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We investigate the influence of gauge fields induced by strain on the supercurrent passing through the
graphene-based Josephson junctions. We show that, in the presence of a constant pseudomagnetic field BS

originating from an arc-shape elastic deformation, the Josephson current is monotonically enhanced. This is
in contrast with the oscillatory behavior of supercurrent (known as Fraunhofer pattern) caused by real magnetic
fields passing through the junction. The absence of oscillatory supercurrent originates from the fact that strain-
induced gauge fields have opposite directions at the two valleys due to the time-reversal symmetry. Subsequently
the Aharonov-Bohm phases due to BS cancel out between electron and hole components of the current carrying
Andreev bound states. Nevertheless, we find another phase factor coming from the pseudomagnetic fields which
rotates the pseudospin and is in fact responsible for the enhancement of Josephson currents. When both magnetic
and pseudomagnetic fields are present, Fraunhofer-like oscillations as a function of the real magnetic field flux
are found. Intriguingly, the combination of two kinds of gauge fields results in two special fingerprints in the
local supercurrent density: (i) strong localization of the Josephson current density with more intense maximum
amplitudes; (ii) appearance of the inflated vortex cores—finite regions with almost diminishing Josephson
currents—whose sizes increase by increasing BS . These findings reveal unexpected interference signatures of
pseudomagnetic fields in graphene SNS junctions which can cause a twist in the investigations on strain-induced
gauge fields.
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I. INTRODUCTION

Synthesis of graphene as the leading material among
two-dimensional (2D) atomic monolayer has opened a new
era in condensed-matter physics by putting forward many
fundamental questions besides different applications [1,2].
One of the groundbreaking findings is about the appearance
of gauge fields originating from elastic deformations [3–8].
These gauge fields originate from the relativistic spectrum of
graphene and the fact that the main effect of smooth strain is
to relocate and deform the Dirac cones in the corners of the
Brillouin zone [8]. Subsequently, the dynamics of electrons
in strained graphene is reminiscent of motion at the presence
of a magnetic vector potential A but with a special property
of having opposite signs at the two Dirac points, to preserve
time-reversal symmetry (TRS) [9,10]. The existence of such
pseudomagnetic fields has been experimentally validated by
some experiments, especially using spectroscopy of Landau
level at the vicinity of a highly strained nanobubble which has
shown very large fields exceeding a few hundred T [11].

While many theoretical and experimental investigations
have been carried out to understand and exploit the strain-
induced gauge fields for possible applications, only a few
works focused on the interference phenomena, especially
the Aharonov-Bohm effect due to the gauge fields [12].

*agorbanz@iasbs.ac.ir

Historically, most of the quantum interference phenomena
observed in solid-state systems have been associated with
superconductors (S) because of the robust phase coherence of
Cooper pairs [13–20]. Of particular interest, when a magnetic
flux �B is imposed to the nonsuperconducting or normal
(N) region sandwiched between two superconductors, the
critical supercurrent Ic shows a diffraction pattern by vary-
ing �B . In addition, the local current density inside the N
region reveals the so-called Josephson vortices which are
governed by quantum-mechanical interferences in contrast to
the Abrikosov vortex lattice where electrostatics plays a major
physical role [21–23]. Putting all these together, we come up
with the idea that superconductor-graphene-superconductor
(SGS) junctions are very promising for exploring quantum
interference phenomena due to the strain-induced gauge fields
in graphene.

Over the last decade, many theoretical works have been
focused on SGS and other graphene based superconducting
heterostructures and found various peculiar and unexpected
behaviors [24–32]. Most of the these features originate from
Dirac dispersion of quasiparticles as well as the 2D nature
of graphene as pointed out by Beenakker [24,30]. Interest-
ingly, various experiments have even outpaced theory due
to the impressive techniques in fabrication of high quality
graphene based devices and very good contacts with various
superconducting materials [33–46]. Some recent works have
studied exhaustively the Fraunhofer pattern in SGS junctions
[42,43,47]. In addition, a few works have investigated the
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interplay of superconductivity with gauge fields at very high
strain regimes in which pseudo-Landau levels are formed
[48–50]. It has been found that when the pseudo-Landau
levels are partially filled a superconducting state originat-
ing from electron-phonon coupling can survive at the weak-
coupling limit [48]. On the other hand, Josephson current
through graphene at the presence of high strains is strongly
suppressed in long junctions [50]. Nevertheless, the effect of
weak gauge fields and particularly the corresponding quantum
interferences in the SGS systems have remained unexplored
so far.

Here, based on a semiclassical framework, we show under
a general gauge potential A that two different phases χ and
χ ′ are gained by the quasiparticles’ wave functions. The first
phase χ depends on the flux of gauge field resembling the
well-known Aharonov-Bohm (AB) effect, while χ ′ acting as
a relative phase between the two components of the Dirac
spinor depends on the circumference of the quasiparticles’
trajectories. As a key finding, it is demonstrated that the
Josephson current is enhanced at the presence of a uniform
strain-induced pseudomagnetic field BS . In fact, an oscillatory
Fraunhofer-like pattern of supercurrent is absent since the
strain-induced AB phases gained by the electron and hole
making a bound state cancel each other. Nevertheless, when
a real magnetic field B is imposed to the junction beside the
pseudomagnetic field, the Fraunhofer pattern is established by
its variation. Further investigation of the combined effect of
real and strain-induced fields reveals that Josephson vortices
are strongly influenced by the presence of BS . In one hand,
the gauge field’s presence further localizes the vortex pattern.
On the other hand, new vortex cores appear and inflate sig-
nificantly at the presence of gauge fields which means finite
regions of almost vanishing supercurrent emerge, having very
sharp boundaries with nonvanishing supercurrent regions.

The paper is organized as follows. After the Introduction,
in Sec. II the basic model, semiclassical framework for the
calculations, and the main relations for the supercurrent are
presented. Then, in Sec. III the Josephson current and its local
density dependence on the gauge fields are shown followed
by a discussion over the importance of the results and their
experimental relevance. Finally, Sec. IV is devoted to the
concluding remarks.

II. MODEL AND BASIC FORMALISM

Our model consists of an SGS junction where two su-
perconducting electrodes are deposited over graphene with
distance L from each other as depicted in Fig. 1(a). The
normal graphene region is imposed to an arc-shaped strain
or alternatively deformation with triangular symmetry which
can lead to a uniform pseudomagnetic field BS = BSz acting
on the Dirac quasiparticles [9,10]. The strain-induced field
and corresponding gauge potential AS (∇ × AS ≡ BS) have
opposite signs at the vicinity of the two Dirac points K and
K ′ at the corners of hexagonal first Brillouin zone [8]. The
underlying deep reason for the sign change originates from the
facts that strain and any geometric deformation do not break
TRS, and the two K points or valleys are connected by time-
reversal operator (K �

←→K ′). Putting together the low-energy
Hamiltonian of normal graphene around Dirac points and at

FIG. 1. (a) Schematic of the SGS Josephson junction with
strained graphene at the middle. (b) The classical trajectories of Dirac
excitations inside the normal graphene. The gauge fields are weak
enough so that they cannot deflect the trajectories and only phase
effects corresponding to them can come into play. The geometric
parametrization of the trajectories and the normal region are shown.

the presence of both strain-induced gauge potentials and real
magnetic fields (B = ∇ × A) can be written as

Ȟ(A, AS) = vF

(
σ̂ · �K 0

0 σ̂ ∗ · �K ′

)
, (1)

with �K,K ′ = p + e(A ± AS ) indicating the kinematical mo-
menta at the vicinity of two valleys and σ̂ = (σx, σy ) the
Pauli matrices in the sublattice or pseudospin space. Here the
Fermi velocity is denoted by vF and p = (px, py ) is the 2D
momentum. Moreover, for the sake of clarity, any quantity in
2D space of sublattices and four-dimensional space composed
of valley and sublattice subspaces are labeled with hat and
check signs, respectively.

Inside the parts of graphene covered by superconducting
electrodes, an effective pair potential of the form �̌ = � Ǐ is
induced via proximity effect. We assume a phase difference φ

between two superconductors with pairing functions �L,R =
�0 exp(±iφ/2), to drive the Josephson current. The coupling
of electron and hole excitations (�̌e,h) inside these super-
conducting graphene regions is governed by the following
Bogoliubov–de Gennes (BdG) equation,

(
Ȟ − μ �̌

�̌ μ − �̌Ȟ�̌−1

)(
�̌e

�̌h

)
= ε

(
�̌e

�̌h

)
, (2)

in which μ and ε indicate the chemical potential and the
energy of the Bogoliubov quasiparticles, respectively. The
time-reversed Hamiltonian corresponding to the hole-type ex-
citations follows �̌Ȟ(A, AS )�̌−1 = Ȟ(−A, AS ), since under
the act of time-reversal operator �̌ the real magnetic fields
change sign while the strain-induced gauge fields remain the
same.
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A. Constructing a semiclassical framework

In what follows we will construct a semiclassical picture
for the propagation of massless Dirac particles at the presence
of a general Abelian gauge potential A with contributions
from both real magnetic field and geometric deformations.
The starting point is to write the massless Dirac equation in
the squared form,

v2
F [σ̂ · (p + eA)]2�̂ = E2�̂. (3)

Assuming the gauge potentials are weak enough, we only
keep the linear terms in A and corresponding gauge field
B = z · (∇ × A) which results in

v2
F (p2 + 2eA · p + h̄eBσ̂z)�̂ = E2�̂. (4)

The main step towards the semiclassical framework can be
passed by considering the wavefunction as �̂(r) = eik·rψ̂ (r)
composed of a plane-wave corresponding to the energy E =
h̄vF |k| and a slowly varying envelope function ψ̂ (r). Then we
can ignore the second-order spatial derivative of ψ̂ as well as
the term proportional to A · ∇ψ̂ provided by two legitimate
assumptions |∇2ψ̂ | � |k · ∇ψ̂ | and |eA| � h̄k when the
energy E with respect to the Dirac point is high enough.1 As a
result we arrive in the following first-order equation of motion
for the envelope function ψ̂ (r),

(−2ih̄2k · ∇ + 2h̄ek · A + h̄eBσ̂z)ψ̂ = 0, (5)

corresponding to the semiclassical trajectories determined by
the direction of the wave-vector n = k/kF (throughout the
paper only excitations at the vicinity of the Fermi level are
considered).

It must be mentioned that under our assumption the tra-
jectories are straight lines and the gauge fields are too weak
to bend them. More precisely, the cyclotron radius Rcyc ∼
h̄kF /eB over which the bending of a trajectory take place
is much larger than length L and width W of the normal
graphene region. In other words, we are limited to the cases
in which L,W � Rcyc provided by large Fermi wave vector
or highly doped graphene. Figure 1(b) shows a few examples
of classical trajectories starting from one SG interface and
ending at another. It is clear that the trajectories are mir-
ror reflected at the edges of the graphene sheet along the
x direction where hard-wall boundary conditions must be
satisfied. The trajectories can be fully determined by their
initial position at the interface denoted by y0 and the angle
θ . Then each trajectory can be parametrized with a single
parameter � indicating the distance from the initial point along
the trajectory. This leads to the following equation:

∂�ψ̂ = − ie

h̄

(
n · A + B

2kF

σ̂z

)
ψ̂, (6)

which has the form of an evolution equation and provides
a cornerstone for our semiclassical description of the Dirac
equation at the presence of gauge fields.

Considering any trajectory C, the above semiclassical
equation can be (formally) integrated as ψ̂C = exp[−i(χ +

1We should note that the energy must not be so high that trigonal
warping effects come into play.

χ ′σ̂z)]ψ̂0, with two gauge-induced phase factors,

χ = π

�0

∫
C
d� n · A, χ ′ = π

2kF �0

∫
C
d� B, (7)

where �0 = πh̄/e is the superconducting magnetic-flux
quantum. While the first phase χ is responsible for the con-
ventional AB effect, the second one χ ′ is quite different and
acts as a respective phase between the components of the
spinor ψ̂ rather than being an overall phase. In particular,
Stokes’ theorem guarantees that for a closed path, χ depends
on the area enclosed by the closed trajectory C and more
precisely the flux, however, χ ′ is a function of circumference.
Another point that must be mentioned is that the AB phase
χ for the closed paths and χ ′ for any trajectory (open or
closed) are clearly gauge invariant, as expected. Considering
a constant gauge field Bz and choosing a Landau gauge A =
−Bzy x, for a given trajectory determined by y0 and θ , the two
phase factors obey the following relations:

χ = πSy0,θ

LW

�B
�0

, χ ′ = π

2kF W cos θ

�B
�0

. (8)

Here, �B = LWB is the gauge flux passing through the
nonsuperconducting graphene region, and Sy0,θ indicates the
area enclosed between the trajectory and the lower parts of
the normal region boundaries. The exact form of the area will
be shown in the Appendix with details of the calculations. It
will be very useful for the discussion in the next section if
we rewrite the condition for having straight trajectories versus
the scaled flux �B/�0. One can simply check that the large
cyclotron radius is equivalent to π�B/�0 � min(kF L, kF W )
where both kF L and kF W are very large to guarantee the
validity of the semiclassical picture. Therefore, while for
the angles θ → ±π/2 the phase χ ′ could be very large, for
the normal incidences (θ � 1) which can give the dominant
contribution in the current, χ ′ cannot be exceedingly large
and is at most on the order of 1. Subsequently, we would not
expect oscillatory behavior originating from χ ′ and as it will
be clear soon only a conventional AB phase χ can give rise to
the magnetic oscillations known as the Fraunhofer pattern of
the critical current.

B. Bound-state energies and the supercurrent

Now using the semiclassical framework developed above
and the BdG equations, we can find the bound-states energies
(|ε| < �0) for any trajectory sandwiched between the inter-
faces. The formation of bound state can be usually understood
as the result of successive Andreev reflections at the two
interfaces [51]. Such Andreev bound states (ABSs) are current
carrying and therefore responsible for the Josephson current
in the short junction limit where the length is smaller than
the superconducting coherence length (L � ξ ). For the sake
of clarity, we should mention that here we have only a so-
called retro Andreev reflection because of a high Fermi level
(ε � μ) [24]. This is consistent with the fact that we are
working at the level of the semiclassical picture where the
Fermi wavelength λF is the smallest length scale. Then the
electron and hole components of current carrying ABSs will
propagate on the same trajectory. Subsequently, all dynamical
phases accumulated during the propagation as well as those
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originating from the normal reflections at the edges cancel out
between the electron and hole which go back and forth along
the trajectory.

In order to find the ABS energies, we invoke Eq. (6) to
see how electron and hole excitations evolve between the two
interfaces at the presence of gauge fields. From the aforemen-
tioned properties of the magnetic and strain-induced gauge
fields, we can write the total gauge potentials for electron and
hole excitations from different valleys in the following form:

Ae,K = A + AS, Ae,K ′ = A − AS,

Ah,K ′ = −A + AS, Ah,K = −A − AS. (9)

Subsequently, one can consider a similar structure for the
phase factors χ and χ ′ decomposed to χB,S and χ ′

B,S where
subscripts B and S denote magnetic field and strain-induced
gauge effects, respectively. Considering electrons and holes
from valleys K and K ′, respectively, the corresponding
spinors at the two interfaces are connected as below,

ψ̂e,K |R = e−i(χB+χS )−i(χ ′
B+χ ′

S )σ̂z ψ̂e,K |L, (10)

ψ̂h,K ′ |R = e−i(−χB+χS )−i(−χ ′
B+χ ′

S )σ̂z ψ̂h,K ′ |L. (11)

On the other hand, the superconducting correlations at the
interfaces lead to electron-hole conversions governed by the
following boundary condition [25,30]:

ψ̂h,K ′ = e±i( φ

2 +βσ̂x )ψ̂e,K, β = arccos

(
ε

�0

)
, (12)

at left and right interfaces, respectively. Putting Eqs. (10)–(12)
together, one can easily see that the formation of a bound state
inside a normal graphene region is guaranteed when

Det
[
ei(φ/2+βσ̂x )e−i(χB+χS )−i(χ ′

B+χ ′
S )σ̂z

−e−i(−χB+χS )−i(−χ ′
B+χ ′

S )σ̂z e−i(φ/2+βσ̂x )
] = 0. (13)

This results in the following relation for the ABS energies:

ε

�0
=

√
cos2

(
φ

2 − χB

) − sin2 χ ′
S

cos2 χ ′
B − sin2 χ ′

S

, (14)

as functions of the phase difference φ, the AB phase χB due
to the real magnetic field, and the two anomalous phases χ ′

B

and χ ′
S . Although the bound-state energies have been obtained

by focusing on an electron (a hole) from the K point (K ′
point), one can easily check that considering the electron and
hole excitations from the other valleys we will find exactly
the same result. This is in agreement with the particle-hole
symmetry present in superconducting heterostructures.

The most interesting property of the above relation is the
fact that the strain-induced AB phase χS does not play any
role in the ABS energies and the supercurrent, subsequently.
One can interpret this result due to the cancellation of strain-
induced AB phases accumulating in the electron and its
time-reversal hole upon propagation along the trajectory. The
magnetic AB phase χB acts as a shift in the phase difference
φ between two S parts giving rise to an effective phase
difference φ̃B = φ − 2χB from which the magnetic oscilla-
tions and the famous Fraunhofer pattern originate [18,22,23].
Nevertheless, the two anomalous phases mostly impose the

limitation

sin2 χ ′
S � cos2(φ̃B/2) � cos2 χ ′

B, (15)

on the range of effective phase difference φ̃ in which bound
states can be formed. A simple physical interpretation for the
above relation can be provided if we notice that both χ ′

B,S

cause the Dirac spinors to rotate in the xy plane as given
by Eqs. (10) and (11). Therefore, in order to have bound
states, the rotation of electron and hole pseudospins during
their propagation between two superconductors must be com-
pensated. Interestingly it happens that the compensation is
not possible for all effective phase differences (φ̃), which
subsequently gives rise to the limitation for having an ABS.

It is clear that for any trajectory C labeled by y0 and θ ,
we will get a different bound state which can be denoted by
εy0,θ (φ) and given by Eq. (14). In fact, under the semiclassical
framework, there exists a continuous spectrum of ABS ener-
gies depending on the vertical intercept and the slope of the
trajectories. Henceforth, the contribution of each bound state
in the supercurrent can be obtained from the following relation
for the Josephson current density [29,51]:

δI (y0, θ ) = −4e

h̄

dεy0,θ (φ)

dφ
tanh

[
εy0,θ (φ)

2kBT

]
, (16)

at a temperature T (T < Tc). The total Josephson current can
be obtained by summing over all trajectories as below,

I = kF

2π

∫ π/2

−π/2
dθ cos θ

∫ W

0
dy0 δI (y0, θ ). (17)

In the following section, using Eqs. (8) and (14)–(17), we
will study the effects of gauge fluxes originating from real
magnetic fields and/or strains on the Josephson current in the
SGS junctions.

III. RESULTS AND DISCUSSION

In this part, the results of the pseudomagnetic field effects
induced by the strain on the variation of critical current as
well as Josephson vortices and Fraunhofer pattern at the
presence of a finite real magnetic field will be presented. It
worth reminding that in order to validate the approximation
of straight trajectories we are limited to large doping provided
by kF L, kF W 
 π�B/�0 as explained before (B stands for
both real and pseudomagnetic fields). Since throughout the
paper we will consider magnetic and pseudomagnetic fluxes
in the range of �B/�0 � 10, assuming kF L, kF W � 100,
our semiclassical approximation is well justified in all of the
presented results.

A. Supercurrent enhancement by gauge fields

We first examine the effect of mere gauge fields induced
by an arc-shape strain on the Josephson current. It is clear that
here only the phase χ ′

S or the corresponding flux �S = LWBs

can affect the bound-state energies and the supercurrent, sub-
sequently. The numerically obtained current-phase relation
(CPR) for an SGS junction in the presence of a uniform gauge
field is shown in Fig. 2 for different values of �S/�0. It shows
that there is a range for superconducting phase differences
φ in which the Josephson current is almost suppressed. In
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FIG. 2. Current-phase relation for the SGS junction under a
uniform strain-induced gauge field of various strengths given by
�S/�0. Increasing the applied gauge field leads to larger range
of phase differences in which the Josephson current is suppressed.
Simultaneously, the maximum values of the Josephson current in-
creases monotonically with the gauge field. The geometric aspect
ratio of junction is W/L = 1 and the temperature is considered to
be T = 0.05Tc.

Sec. II B we noticed that the range of phase differences over
which a bound state can exist is constrained due to the rotation
of pseudospin caused by anomalous phases χ ′. This results in
a constraint on the range of φ’s with finite Josephson current
which can be approximately obtained from Eqs. (8) and (15)
as

π − π

2kF W

�S

�0
< φ < π + π

2kF W

�S

�0
, (18)

by considering only the normally incident trajectories (θ = 0)
which have the dominant contribution in the supercurrent. As
a consequence of the confined range of φ’s to have ABSs,
by increasing �S/�0 the bound-state energies vary sharply
with the phase difference and therefore the Josephson current
can reach higher values as can be seen in Fig. 2. Then it
follows that the critical current must be raised by increasing
the strength of strain and corresponding gauge field. This is
in contrast to the Fraunhofer-type behavior induced by real
magnetic fields as shown in Fig. 3 for various aspect ratios of
the junction and at two different temperatures. Interestingly,
the effect of the gauge field is much stronger for a longer
junction with smaller values of W/L as can be understood
from the dependence of the gauge-induced anomalous phase
χ ′ on the length following from Eq. (7).

B. Josephson vortices and Fraunhofer patterns

In this part, we would like to investigate the supercurrent
density profiles in the presence of magnetic and pseudo-
magnetic fields. As mentioned in the Introduction, when the
normal region of an SNS junction is subjected to a uniform
magnetic field, the supercurrent profile is strongly modulated
due to the quantum interferences which lead to the vortexlike
circular flow patterns. In the semiclassical picture, the local
current density at each point can be obtained by summing over
the contributions of all trajectories passing through that point
or equivalently by mere integration over θ . Figure 4 shows the
supercurrent profile of a conventional SNS junction and SGS
junctions in the presence of a gauge field of various strengths

0 2 4
(ΦS/Φ0)

1

1.2

1.4

1.6

1.8

I
(Φ

S
)/

I
(0

)

(a) T/Tc = 0.05

W/L = 1

W/L = 2

W/L = 3

W/L = 5

W/L = 10

0 2 4
(ΦS/Φ0)

(b) T/Tc = 0.95

W/L = 1

W/L = 2

W/L = 3

W/L = 5

W/L = 10

FIG. 3. Variation of critical current with the strength of strain-
induced gauge field for some aspect ratios of the junction. Panels (a)
and (b) correspond to the temperatures T = 0.05Tc and T = 0.05Tc.
In general, the critical current monotonically increases with the
gauge field, however the amplitude of variations is larger for smaller
geometric aspect ratios.

�S/�0 = 0, 1, 2, all subjected to a constant magnetic field
flux �B/�0 = 4 and a phase difference φ = π/4 between two
S electrodes. In all cases series of vortices and antivortices are
seen which are mainly located at the middle of the junction.
Furthermore, we see that compared to an SNS junction, the
SGS case has a more profound and localized vortex structure.
Intriguingly, when the strain is imposed to the graphene, the
local Josephson current is further localized by increasing the
strength of the gauge field.

It is very instructive to discuss how vortex patterns are
formed in Josephson current density in a generic SNS system,
before providing a detailed discussion about the SGS junction
and the role of strain-induced gauge fields. To this end, let
us first examine the current density over the vertical line
exactly at the middle of the junction (x = L/2). One can
easily see that the current flows in the horizontal direction
there. The reason comes from the mirror symmetry between
the trajectories with opposite angles ±θ passing from the
line x = L/2, which subsequently results in the same AB
phases and differential current amplitudes δI (θ ) = δI (−θ )
(one should remember that the AB phase χ is proportional
to the area underneath the trajectory). In addition, all straight
trajectories crossing the point (x = L/2, y) enclose the same
area below themselves and as a result, their contributions to
the local current add up coherently. Then moving along the
vertical direction, the AB phase χB linearly increases with y

for most of the trajectories. Therefore one can conclude that
the bound-state energies and the Josephson current density
vary almost periodically along the y direction according to
Eqs. (14) and (16). Deviation from perfect periodic variations
becomes visible close to the horizontal boundaries of the
junction where a substantial part of the trajectories is reflected
once or more at the edges. In contrast to the straight paths, the
zigzag ones passing from a certain point in the middle of the
junction can have different areas below them which give rise
to different AB phases as well. So we would expect a weak
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FIG. 4. Formation of Josephson vortices at the presence of magnetic flux �B/�0 = 4 in (a) an SNS junction and (b)–(d) SGS junctions
subjected to different values of strain-induced gauge fields. Each column corresponds to the same situation with upper and lower panels
indicating the intensity plot and the vector field of the local current density, respectively. While the generic form of the vortex pattern remains
almost the same in all cases, the local current profile in SGS junctions has a more localized pattern. The localization is intensified at the
presence and by increase of the gauge field. The parameters considered in all subplots are W/L = 1, φ = π/4, and T/Tc = 0.95.

aperiodicity which can be moderate close to the horizontal
edges as seen in Fig. 4(a). Away from the middle of the
junction, δI (θ ) will be no longer symmetric with respect to
the angle because of the difference in the areas S(y0,±θ ).
Therefore, the local current at points x �= L/2 after integration
over θ can have a vertical component which qualitatively
explains the appearance of the circular flow pattern around
certain points mostly located at x = L/2. Moreover, besides
the major line of the vortex-antivortex series, very weak vortex
flows can be found far from the middle of the junction and
close to the SG interfaces.

When we turn to the graphene-based Josephson junctions,
at the presence of a real magnetic field, the anomalous phase
χ ′

B will come into play besides the AB phase. We have already
seen in previous parts that the anomalous phases lead to the
pseudospin rotation which subsequently puts some constraints
on the range of parameters over which ABS can be formed. So
for any constant phase difference φ, due to the constraint given
by Eq. (15) some trajectories could not give rise to ABS in
contrast to the SNS junction. Moreover, on the same ground as
we discussed, the underlying physics of Josephson current en-
hancement by the gauge fields, the trajectories hosting an ABS
give rise to larger Josephson current. Putting it all together,
we can understand why the profile of the local supercurrent
density is more localized and has larger peaks in graphene-
based Josephson junctions as seen in Fig. 4(b) compared to
an SNS junction. On the same ground, when strain is applied
to graphene, the corresponding anomalous phase χ ′

S leads
to further localization of the local current flow patterns. In
fact as it is seen from Figs. 4(c) and 4(d) the interference
pattern is not drastically influenced by the pseudomagnetic
fields as long as the their strength is not strong compared to

the real magnetic field. So when �S � �B , the major effect
of pseudomagnetic fields is that the spatial variations become
increasingly sharper at the presence of a finite �S . This is
again along with the fact that strain-induced gauge fields have
not any AB-type effect which can result in further modulation
of the supercurrent.

When the gauge fields originating from the strain are strong
enough in comparison to the applied magnetic field, another
interesting phenomenon shows up. This new effect is the
appearance of a finite region where the current is almost
suppressed due to the gauge fields, as can be clearly seen
in Fig. 5(d) where a large pseudomagnetic flux �S/�0 =
5 is imposed to the junction. Such behavior is essentially
different from the main trend in Figs. 5(a)–5(c) corresponding
to �S/�B = 0, 1, 3 in which the supercurrent only becomes
slightly squeezed by the pseudomagnetic field in accordance
with the above discussion. A big difference of the new region
with conventional vortex cores is that it has a much sharper
boundary with the region of finite supercurrent as can be seen
from Fig. 5(d). Interestingly the halo region of supercurrent
suppression induced by a large pseudomagnetic field is placed
on top of the junction which has the largest supercurrent
when �S = 0. The origin of new vortex cores is indeed
nothing but the constraint (15) in which by increasing the
anomalous phase χ ′

S from 0 to π/2 the range of effective phase
differences φ̃B = φ − 2χB with contribution in the current de-
creases. Therefore, for a constant phase difference φ, the AB
phase χB or equivalently the trajectories with nonvanishing
current will be constrained. To better illustrate this effect let us
consider the normally incident trajectories (θ = 0) for which
the AB phase is simply χB = π (�B/�0)(y/W ). Then we
can rewrite the constraint due to the strain-induced anomalous
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FIG. 5. Evolution of local current density profile with pseudo-
magnetic field in the presence of a constant magnetic flux �B/�0 =
0.5. While the trend from (a) to (c) indicates that only local cur-
rent becomes more localized and the maximum values increase,
the behavior in the presence of large gauge field (�S/�0 = 5) is
drastically different. In the last situation a big halo appears on the
top of the junction where the supercurrent is almost diminished. The
halo region has sharp boundaries with its surroundings in contrast to
the conventional vortex cores (like the one on the lower edge) where
the current density varies smoothly with the distance from the vortex
center. The other parameters used here are the same as those in Fig. 4.

phase as below:∣∣∣∣cos

(
φ

2
− π

�B

�0

y

W

)∣∣∣∣ � sin

(
π

2kF W

�S

�0

)
. (19)

Invoking the parameters used in Fig. 5(d), one can easily
see that for y/W > 3/4 the above condition is not satisfied.
Therefore all trajectories with θ = 0 and y0 > 3/4 do not
carry a supercurrent which suggests by itself that there must
be a region of strong supercurrent suppression around the
upper edge of the junction. By more detailed analysis of the
other trajectories one can obtain the precise boundary of the
halo region with the surrounding in Fig. 5(d).

So far we have discussed the Josephson vortex formation
in the special geometry of a square-shape junction (W = L)
in which the reflected trajectories from the two graphene
edges also have a substantial contribution to the local currents.
However, it should be mentioned that we are still in the
limit of W,L � Rcyc, so we can ignore any deflection of the
trajectories and particularly there will be no skipping orbits. In
fact, skipping orbits play a crucial role when L > Rcyc which
is the opposite limit of what we are exploring here [49,50]. On
the other hand, for wide junctions (W 
 L), while keeping
the length comparatively smaller than the cyclotron radius, we
can still rely on our semiclassical description and furthermore
the reflected trajectories have a very minor role in these cases.
As we see from Fig. 6, where the local Josephson current
density at the middle of a wide junction with W/L = 5 is
plotted for various strengths of strain-induced gauge fluxes,
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FIG. 6. (a)–(d) Local current density profile inside the mid-
dle portion of a wide junction with W/L = 5 at the presence of
a constant total magnetic flux �B/�0 = 2.5 passing through the
junction and different pseudomagnetic fluxes �S/�0 = 0, 5, 10, 15,
respectively. The portion is extended from y/L = 2 to y/L = 3
along vertical direction while it fills the whole length of the junction
(0 < x/L < 1). Compared to Fig. 5 the current profile is more
localized along the central vertical line but it shows qualitatively
similar behavior by increasing �S as before. It should be noted
that the flux passing through the portion is 1/5 of the total flux
which makes the comparison with those in Fig. 5 reasonable. (f)
Shows the local current throughout the junction when �S/�0 = 0
in correspondence to panel (a). It clearly shows an almost periodic
variation of the current along vertical direction. All other parameters
used here are the same as those in Fig. 5.

almost all the aforementioned features of Josephson vortices
influenced by the pseudomagnetic fields are detained. In fact,
upon increasing �S we see that the local current density be-
comes localized showing enhanced maximum value, besides
the appearance of new vortex cores at larger strain-induced
fluxes. Moreover, comparing the results of Figs. 5 and 6, we
immediately realize that in wide junctions the current profile
and vortices are much more localized along the line x = L/2
at the middle of the junction, yet in the square-shape case
(W ∼ L) the reflected trajectories lead to broadened current
density profiles as described before.

At the end of this part, we examine evolution of the
Fraunhofer patterns with the pseudomagnetic field as depicted
in Fig. 7. In the absence of the gauge field (�S = 0), the
conventional magnetic oscillations of the critical current are
retained. Particularly at the limit of wide junctions W/L 

1, the period of oscillations δ�B is �0 while for narrower
junctions with W/L � 1, it switches to 2�0 in agreement
with previous investigations in SGS and SNS systems [22,47].
When a constant pseudomagnetic or gauge field is present, the
overall behavior of the Fraunhofer pattern remains almost the
same as when it is absent except for an increase in the maxi-
mum current at �B = 0. This result again originates from the
fact that gauge fields do not cause any AB-type oscillation or
modulation of the supercurrent. Returning back to the discus-
sion over the supercurrent density profiles, when the magnetic
field was strong enough to modulate the current and induce
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FIG. 7. Magnetic oscillations of the critical Josephson current
known as Fraunhofer pattern when the graphene junction is sub-
jected to the pseudomagnetic fields of different strengths �S/�0 =
0, 1, 3, 5. Panels (a) and (b) correspond to different width to length
ratios of the junction W/L = 1, 2, respectively. While the maximum
value of the critical current at �B = 0 increases monotonically with
the pseudomagnetic field, its effect is less apparent at larger magnetic
fluxes. By increasing the width of the junction, oscillations become
more regular while aperiodic behavior appears when W � L.

couples of vortices inside the junction, the pseudomagnetic
field leads to squeezed profiles with sharper peaks. So when
we look at the whole critical current passing through the
junction, these details are washed out by integration over the
local current density, a fact that justifies why the Fraunhofer
pattern is not strongly influenced by gauge fields. In other
words, as it has been already seen in our other results in
Sec. III A and Figs. 3 and 5, the effect of gauge fields is very
strong either in the absence of real magnetic fields or when
the real magnetic flux is small, namely �B/�0 � 1.

C. Discussion and experimental relevance

As mentioned in the Introduction, the emergence of gauge
fields due to the strain is a result of its 2D nature as well
as the Dirac character of the quasiparticles. While many
theoretical and experimental investigations have been carried
out to understand and exploit the strain-induced gauge fields
for possible applications, only a few works focused on the

interference phenomena, especially the AB effect due to the
gauge fields. Among them was an interesting proposal made
by de Jaun et al. [12] to observe interference effects due to a
local deformation in the electronic propagation encircling the
strained region. Here we have focused on the graphene-based
superconducting heterostructures and investigated the gauge
field effects on the Josephson current, its density profile, and
magnetic oscillation pattern. As it has been shown above, the
critical Josephson current as well as the local supercurrent
density are qualitatively influenced by the presence of strain-
induced pseudomagnetic fields. It should be mentioned that
the fact that ABSs are formed from time-reversal partners
introduces a fundamental difference between the supercon-
ducting system we are studying and the AB interferometry
scenario in Ref. [12]. Here the AB phases attributed to the
gauge field do not enter in the supercurrent at all and only the
anomalous phase factor χ ′

S which corresponds to pseudospin
rotation governs the underlying physics of our findings. Of
particular importance is that in the SGS junction, the Joseph-
son current is unexpectedly enhanced by strain-induced gauge
fields.

All the predicted features can be possibly tested in future
experiments provided by the validity of some assumptions in
the current work. First of all, the excitations should keep their
phase coherence while propagating throughout the junction.
However this is not an elusive situation to current experimen-
tal devices and phase coherence lengths in SGS systems could
be large enough compared to the junction size [42,43,45,52].
On the other hand, one may truly doubt the validity of our
results at the presence of strong intervalley scatterings which
can mix the electrons (or holes) from the two valleys. But
nowadays very clean samples of suspended graphene can be
manufactured with weak or moderate intervalley scatterings
[53,54]. Therefore the overall experimental feasibility of our
theoretical study is quite high even for the currently available
setups.

IV. CONCLUSIONS

In this work, we have found anomalous quantum inter-
ference effects in graphene-based Josephson junctions sub-
jected to the strain-induced pseudomagnetic fields besides
real magnetic fields. As a key finding, it has been shown
that the Josephson current is enhanced by applying an arc-
shaped strain which gives rise to a constant pseudomagnetic
or gauge field inside the graphene region sandwiched between
superconductors. Such behavior is in complete contrast to the
well-known Fraunhofer pattern of the critical current with
an oscillatory decaying dependence on the magnetic flux.
The fundamental difference between real magnetic fields and
strain-induced gauge fields regarding their symmetries under
time reversal has been proven to be responsible for very differ-
ent effects of magnetic and pseudomagnetic fluxes. We further
have studied the combined effects of both types of fields
simultaneously applied to the graphene Josephson junction.
While the magnetic fields leads to the formation of Josephson
vortices and the Fraunhofer pattern, the presence of gauge
fields results in the squeezing of the local current density in
circular flow patterns. Moreover, it has been revealed that
stronger gauge fields compared to the magnetic fields can
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affect the supercurrent flow pattern more crucially by forming
large vortex cores with almost vanishing current in a finite
region. So, our investigation has revealed unexpected features
of the interference phenomena in graphene-based Josephson
junction due to the strain-induced gauge fields which trigger
further theoretical and experimental studies on the physics of
gauge fields in graphene/superconductor hybrid structures.
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APPENDIX: CALCULATION OF AREA ENCLOSED BY
TRAJECTORIES

Here we calculate the Aharonov-Bohm phase of each
trajectory and give the exact form of the corresponding area
Sy0,θ . By choosing the Landau gauge as A = Byx it is clear
that the line integral of gauge potential along the vertical NS
interfaces as well as the lower edge of the graphene vanishes.
So the contribution of the trajectory C in the line integral is
the same as the corresponding closed loop and can be related
to the area underneath C via Stokes’ theorem,∫

C
d�n · A = BSy0,θ . (A1)

Now in order to calculate Sy0,θ , for a given angle θ and offset
y0, we first determine the position and the number of reflection
points of the trajectory at the two edges. For the sake of

simplicity we divide the discussion to two parts for positive
and negative angles. When 0 < θ < π/2 we have

N =
(

y0 + L tan θ

W

)
, (A2)

xn = (nW − y0) cot θ, 1 � n � N, (A3)

respectively. Then by simple geometry we can obtain the area
for three different cases of N = 0, an even N , and an odd N ,
follows, respectively:

Sy0,θ = Ly0 + L2

2
tan θ, (A4)

Sy0,θ = y0
x1

2
+ W

xN

2
+ (L − xN )2

2
tan θ, (A5)

Sy0,θ = y0
x1

2
+ W

(
L − xN

2

)
− (L − xN )2

2
tan θ. (A6)

Similarly for negative angles (−π/2 < θ � 0) we can
obtain the number of reflections and their x positions:

N =
(

W − y0 + L| tan θ |
W

)
, (A7)

xn = [(n − 1)W + y0]| cot θ |, 1 � n � N. (A8)
Subsequently, the area for N = 0, an even N , and an odd N

when θ is negative angles can be obtained as

Sy0,θ = Ly0 − L2

2
| tan θ |, (A9)

Sy0,θ = (y0 − W )
x1

2
+ W

xN

2
+ (L − xN )2

2
| tan θ |, (A10)

Sy0,θ = (y0 − W )
x1

2
+ W

(
L − xN

2

)
− (L − xN )2

2
| tan θ |,

(A11)

respectively.
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L. Bessa, M. V. Milošević, F. Debontridder, V. Stolyarov, and
T. Cren, Nat. Phys. 11, 332 (2015).

[22] U. Ledermann, A. L. Fauchère, and G. Blatter, Phys. Rev. B 59,
R9027(R) (1999).

[23] V. P. Ostroukh, B. Baxevanis, A. R. Akhmerov, and C. W. J.
Beenakker, Phys. Rev. B 94, 094514 (2016).

[24] C. W. J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006).
[25] M. Titov and C. W. J. Beenakker, Phys. Rev. B 74, 041401

(2006).
[26] S. Bhattacharjee and K. Sengupta, Phys. Rev. Lett. 97, 217001

(2006).
[27] A. G. Moghaddam and M. Zareyan, Appl. Phys. A 89, 579

(2007).
[28] J. Linder, T. Yokoyama, D. Huertas-Hernando, and A. Sudbø,

Phys. Rev. Lett. 100, 187004 (2008).
[29] A. G. Moghaddam and M. Zareyan, Phys. Rev. B 78, 115413

(2008).
[30] C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
[31] I. Hagymási, A. Kormányos, and J. Cserti, Phys. Rev. B 82,

134516 (2010).
[32] B. Z. Rameshti, M. Zareyan, and A. G. Moghaddam, Phys. Rev.

B 92, 085403 (2015).
[33] H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M.

Vandersypen, and A. F. Morpurgo, Nature (London) 446, 56
(2007).

[34] X. Du, I. Skachko, and E. Y. Andrei, Phys. Rev. B 77, 184507
(2008).

[35] C. Girit, V. Bouchiat, O. Naaman, Y. Zhang, M. F. Crommie,
A. Zettl, and I. Siddiqi, Nano Lett. 9, 198 (2009).

[36] C. Ojeda-Aristizabal, M. Ferrier, S. Guéron, and H. Bouchiat,
Phys. Rev. B 79, 165436 (2009).

[37] I. V. Borzenets, U. C. Coskun, S. J. Jones, and G. Finkelstein,
Phys. Rev. Lett. 107, 137005 (2011).

[38] G.-H. Lee, D. Jeong, J.-H. Choi, Y.-J. Doh, and H.-J. Lee, Phys.
Rev. Lett. 107, 146605 (2011).

[39] U. C. Coskun, M. Brenner, T. Hymel, V. Vakaryuk, A.
Levchenko, and A. Bezryadin, Phys. Rev. Lett. 108, 097003
(2012).

[40] N. Mizuno, B. Nielsen, and X. Du, Nat. Commun. 4, 2716
(2013).

[41] J.-H. Choi, G.-H. Lee, S. Park, D. Jeong, J.-O. Lee, H.-S. Sim,
Y.-J. Doh, and H.-J. Lee, Nat. Commun. 4, 2525 (2013).

[42] V. E. Calado, S. Goswami, G. Nanda, M. Diez, A. R. Akhmerov,
K. Watanabe, T. Taniguchi, T. M. Klapwijk, and L. M. K.
Vandersypen, Nat. Nanotechnol. 10, 761 (2015).

[43] M. B. Shalom, M. J. Zhu, V. I. Fal’ko, A. Mishchenko, A.
V. Kretinin, K. S. Novoselov, C. R. Woods, K. Watanabe, T.
Taniguchi, A. K. Geim, and J. R. Prance, Nat. Phys. 12, 318
(2016).
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