R channel. We set μ = 0, and
define these components as follows:

JC
σ = −2ewσ Re[G<

d,σ (t, t )],

JQ
σ = −2wσ Re[i∂t ′G

<
d,σ (t, t ′)]t ′=t , (11)

where we have introduced the lesser Green’s function
G<

d,σ (t, t ′) = −i〈d†
σ (t )ψσ (t ′)〉. In the next section we will ex-

plain the method to evaluate these currents. Here we focus on
small temperature differences �T and small bias voltages eV

between the reservoirs contacting the edges and the reservoir
contacting the quantum dot. Under this condition, these cur-
rents will be linear functions of the affinities X1 = �μ/T and
X2 = �T/kBT 2, with �μ = μ2 − μ1 and �T = T2 − T1,

JC
σ = Lσ

11X1 + Lσ
12X2,

JQ
σ = Lσ

21X1 + Lσ
22X2. (12)

The coefficients Lσ
ij obey Onsager relations L

↑
ij (B ) =

L
↓
ji (−B ). In addition, these coefficients satisfy constraints

imposed by the second law of thermodynamics, according to
which the rate of entropy production is positive [47,48],

Ṡ =
∑
i,j

Xi Lij Xj � 0, (13)

with Lij = ∑
σ Lσ

ij . This implies L11, L22 � 0, det[L] � 0.
The diagonal matrix elements define, respectively, the elec-

trical and thermal conductances per spin channel, while the
off-diagonal matrix elements define the charge to energy con-
version and vice versa. For B 
= 0, the charge current comes
along with a spin current. In turn, imbalance between the flows
with ↑ and ↓ electrons implies a net spin current flowing into
the left or right terminal of the QSH bar. Therefore, we can
identify different thermoelectric operational modes for this
setup, which we describe below.

B. Operational modes

The different interesting operational modes are: charge
heat engine or refrigerator, spin heat engine, and spin re-
frigerator. They are illustrated in Figs. 2 and 3. While the
charge heat engine or refrigerator mode can be realized with
magnetic field as well as without magnetic field, the spin heat
engine and spin refrigerator modes operate only with a finite
magnetic field. The conditions of operation corresponding to
each case are indicated in Sec. V.

1. Charge heat engine or refrigerator

We start by considering the cases sketched in Fig. 2. These
are the usual operational modes of a two-terminal configura-
tion with chemical potential and a temperature differences in
opposition. In our case, the hot terminal is the quantum dot
connected to the reservoir at μ and T + �T , while the cold
reservoir is the Luttinger liquid composed of the two helical
edge states. The thermoelectric response can be described by(

JC

JQ

)
=

(
Lc

11 Lc
12

Lc
21 Lc

22

)(
X1

X2

)
. (14)

T, µ + eVT, µ + eV

T + ΔT, µ

JQ

(a)

T, µ + eV T, µ + eV

T + ΔT, µ

JC

(b)

FIG. 2. (a) Charge heat engine. The heat current from the hottest
reservoir is converted into charge current flowing through the tunnel-
ing contact and equally distributed, in absence of magnetic field, to
the left and right reservoir of the QSH system. (b) Charge refriger-
ator. An electric current flows from the edge states to the quantum
dot and is accompanied by a heat current that refrigerates the left and
right reservoirs of the QSH system.

In terms of the fluxes and Onsager coefficients defined in
Eq. (12) we have JC = ∑

σ J C
σ , JQ = ∑

σ JQ
σ , and Lc

ij =∑
σ Lσ

ij . The device can operate as a heat engine or refriger-
ator. The performance of these operational modes is qualified
by the efficiency (heat engine) or coefficient of performance
(refrigerator) as follows:

ηc,he = −JCX1

JQ
, ηc,fri = − JQ

JCX1
. (15)

In the former case JC flows against the bias voltage X1 and
an electrical power −JCX1 is generated at expenses of the
investment of a heat flow JQ, while in the latter case a heat
current −JQ is extracted from the coldest reservoir by invest-
ing an electrical power JCX1. Both coefficients are bounded
by the Carnot limits ηc,he � �T/T and ηc,fri � T/�T .

T, µ + eVT, µ + eVT, µ + eVT, µ + eV

T, µ + eVT, µ + eV T, µ + eV T, µ + eV

T + ΔT, µ

T + ΔT, µ T + ΔT, µ

T + ΔT, µ

JQ

JQ

(a)

(c)

(b)

(d)

JQ

JQ

JS JS

JSJS

JS JS

JS
JS

FIG. 3. (a) and (c) Spin heat engine. The heat current from the
hottest reservoir is converted into a spin current flowing through the
tunneling contact and to the left (for ↑ electrons) and right (for ↓
electrons) reservoir of the QSH system. (b) and (d) Spin refrigerator.
A polarized (↑ or ↓) electric current flows from the edge states to the
quantum dot and is accompanied by a refrigeration of the left or right
reservoirs of the QSH system.
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2. Spin heat engine

We now consider the cases sketched in Figs. 3(a) and 3(c).
The magnetic field at the quantum dot filters electrons with
a given spin component. The heat current flowing from the
hot reservoir in strong coupling to the quantum dot leads to
a polarized electron current through the tunneling contact to
the helical edge states and a spin current is induced at the
QSH system. Due to the helical nature of the edge states,
this also implies a charge current flowing to the left or to
the right along the edge. Hence the direction of the magnetic
field distributes the electron flow towards the left or right
terminals of the QSH bar. The thermoelectric description to
characterize the generation of a spin current J S in the QSH by
using the heat current JQ can be formulated in terms of the
linear dependence of these currents with the affinities,(

J S

JQ

)
=

(
Ls

11 Ls
12

Lc
21 Lc

22

)(
X1

X2

)
, (16)

with J S = ξ (JC
↑ − JC

↓ ), where ξ = sgn(L↑
11 − L

↓
11). The ma-

trix elements of Eq. (16) in terms of the original Onsager
coefficients read Ls

1j = ξ (L↑
1j − L

↓
1j ) and Lc

2j . We have intro-
duced the sign ξ in the definition, in order to have Ls

11 > 0 and
JQ is the total heat current previously defined. In this case,
the efficiency is quantified as the ratio between fraction of the
electrical power flowing against the bias voltage to the left
or right terminals (for ξ > 0 or ξ < 0), −J SX1, and the heat
current flowing from the hot reservoir JQ,

ηs,he = −J SX1

JQ
. (17)

Notice that J SX1 has the same units as the electrical power,
since J S is a polarized charge current.

3. Spin refrigerator

Finally we consider the cases sketched Figs. 3(b) and 3(d).
They can be regarded as the reversed operational mode of
the spin heat engine. As a consequence of the spin filtering
introduced by the magnetic field, not only a polarized elec-
tron flux but also an associated energy flux is established
between the left and right terminals of the QSH bar. This
can be described by the heat current JQ,s = ξ (JQ

↑ − J
Q
↓ ),

with ξ = sgn(L↑
22 − L

↓
22). Hence, a polarized charge flux from

the helical edges towards the quantum dot and the external
terminal can be used to refrigerate the left or the right reservoir
contacting the QSH system. The thermoelectric response can
be described as follows:(

JC

JQ,s

)
=

(
Lc

11 Lc
12

Ls
21 Ls

22

)(
X1

X2

)
, (18)

The matrix elements of Eq. (18) in terms of the original On-
sager coefficients read Ls

2j = ξ (L↑
2j − L

↓
2j ) and the efficiency

can be quantified as the heat current extracted from the left
or the right reservoirs (for ξ > 0 or ξ < 0), upon investing a
total electrical power JCX1,

ηs,fri = − JQ,s

J CX1
. (19)

IV. CALCULATION OF THE ONSAGER COEFFICIENTS

The spin-dependent charge and heat currents defined in
Eqs. (11) can be calculated by means of nonequilibrium
Schwinger Keldysh formalism and treating perturbatively the
tunneling couplings between the quantum dot and the helical
edges wσ . Here we summarize the main steps of this calcula-
tion. The charge current can be expressed as follows:

JC
σ = −2ew2

σ

∫ +∞

−∞
dt

∑
s=±

Re
[
g<

d,s (t )u2
s,σ g>

σ (−t )

− g>
d,s (t )u2

s,σ g<
σ (−t )

]
, (20)

where us,σ are defined in Eq. (9). The lesser and greater
Green’s functions of the quantum dot contacted only to the or-
dinary reservoir read g

>,<
ds (t ) = ∫

dωe−iω/h̄tλ>,<(ω)ρds (ω).
They depend on the density of states of the quantum dot
coupled to the external reservoir,

ρds (ω) = 1

π

γ

ω − Es + iγ
. (21)

The functions λ<(ω) = ifd (ω) and λ>(ω) = −i[1 − fd (ω)]
depend on the chemical potential μ and temperature T + �T

of the external reservoir in strong coupling with the quantum
dot through the Fermi function fd (ω). The functions g>,<

σ (t )
correspond to the left moving (for σ =↑) and right moving
(for σ =↓) electrons at the edge states. They can be written as
g>

σ (t ) = −g<
σ (−t ), with

g<
σ (t ) = i

h

∫
dωe−iω/h̄tρσ (ω)fσ (ω + eV ), (22)

ρσ (ω) = aK̄−1 (2πT )K̄−1

�(K̄ )

∣∣∣∣�(K̄/2 + iω/2πT )

�(1/2 + iω/2πT )

∣∣∣∣2

. (23)

ρσ (ω) is the density of states of the chiral Luttinger liquid
of left (for ↑) and right (for ↓) movers, �(x) is the Gamma
function, and

K = (K + 1/K )/2. (24)

More details on this calculation are presented in the
Appendix A.

Substituting these equations in Eq. (20) we get the follow-
ing expression for the charge current through the tunneling
contact:

JC
σ = e

h

∫ +∞

−∞
dωTσ (ω)[fσ (ω + eV ) − fd (ω)],

with

Tσ (ω) = 4πw2
σ

∑
s

u2
s,σ ρd,s (ω)ρσ (ω + eV ). (25)

Similarly, for the heat current we get

JQ
σ =

∫ +∞

−∞
dω

ω

h
Tσ (ω)[fσ (ω + eV ) − fd (ω)]. (26)

Expanding these expressions up to linear order in eV and �T

we get the Onsager coefficients of Eq. (12),

L̂σ = −kBT

2h

∫
dω

(
e eω

ω ω2

)
Tσ (ω)

∂f (ω)

∂ω
. (27)

195429-4



HELICAL SPIN THERMOELECTRICS CONTROLLED BY A … PHYSICAL REVIEW B 98, 195429 (2018)

In the limit of low temperature kBT < γ , the density of
states of the Luttinger liquid can be well approximated by a
power law as in Ref. [20]. The resulting expressions for the
Onsager coefficients in this limit are

Lσ
11 � T

∑
s

u2
s,σ ρd,s (0)I0(K ),

Lσ
12 � T

∑
s

u2
s,σ ρ ′

d,s (0)I2(K ), Lσ
21 � Lσ

12,

Lσ
22 � T

∑
s

u2
s,σ ρd,s (0)I2(K ), (28)

with

In(K ) = c(K, T )
(kBT )K−1+n

K − 1 + n
, (29)

where c(K, T ) is a coefficient depending on K and T . Inter-
estingly, from the definition of Eq. (24) we see that K is a
function of the Luttinger parameter K obeying the following
symmetry K ↔ 1/K . Hence, K has the same behavior for
repulsive (K < 1) and attractive (K > 1) interactions. This
is because the infinite Luttinger liquid for the pair of edge
states defined in Eq. (2) can be described in terms of two
Hamiltonians, which are bilinear in bosonic fields result-
ing from combinations of the original ones φσ . These two
Hamiltonians are related by a duality transformation under
the change K ↔ 1/K , being the noninteracting case, K = 1
self-dual. The local tunneling density of states depends on the
two combinations of bosonic fields, hence, on the parameter
K defined in Eq. (24) [71].

V. RESULTS

A. Charge heat engine and refrigerator

In the operational modes introduced in Sec. III B 1 it is pos-
sible to proceed as in the usual 2 × 2 thermoelectric devices
[47] and parametrize the efficiency by a figure of merit

ZT =
(
Lc

12

)2

DetL̂
, (30)

with Lc
12 = Lc

21. L̂ is the Onsager matrix characterizing the
corresponding operational mode and Lc

ij the corresponding
matrix elements. Following Ref. [47], we can choose �μ =
−eV and �T > 0, and derive the maximum efficiency for a
fixed �T . It can be expressed as

ηmax = ηC

√
ZT + 1 − 1√
ZT + 1 + 1

, (31)

with ηC = �T/T the Carnot efficiency for the heat engine
regime and ηC = T/�T the Carnot coefficient of perfor-
mance for the refrigerator regimes. This maximum corre-
sponds to the following relation between �μ and �T :

T �μ = −�T
L22

L12

⎛⎝1 −
√

DetL̂
Lc

11Lc
22

⎞⎠. (32)
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22
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12

eV eV

FIG. 4. Onsager coefficients (a), (b), and (c) and figure of merit
ZT (d) corresponding at the charge heat engine or refrigerator at
the temperature kBT = 0.1γ and B = 0, as functions of the gate
voltage (in units of γ /e). The unit of Lc

11, Lc
12, Lc

22 are, respectively,
eγ /h, eγ 2/h, γ 3/h. Solid, dashed, and dashed-dotted lines corre-
spond to K = 1, 2, 3, respectively.

The device operates as a heat engine within the range of
voltages satisfying

−Lc
12

Lc
11

�T � T �μ � 0, Lc
12 > 0,

0 � T �μ � −Lc
12

Lc
11

�T , Lc
12 < 0, (33)

while it operates as a refrigerator within the range

T �μ < −Lc
22

Lc
21

�T , Lc
21 > 0,

T �μ > −Lc
22

Lc
21

�T , Lc
21 < 0. (34)

In what follows, we show and analyze the Onsager coeffi-
cients and the figure of merit described in the previous section.
We calculate numerically the coefficients of Eq. (28) and
derive some analytical results based on Eqs. (29) within the
low-temperature regime kBT < γ . We have verified that the
latter are in prefect agreement with the exact results.

1. B = 0

In Fig. 4 we show the Onsager coefficients for the charge
heat engine or refrigerator described in Sec. III B 1, as well
as the corresponding figure of merit. We fix the magnetic
field at B = 0 a low temperature T = 0.1γ , and analyze these
quantities as functions of the gate voltage.

The diagonal coefficients Lc
11 and Lc

22, related, respec-
tively, to the electrical and thermal conductances, have max-
ima when the level of the dot is aligned with the chemical
potential μ. The maximum thermoelectric efficiency, corre-
sponding to the maximum ZT , takes place at the maximum of
the absolute value of the off-diagonal coefficient |Lc

12|. This is
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FIG. 5. Onsager coefficients (a), (b) and (c) and figure of merit
ZT (d) corresponding at the charge heat engine or refrigerator at the
temperature kBT = 0.1γ and magnetic field B = 5γ /μB and θ =
0, as functions of the gate voltage. Other details are the same as in
Fig. 4.

achieved by applying gate voltages leading to configurations
with a high density of states of the quantum dot but with
broken particle-hole symmetry. This condition is satisfied
within a window e|Vg| ∼ γ . The sign of Lc

12 = Lc
21 defines

the range of voltages for the operational mode, as discussed in
Eqs. (34) and (35).

Comparing to the fractional quantum Hall regime, modeled
by a chiral Luttinger liquid, we notice that the inverse of the
fractional filling factor 1/ν plays a similar role as the param-
eter K defined in Eq. (24) in the present case. Therefore, akin
to the fractional quantum Hall effect analyzed in Ref. [20],
the thermoelectric performance is enhanced when the system
departs from the noninteracting limit K = 1. This is true for
K > 1 as well as K < 1.

2. Effect of the magnetic field

Although the magnetic field is not essential for the de-
vice to operate as a charge heat engine or refrigerator, it
is interesting to analyze its effect. Turning on the magnetic
field B, the electronic levels of the quantum dot is split by
Zeeman effect into two levels with energies E± given in
Eq. (8). Figure 5 shows the thermoelectric coefficients and
the figure of merit for a finite magnetic field aligned with the
direction of the spin-orbit coupling of the QSH bar, θ = 0.
We can identify in the behavior of the diagonal coefficients
Lc

11 and Lc
22 as functions of the gate voltage (top panels) the

two peaks at eVg = ±μBB/2. These correspond to the values
of the gate voltage for which the levels are aligned with the
mean chemical potential μ. Concomitantly, the nondiagonal
coefficient Lc

12 also presents more features than in the case
of vanishing magnetic field. In particular, this coefficient van-
ishes at the two resonant values eVg = ±μBB/2, in addition
to the particle-hole symmetric value eVg = 0 of the zero
magnetic field.
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kB
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FIG. 6. Top panel: Diagonal coefficient Lc
11 at the temperature

kBT = 0.1γ and θ = 0 and K = 1 for several values of the magnetic
field as a function of the gate voltage. Lower panel: Figure of merit at
zero magnetic field for several values of temperature and K = 1. The
operational mode is charge heat engine or refrigerator. Other details
are the same as in Fig. 5.

Changing the direction of the applied magnetic field θ has
no effect on the Onsager coefficients Lc

ij . This result can be
understood on the basis of the expressions given in Eq. (29).
Considering, for instance, the case of the low-temperature
expression for the coefficient

Lc
11 =

∑
σ

Lσ
11 � T

∑
s,σ

u2
s,σ ρd,s (0)I0(K )

= T
∑

s

ρd,s (0)I0(K ), (35)

and taking into account that from Eq. (9)
∑

σ u2
s,σ = 1, we

conclude that the component B⊥ of the magnetic field does
not play any role in this regime. This is also true for the
exact coefficients evaluated numerically. Hence, the perfect
alignment of the magnetic field along the direction of the
spin-orbit axis of the topological insulator is not crucial for
the thermoelectric performance of this operational mode.

In the top panel of Fig. 6 we show the behavior of Lc
11

for several values of the magnetic field. When the magnitude
of the magnetic field is reduced we observe a decreasing
resolution of the peaks located at the energies of the dot
in the diagonal coefficients. Both peaks merge into a single
peak for values of the applied field approaching the intrinsic
broadening γ of the quantum dot levels. The effect of the
temperature is analyzed in the lower panel of Fig. 6. As the
temperature is increased, large values of the figure of merit
are achieved. This is similar to the results for the fractional
quantum Hall effect presented in Ref. [20]. Substituting the
low-temperature behavior for the Onsager coefficients given

195429-6



HELICAL SPIN THERMOELECTRICS CONTROLLED BY A … PHYSICAL REVIEW B 98, 195429 (2018)

by Eqs. (29) we get the following analytical behavior for the
low-temperature regime:

ZT ∼
(

ρ ′
d (0)

ρd (0)

)2
K

2 − 1

(K + 1)2
(kBT )2, K 
= 1,

ZT ∼
(

ρ ′
d (0)

ρd (0)

)2

(kBT )2, K = 1. (36)

The above expression is in perfect agreement with the analyt-
ical results.

B. Spin heat engine

For the spin heat engine mode described in Sec. III B 2,
we are interested in the conversion of the heat current from
the external reservoir to a spin current through the quantum
dot and along the edge states of the QSH bar. This mode
can only be implemented by applying a magnetic field at the
quantum dot. To characterize it, we introduced the coefficients
Ls

11 and Ls
12 in Eq. (16) to describe the linear dependence of

the induced spin current as a function of the affinities X1, X2.
The efficiency of the device can be quantified by the ratio

between the power developed by the polarized current J S and
the heat flux JQ, as defined in Eq. (17). Following the same
philosophy as in the usual charge heat engine and refrigerator,
we focus on fixed �T and analyze the conditions for the maxi-
mum possible efficiency within the linear response regime. To
this end, we maximize Eq. (17) for fixed �T . The maximum
value is

ηs,he,max = ηc

χhe
√

1 + (ZT )s,he − 1√
1 + (ZT )s,he + 1

. (37)

We have used the following definitions:

χhe = Ls
12

Lc
21

, (ZT )s,he = Ls
12Lc

21

DetL̂s,he
, (38)

with DetL̂s,he the determinant of the matrix of Eq. (16). The
maximum is found to take place at the value of the voltage
bias

T �μ = −�T
Ls

12

Ls
11R

he
(1 −

√
1 − Rhe), (39)

with Rhe = Ls
12Lc

21
Ls

11Lc
22

. The maximum efficiency at fixed �T is

parametrized by a figure of merit (ZT )s,he, which has the
same formal expression as for the charge heat engine. The
maximum is achieved for parameters satisfying (ZT )s,he →
∞ and it is bounded by χhe ηc. Notice that χhe � 1, and
the limit χhe = 1 corresponds to a fully polarized current. In
addition to the definitions of Eqs. (38)–(40), it is important
to take into account that for the spin heat engine operational
mode to take place, it is necessary to satisfy the following
conditions:

−Ls
12

Lc
11

�T � T �μ � 0, Ls
12 > 0,

0 � T �μ � −Ls
12

Lc
11

�T , Ls
12 < 0, (40)

From Figs. 5 and 7 we can observe that Lc
21 has the same

sign of Ls
12 and therefore the ratio Rhe is a positive magnitude
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FIG. 7. Onsager coefficients Ls
11 and Ls

12 corresponding at the
spin heat engine at the temperature kBT = 0.1γ and magnetic field
μBB = 5γ , as functions of the gate voltage. Top panels show the
K dependence for θ = 0. Lower panels show the θ dependence for
K = 1. Other details are the same as in Fig. 6.

which is bounded by 0 < Rhe < 1 due to the constraints im-
posed by DetL̂s,he > 0. This determines the selected sign for
the root in Eq. (40). In addition, we recall that the coefficients
Lσ

ij should satisfy the conditions leading to a positive rate of
the entropy production given by Eq. (13).

Figure 7 shows the transport coefficients for a finite
magnetic field aligned along the direction of the spin-orbit
direction in the bar, θ = 0. The overall behavior of these
coefficients and their dependence with the interactions K are
similar to the charge heat engine (refrigerator) mode. From the
definition of the sign ξ in Eq. (16), the coefficient Ls

11 has non-
negative values and the peaks are at the energies eVg = ±B/2.
The different signs of ξ imply different polarizations of the
spin current, hence, different directions of the current along
the QSH edge. The coefficient Ls

12 does not continuously cross
zero as the gate voltage pass from negative to positive values.
This is explicitly seen in the discontinuity of Ls

12 at eVg = 0,
as a consequence of the sign ξ imposed by Ls

11.
In the lower panels of Fig. 7 we show the behavior of

these coefficients when the direction of the magnetic field is
tilted in an angle θ with respect to the direction of the spin
orbit of the QSH. In contrast to the charge regime, the factors
u2

s,σ enter the coefficients in combinations like u2
s,↑ − u2

s,↓ =
±[cos2(θ/2) − sin2(θ/2)] leading to a dependence with θ .
Explicitly, within the low-T limit, we have for Ls

11,

Ls
11 = L

↑
11 − L

↓
11 � T

∑
s,σ

(
u2

s,↑ − u2
s,↓

)
ρd,s (0)I0(K )

= T [cos2(θ/2) − sin2(θ/2)]
∑

s

ρd,s (0)I0(K ). (41)

A similar expression is found for Ls
12. An interference be-

tween the two spin channels is clearly seen as a function of θ .
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FIG. 8. Figure of merit ZT s,he corresponding at the spin heat
engine. Other details are the same as in Fig. 7.

In particular, when the field is perpendicular to the direction
of the spin-orbit of the bar, the two coefficients vanish.

The efficiency of the device in this regime is analyzed in
Fig. 8, where the figure of merit (ZT )s,he defined in Eq. (39)
is shown for the same parameters of Fig. 7. For this mode,
the performance is also enhanced for interacting systems
with K 
= 1. Interestingly, the effect of the alignment of the
magnetic field affects identically Ls

11 and Ls
12. Hence, the vale

of ZT is not affected by the tilt angle θ of the magnetic field,
as can be seen in the bottom panel of Fig. 8.

C. Spin refrigerator

Finally, we discuss the spin refrigerator mode introduced in
Sec. III B 3. As in the heat engine, this regime operates only
at finite magnetic field B 
= 0.

The coefficient of performance of the device in this case
can be quantified by the ratio between the power developed
by the polarized heat flux flowing along the helical edge states
JQ,s and the charge flux JC , between the external reservoir
and the TI bar, as defined in Eq. (19). Following the same
procedure as in the case of the spin heat engine, we fix �T

and maximize Eq. (19). The maximum value is

ηs,fri,max = ηc

χ fri
√

1 + (ZT )s,fri − 1√
1 + (ZT )s,fri + 1

. (42)

We have used the following definitions:

χ fri = Ls
21

Lc
12

, (ZT )s,fri = Ls
21Lc

12

DetL̂s,fri
, (43)
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FIG. 9. Onsager coefficients Ls
22 (top panels) and figure of merit

ZT s,fri (lower panel) corresponding to the spin refrigerator. Other
details are the same as in Fig. 7.

with DetL̂s,fri the determinant of the matrix of Eq. (18). The
voltage bias corresponding to the maximum is

T �μ = −�T
Ls

22

Ls
21

(1 −
√

1 − Rfri ), (44)

where Rfri = Lc
12Ls

21
Lc

11Ls
22

. In this mode the maximum coefficient
of performance at fixed �T is also parametrized by a figure
of merit (ZT )s,fri, which has the same formal expression as
for the modes previously analyzed. As in the other cases,
the maximum is achieved for (ZT )s,f r → ∞. It is bounded
by χf r ηc and χf r � 1, with the maximum corresponding
to a fully polarized current. In addition to the definitions of
Eqs. (43)–(45), the following conditions must be satisfied:

T �μ < −Lc
22

Ls
21

�T , Ls
21 > 0,

T �μ > −Lc
22

Ls
21

�T , Ls
21 < 0. (45)

In this case, the regime is characterized by the coefficients
Ls

22, plotted in the top panels of Fig. 9 and Ls
21. As in the

spin heat operational mode, this regime implies a proper
definition of in the sign ξ , such that Ls

22 = ξ (L↑
22 − L

↓
22) � 0

to characterize the thermoelectric response. The dependence
of the coefficients with the gate voltage and magnetic field
is similar to that observed for the spin heat engine. We have
verified that the sign ξ , as a function of the gate voltages
and magnetic field, is exactly the same within the spin heat
and refrigerator regimes. This can be easily verified from the
low-temperature expressions of the coefficients in Eq. (29), by
noticing that the only difference between Lσ

11 and Lσ
22 is given

by the amplitude introduced by the factor In(K ) in Eq. (30).
As a consequence, the coefficient Ls

21 is equal to Ls
12 shown in

Fig. 7. The coefficient Ls
22 and the figure of merit are shown

in Fig. 9.
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VI. SUMMARY AND DISCUSSION

We have analyzed the thermoelectric response of a pair of
helical edge states of a topological insulator coupled to an
extra reservoir through a side quantum dot. By applying a
gate voltage as well as a magnetic field at the quantum dot,
different thermoelectric operational modes can be induced
in this device. These include usual charge heat engine and
refrigerator, as well as spin heat engine and refrigerator. The
latter modes imply the conversion between heat and spin
currents and are of interest in spintronics.

In this work we introduced a linear response description,
relevant for small bias voltages and temperature differences,
and characterize the different regimes by efficiencies or co-
efficients of performance parametrized by figures of merit.
Considering a typical value for the parameter γ ∼ 1 μeV
[20], the spin heat engine and spin refrigerator regimes can
be achieved with magnetic fields B ∼ 0.1 T, which are of the
order of magnitude of the ones implemented in laboratory to
study quantum dots in the Kondo regime [72]. Given the ad-
ditional fact that our setup is based on a quantum dot coupled
albeit not hosted by the topological insulator in the QSH state,
the application of a magnetic field is not expected to affect
the nature of the helical edge states. For these estimates, the
temperatures indicated in Fig. 6 range from T = 5 to 40 mK
and we see that values of figure of merit as large as ZT = 5
can be achieved in the case of noninteracting helical edges.
As in the case of the fractional quantum Hall effect studied in
Ref. [20], the thermoelectric performance is improved when
the many-body interactions are relevant. Hence, for the cases
with K 
= 1, the above estimates can be improved in a factor
depending on K , as shown in Eq. (37), and Figs. 4, 7, 8, and 9.
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APPENDIX: DENSITY OF STATES
OF THE HELICAL EDGES

The derivation of the density of states of the chiral Lut-
tinger liquid ρσ (ω) entering in Eq. (22) follows from the
Hamiltonian in Eq. (2) and can be obtained by using standard

bosonization technique as presented in Ref. [21]. Here we
summarize the main steps.

Starting from the definition of the greater Green function
ig>

↓ (t − t ′) and the expression of the fermionic fields in terms
of the bosonic ones in Eq. (4) one arrives at

ig>
↓ (t − t ′) = 〈ψ↓(t )ψ†

↓(t ′)〉

= 1

2πa
〈eiK+φ↓(t )eiK−φ↑(t )e−iK+φ↓(t ′ )e−iK−φ↑(t ′ )〉

= 1

2πa
eK2

+D>
↓ (t−t ′ )eK2

−D>
↑ (t−t ′ ), (A1)

where D>
σ (t − t ′) = D<

σ (t ′ − t ) = 〈φσ (t )φσ (t ′)〉 − 1
2 〈φ2

σ (t )〉
− 1

2 〈φ2
σ (t ′)〉, for t > t ′ is the bosonic propagator associated at

the σ channel in Eq. (2). The latter is given by the following
expression:

D>
σ (t − t ′) = Kln

[
sinh(iaπT )

sinh[πT (t ′ − t + ia)]

]
. (A2)

Inserting Eq. (A2) into Eq. (A1) the greater Green function
can be simple written as

g>
↓ (t − t ′) = −i

2πa

[
sinh(iaπT )

sinh[πT (t ′ − t + ia)]

](K2
++K2

− )K

,

g>
↓ (t − t ′) = −i

2πa

[
sinh(iaπT )

sinh[πT (t ′ − t + ia)]

]K̄

, (A3)

where K̄ ≡ (K2
+ + K2

−)K = 1
2 ( 1

K
+ K ).

The lesser Green function is obtained through the relation
g<

σ (t − t ′) = −g>
σ (t ′ − t ),

g<
↓ (t − t ′) = i

2πa

[
sinh(iaπT )

sinh[πT (t − t ′ + ia)]

]K̄

, (A4)

Note that the left and right movers share the same temperature
and, as a consequence, there is no spin dependence in the
explicit expressions of the above Green functions.

Transforming Fourier to the frequency domain we have

g<
σ (ω) = iaK̄−1 (2πT )K̄−1

2π�(K̄ )
e−ω/2T |�(K̄/2 + iω/2πT )|2.

(A5)

Finally, the density of states ρσ (ω) can be introduced through
the identity g<

σ (ω) = 2πiρσ (ω)f (ω), where f (ω) is the
Fermi distribution and �(z) is the Gamma function. The final
expression for the densities of states, Eq. (22) reads

ρσ (ω) = aK̄−1 (2πT )K̄−1

�(K̄ )

∣∣∣∣�(K̄/2 + iω/2πT )

�(1/2 + iω/2πT )

∣∣∣∣2

. (A6)
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