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The last two decades have witnessed various experiments reporting very unusual magnetic properties of
ensembles of gold nanoparticles surrounded by organic ligands, including ferromagnetic, paramagnetic, or
(large) diamagnetic responses. These behaviors are at odds with the small diamagnetic response of macroscopic
gold samples. Here we theoretically investigate the possibility that the observed unusual magnetism in capped
gold nanoparticles is of orbital origin. Employing semiclassical techniques, we calculate the orbital component to
the zero-field susceptibility of individual as well as ensembles of metallic nanoparticles. While the result for the
orbital response of individual nanoparticles can exceed by orders of magnitude the bulk Landau susceptibility in
absolute value, and can be either diamagnetic or paramagnetic depending on nanoparticle size, we show that the
magnetic susceptibility of a noninteracting ensemble of nanoparticles with a smooth size distribution is always
paramagnetic at low magnetic fields. In particular, we predict that the zero-field susceptibility follows a Curie-
type law for small nanoparticle sizes and/or low temperatures. The calculated field-dependent magnetization of
an ensemble of diluted nanoparticles is shown to be in good agreement with existing experiments that yielded a
large paramagnetic response. The width of the size distribution of the nanoparticles is identified as a key element
for the quantitative determination of the orbital response.
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I. INTRODUCTION

Due to their small size, metallic nanoparticles show spec-
tacular quantum effects that are absent in the bulk. Most of
these effects stem from the confinement of the electronic
eigenstates, which is important because of the relatively
large surface-to-volume ratio in particles with nanometric
sizes [1,2]. The most striking evidence of the quantization of
the electronic states in metallic nanoparticles is the electronic
shell structure, first observed by Knight et al. in 1984 [3].
The resulting size effects show up in many of the physical
properties of metallic clusters, e.g., in their abundance spectra,
static dipole polarizabilities, ionization potentials, and optical
properties [4,5].

An aspect that attracted considerable attention over the last
two decades is the very unusual magnetic behavior of gold
nanoparticles. Indeed, while bulk gold is diamagnetic, several
experiments have shown that ensembles of gold nanoparticles
capped with organic ligands can present a ferromagneticlike
behavior of the magnetization, up to room temperature or
above [6–16]. Other samples show a paramagneticlike be-
havior [11,12,16–22] and some others a diamagnetism which
is typically stronger than in the bulk [6,8,11,19,23]. Since
the experimentally-reported magnetic moments are in general
very small, great attention has been paid to avoid spurious
sources of magnetism in the measurements [7,24]. The re-
views of Refs. [25,26] describe the different magnetic prop-
erties that change from sample to sample, as well as the un-
derlying mechanisms which are at present a source of debate.

Several mechanisms have been put forward to explain the
intriguing magnetic properties of gold nanoparticles. It was
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proposed that the ferromagnetic response could result (i) from
the formation of covalent bonds between the atoms residing
at the surface of the nanoparticle and the ligands around
it [6], (ii) from the surface atoms alone and the resulting
Fermi-hole effect [19,20], or (iii) from giant electron orbits
circling around single domains of ligands [27]. Moreover, su-
perconducting fluctuations that persist at temperatures which
are orders of magnitude above the critical temperature were
shown to result in a large diamagnetic response [28], which
is still one to two orders of magnitude smaller than the
one reported in the experiments of Ref. [23]. These above-
mentioned interpretations do not seem to explain all of the
observed experimental features and are thus challenged in
the literature [25,26]. Moreover, the role of the molecules
surrounding the nanoparticles in most experiments is not
clear [25], and ferromagnetism in bare gold nanoparticles has
also been reported [29].

An alternative interpretation of the unusual magnetic prop-
erties of ensembles of gold nanoparticles, proposed by Gréget
et al. [30], suggests that it arises from the orbital compo-
nent of the electron wave function. Orbital magnetism is a
purely quantum-mechanical effect, as stated by the Bohr-van
Leeuwen theorem [31,32]. First studied by Landau in bulk
electron gases [33,34], the corresponding susceptibility χL

equals a third of the Pauli paramagnetic spin susceptibility
(with opposite sign), and, hence, is difficult to measure. The
effect of confining the electron system to a finite volume
introduces a new energy scale in the problem (the mean level
spacing) and leads to modifications of the Landau susceptibil-
ity. The investigation of these finite-size corrections included
experiments on small metal clusters and different theoretical
approaches [35–38].

The diversity of the experimentally-observed behaviors
recapitulated in Refs. [25,26], as well as the distinct
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theoretical proposals, calls for a systematic study of the
magnetic properties of gold nanoparticles. Toward this goal,
we develop a theory to ponder the applicability of the or-
bital magnetism proposal to account for the experimental
results. In particular, we seek to identify the relevant pa-
rameters of the problem, focusing on the temperature and
size dependences of the magnetization and establishing in
which cases a comparison with the experimental data can be
attempted.

Our study of orbital magnetism in metallic nanoparticles
builds on previous works done in the mesoscopic regime of
systems small enough and/or sufficiently cooled down to ex-
hibit the effects of quantum coherence. Orbital magnetism has
been experimentally and theoretically studied in this regime
for the cases of singly- and multiply-connected geometries.
In the latter case, when a magnetic flux pierces a metallic
[39,40] or semiconducting [41] ring, the orbital response
translates into a dissipationless persistent current [42]. When
the unavoidable disorder present in these systems becomes
weak enough to result in an elastic mean free path of the order
of the sample size, the transition from a diffusive to a ballistic
regime is achieved. The sustained theoretical interest in the
problem of persistent currents during the 1990’s clarified
the role of disorder, electron-electron interactions, and the
consequences of a finite number of electrons determining the
thermodynamic functions. The use of the canonical ensemble
appeared as unavoidable [43,44] and a proper treatment of
electron-electron interactions leads to an orbital response of
the same order of magnitude as that of noninteracting systems,
in both the diffusive [45–47] and the ballistic cases [48].
Later experiments [49], using a nanomechanical detection of
persistent currents in normal-metal rings, have validated the
results of such mean-field theories.

In the case of singly-connected geometries, the magnetic
susceptibility of an ensemble of two-dimensional quantum
dots has been experimentally [50] and theoretically [51–53]
studied. In the ballistic regime, a semiclassical approach made
it possible to obtain the orbital response from the magnetic
field dependence of the density of states induced by the
accumulated flux of the periodic classical trajectories. Inter-
esting differences were predicted according to the chaotic or
integrable nature of the two-dimensional underlying classical
dynamics determined by the shape of the quantum dot bound-
aries. The orbital contribution to the magnetic susceptibility
in an integrable dot can be diamagnetic or paramagnetic and
with typical values which are orders of magnitude larger
than the two-dimensional Landau susceptibility [52]. Chaotic
dynamics results in somehow smaller values of the suscep-
tibility [54]. When moving from a single quantum dot to an
ensemble of dots, the average magnetic susceptibility was
shown to be paramagnetic and smaller than the typical values
of the individual case but still much larger than the bulk value
[53]. Similarly to the case of persistent currents, the inclu-
sion of weak disorder [55,56] or electron-electron interac-
tions [57] did not considerably alter the clean, noninteracting
results.

Based on analytical semiclassical methods, together with
numerical calculations, the mesoscopic approach presented
in this paper allows us to show that the orbital response
of an individual nanoparticle can be exceedingly large as

compared to the bulk and either diamagnetic or paramagnetic
depending on its size and/or Fermi level. In contrast, the
orbital susceptibility of a statistically-distributed (in size)
ensemble of nanoparticles is always paramagnetic at low
magnetic fields in the absence of interactions between the
nanoparticles, provided the size distribution is smooth and
not too narrow. In particular, we predict that the zero-field
susceptibility follows a Curie-type law for small nanoparticle
sizes and/or low temperature. We further calculate the field-
dependent magnetization of individual as well as ensembles
of nanoparticles and show that the latter results are in good
agreement with existing experiments which measured a large
paramagnetic response.

The paper is organized as follows: Section II is devoted
to the presentation of our model. In Sec. III, we recall the
semiclassical thermodynamic formalism that we use to evalu-
ate the grand-canonical component of the magnetic response
of individual nanoparticles (Sec. IV) and of ensembles of
noninteracting nanoparticles with a size distribution (Sec. V).
Section VI deals with the magnetic response of individual
nanoparticles when canonical corrections are taken into ac-
count. In Sec. VII, we discuss the relevance of our theoretical
work toward the understanding of existing experiments. We
finally conclude in Sec. VIII. The appendixes present some
details of our quantum (Appendix A) and semiclassical cal-
culations (Appendixes B and C) and the basis of a possible
extension of our model taking into account the long-ranged
dipolar interaction between the nanoparticles of the ensemble
(Appendix D).

II. NANOPARTICLE MODELING

The variety of results obtained by previous works in the
rich problem at hand arise from the multiplicity of experi-
mental conditions and the wide window over which crucial
physical parameters can be varied. In turn, the difficulties of
the theoretical descriptions are a consequence of the previous
diversity of setups and the necessary simplifying hypotheses
to render the problem tractable. We start this section by clar-
ifying the working assumptions of our theoretical approach,
while identifying the key physical parameters and their range
of variation.

We assume spherical nanoparticles with radius a between
a few nanometers and a few tens of nanometers. The not
too small sizes to be considered permit us to ignore the
detailed geometrical shape of the cluster [5] and allow us
to use a semiclassical description [58,59], since for metallic
nanoparticles we have kFa � 1 (with kF the Fermi wave
vector). We choose to work with gold nanoparticles, since
this is the case most thoroughly studied in the literature.
However, a large part of our results are generic for any noble
metal.

The effect of the ionic background is taken into account
through the use of the jellium approximation [5]. In addition,
we treat the electron-electron interactions at mean-field level.
The resulting self-consistent potential is approximated by a
spherical well with hard walls, thus neglecting the spill-out
of electrons outside of the nanoparticle and the smoothness
of the confining potential. The nanoparticles are then as-
sumed to be large enough to ignore the effect of electronic
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correlations (which were shown to weakly contribute to the
orbital response of disordered [45] and ballisitic [57] samples)
and, at the same time, smaller than the elastic mean-free path,
such that disorder effects can be disregarded.

By only describing a spin-degenerate s band, we ignore
the specificities of the electronic structure of noble metals, as
well as the spin-orbit coupling. The calculated band structure
of bulk gold indicates that the valence electrons can indeed be
approximately treated as s electrons with a parabolic disper-
sion [60] and an associated effective mass which is close to
the bare electron mass. Moreover, the spin-orbit coupling has
been shown not to qualitatively affect the magnetic response
of arrays of metallic rings [61], and this is why we neglect
such a coupling.

The Zeeman spin splitting under a magnetic field results,
in the metallic case, in the Pauli susceptibility χP = −3χL.
Since the mesoscopic corrections to the bulk result have been
shown to be negligible [51], and since the observed effects
on the zero-field susceptibility are typically much larger than
|χL|, we do not consider in this work the spin effects beyond
the trivial degeneracy factor.

The ligands surrounding the nanoparticles are assumed
not to play a role for the orbital magnetic response. Such a
hypothesis has been challenged under the effect of particular
ligands [6,11,20,22], but it is generally accepted for a whole
class of other protective agents [19,25,26].

The experiments are typically performed with macroscopic
samples exhibiting a statistical dispersion of the radius a of
the individual nanoparticles. The probability density P (a)
characterizing such a distribution is a crucial element in
determining the magnetic response of an ensemble of metallic
nanoparticles. Often, a Gaussian probability distribution can
be a good approximation to the experimentally observed size
distribution [9,30,62]. However, other distributions, like bi-
modal [6] or log-normal [8,20,22], can be obtained, depending
on the fabrication procedure. In addition, shell effects result in
selective abundance spectra [3,4] and might thus lead to sharp
singly- or multiply-peaked size distributions.

The nanoparticle concentration, and the related interpar-
ticle distance, is one of the important parameters of the
problem. We will consider the case of diluted samples, where
the interparticle interaction can be neglected. Temperature is
another important parameter, that in the experiments is usually
varied from cryogenic to room temperature, and we will
explore the temperature dependence of the magnetic response
in this large span in order to make the connection with the
experimental work. In addition, diverse average nanoparticle
sizes and size dispersions are typically encountered in exper-
iments, and we show that these two parameters are crucial
for quantitatively interpreting the experimental data which
present a large paramagnetic response.

Now that the assumptions used in this work have been
stated and justified, we proceed with the presentation of our
model and its Hamiltonian. Each spherical nanoparticle con-
tains N valence electrons with charge −e < 0 and effective
mass m. The nanoparticles are subject to an external, static,
and homogeneous magnetic induction B = ∇ × A, with A
the associated vector potential. Within the jellium approxi-
mation [5], the Hamiltonian for the valence electrons in an
individual nanoparticle (located at the coordinate origin) reads

in cgs units

H =
N∑

i=1

{
1

2m

[
pi + e

c
A(ri )

]2
+ U (ri )

}

+ 1

2

N∑
i, j=1
(i �=j )

V (ri , rj ). (1)

Here, c is the speed of light, while ri and pi are the position
and momentum of the ith electron, respectively. In Eq. (1),
U denotes the spherically-symmetric single-particle confine-
ment, which, for a nanoparticle in vacuum, reads as

U (r ) = Ne2

2a3
(r2 − 3a2)�(a − r ) − Ne2

r
�(r − a), (2)

i.e., it is harmonic inside the nanoparticle and Coulombic
outside. In Eq. (2), �(z) denotes the Heaviside step function.
Finally, V represents in Eq. (1) the Coulomb interaction
amongst electrons in the nanoparticle. In the symmetric gauge
where A(r) = 1

2 B × r, and choosing the z axis of the coordi-
nate system in the direction of B, the Hamiltonian (1) can be
rewritten in the form

H =
N∑

i=1

[
p2

i

2m
+ U (ri ) + ωc

2
lz,i + mω2

c

8

(
x2

i + y2
i

)]

+ 1

2

N∑
i, j=1
(i �=j )

V (ri , rj ), (3)

where ωc = eB/mc is the cyclotron frequency, B = B ẑ, and
lz denotes the z component of the angular momentum.

In the sequel of the paper, we treat the electron-electron
interactions appearing in the Hamiltonian (3) within the
mean-field approximation. Density functional theory calcu-
lations [63,64] indicate that, in the absence of a magnetic
field, the self-consistent mean-field potential can be approx-
imated by Vmf (r ) = V0�(r − a) where V0 = EF + W , with
EF and W the Fermi energy and the work function of the
considered nanoparticle, respectively. One expects that the
spherical well shape of the mean-field potential remains a
good approximation in the presence of a magnetic field,
provided that h̄ωc, the energy scale set by the magnetic field,
is the smallest one of the problem (for a normal metal, h̄ωc =
0.012B μeV/G) [65,66]. Moreover, as the magnetization is a
property of the many-body ground state, it involves one-body
states up to the vicinity of the Fermi level [67]. Thus, states
that are higher in energy do not contribute to the magne-
tization. We can then safely assume that the height of the
mean-field potential V0 → ∞. Within these approximations,
we are left with the effective mean-field Hamiltonian

Hmf =
N∑

i=1

[
p2

i

2m
+ Vmf (ri ) + ωc

2
lz,i + mω2

c

8

(
x2

i + y2
i

)]
(4)

corresponding to N independent electrons in a spherical bil-
liard threaded by a static magnetic induction in the z direction.

It is important to realize that any realistic magnetic fields
that are experimentally available are such that the classical tra-
jectories of the electrons in the spherical billiard are very close
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to straight lines on the scale of the nanoparticle diameter. In
other words, the corresponding cyclotron radius Rc = vF/ωc

(vF is the Fermi velocity) is much larger than the size of the
nanoparticles we consider [68].

The cylindrical symmetry of the magnetic-field dependent
Hamiltonian (4) greatly facilitates its quantum-mechanical
resolution. Furthermore, if we are only interested in the
weak-field magnetic response, a perturbative approach can be
implemented. Such a scheme has been successfully used in
order to explain the magnetic response of very small metal
clusters [35–37]. In our case, it is important to develop simpler
approaches than the quantum calculation, toward treating
larger cluster sizes, efficiently incorporating the restriction
of a fixed number of electrons within the nanoparticles and
calculating the thermodynamic functions at finite temperature.
All of these important features of the problem at hand are
readily incorporated within the semiclassical thermodynamic
formalism presented in the next section.

III. SEMICLASSICAL THERMODYNAMIC FORMALISM
FOR NONINTERACTING NANOPARTICLES

Here, we briefly recall the semiclassical formalism for
evaluating the orbital susceptibility of finite-size ballistic sys-
tems (for a review, see Ref. [53]). The semiclassical approach
relies on the expansion of the density of states of the system
to lowest order terms in (reduced) Planck’s constant h̄, which
is a good approximation when h̄ is much smaller than the
action corresponding to the underlying classical trajectories
[58,59]. Such a condition is fulfilled since kFa � 1 for the
nanoparticle sizes we consider [68].

For an individual nanoparticle with a fixed number of elec-
trons N and at a temperature T , the field-dependent magnetic
moment M and the zero-field susceptibility χ are given by
the change of the free energy F (N, T ,H ) with respect to the
magnetic field H = B − 4πM (M = M/V is the nanoparti-
cle magnetization, with V = 4πa3/3 its volume) as

M = − ∂F

∂H
(5)

and

χ = − 1

V
∂2F

∂H 2

∣∣∣∣
H=0

, (6)

respectively [69]. The use of the canonical ensemble is needed
in order to ensure a constant number of conduction electrons
in each nanoparticle and turns out to be crucial to obtain non-
vanishing quantities once an ensemble average is performed
[43–47]. It is however possible and technically easier to work
within the grand canonical ensemble with fixed chemical
potential μ, where the thermodynamic potential takes the
form

�(μ, T ,H ) = −kBT

∫ ∞

0
dE ρ(E,H ) ln (1 + eβ(μ−E) ), (7)

with β = 1/kBT the inverse temperature. The crucial quantity
entering the expression of the grand canonical potential (7) is
the field-dependent single-particle density of states ρ(E,H ),
which, in a semiclassical expansion [58,59,70–73], is

decomposed into a mean and an oscillating (in energy) part,
ρ(E,H ) = ρ0(E) + ρosc(E,H ).

For temperatures such that kBT is larger than the typical
level spacing, ρosc can be considered as a continuous function
of E, and the free energy

F (N, T ,H ) = �(μ, T ,H ) + μN (8)

admits in the semiclassical limit the decomposition
[44,45,52,53]

F (N ) � F 0 + �F (1) + �F (2), (9)

where

F 0 = �0(μ0) + μ0N, (10)

�F (1) = �osc(μ0), (11)

and

�F (2) = 1

2ρ0(μ0)

[∫ ∞

0
dE ρosc(E,H )f (E)

]2

. (12)

In Eqs. (10) and (11), �0 and �osc are defined by using
ρ0 and ρosc instead of ρ in Eq. (7), while the mean chem-
ical potential μ0 is determined in such a way that the total
number of electrons is N = ∫∞

0 dE ρ0(E)f (E), with f (E) =
{exp (β[E − μ0]) + 1}−1 the Fermi-Dirac distribution. The
decomposition (9) results from a second-order expansion of
Eq. (8) in μ − μ0. In order to simplify the notation, we have
only indicated the N dependence of F and the μ dependence
of �, leaving implicit the T and H dependences of both
thermodynamic functions.

Approximating the typical level spacing by the inverse of
the average density of states

ρ0(E) = 2
√

E

3πE
3/2
0

(13)

taken at the Fermi energy, the condition for the previous
approach to be valid is (T/TF)(kFa)3 � 1, with TF the Fermi
temperature. In Eq. (13), we defined the energy scale E0 =
h̄2/2ma2, and a multiplicative factor of 2 takes into account
the electronic spin degeneracy.

Since, to leading order in h̄, the average density of states
(13) corresponds to the phase-space volume [58,59], it does
not depend on the magnetic field, in agreement with the
Bohr-van Leeuwen theorem [31,32]. Therefore, F 0 as given
in Eq. (10) does not contribute to the magnetization at this
level of approximation. However, higher-order terms in the
h̄ expansion of ρ0 are field dependent and give rise to the
three-dimensional diamagnetic Landau susceptibility χL =
−e2kF/12π2mc2, as can be shown even for constrained ge-
ometries [53] (χL = −2.9 × 10−7 for gold). Equation (11)
yields a field-dependent term in the expansion (9) resulting
in the magnetic susceptibility χ (1) that would be obtained in
the grand-canonical ensemble if the chemical potential were
μ0. Equation (12) represents the “canonical” correction to the
free energy and leads to an additional contribution χ (2) to the
magnetic susceptibility.

The oscillating part of the density of states correspond-
ing to the spectrum of the mean-field Hamiltonian (4), to
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2ϕνη

(1, 3) (1, 4) (1, 5)

(2, 5) (2, 7) (3, 7)

FIG. 1. Example of families of classical periodic orbits on an
equatorial plane of the sphere labeled by the topological indexes
(ν, η), with ν the winding number and η the number of bounces.

first nonvanishing order in the magnetic field-dependent ratio
a/Rc � 1, reads [65]

ρosc(E,H ) = 4

E0

√
ka

π

∞∑
ν=1

∞∑
η=2ν+1

(−1)ν cos ϕνη sin3/2 ϕνη√
η

× cos (θνη(k))j0(2πφνη/φ0). (14)

Here, k = √
2mE/h̄ and j0(z) = sin z/z is the zeroth order

spherical Bessel function of the first kind. The topological
indexes (ν, η) label the families of classical periodic orbits
lying on the equatorial plane of the sphere, with ν the number
of turns around the center (i.e., the winding number) and η

the number of specular reflections at the boundary (i.e., the
number of bounces) [74]. The quantity ϕνη = πν/η corre-
sponds to half the angle spanned between two consecutive
bounces (see Fig. 1). The length of the trajectory (ν, η) is
given by Lνη = 2ηa sin ϕνη. We further defined in Eq. (14) the
k-dependent phase θνη(k) = kLνη + π/4 − 3ηπ/2, the flux
φνη = HAνη enclosed by the orbit (ν, η) covering the area
Aνη = 1

2ηa2 sin (2ϕνη ), as well as the flux quantum φ0 =
hc/e. Note that for the small induced fields that we encounter,
B ≈ H .

To leading order in kFa � 1, the use of Eq. (14) in Eq. (11)
yields

�F (1) = 4EF

√
kFa

π

∞∑
ν=1

∞∑
η=2ν+1

(−1)ν cos ϕνη

η5/2
√

sin ϕνη

×R(Lνη/LT ) cos (θνη(kF))j0(2πφνη/φ0). (15)

In the above expression, the thermal factor

R(L/LT ) = L/LT

sinh (L/LT )
(16)

arises from the energy integration and exponentially sup-
presses the zero-temperature contribution of each family of
trajectories with length L according to the ratio L/LT , where
LT = h̄vF/πkBT is the thermal length. In a similar fashion,
the energy integral of Eq. (12) leads to the second-order

correction

�F (2) = 12EF

⎡
⎣ ∞∑

ν=1

∞∑
η=2ν+1

(−1)ν cos ϕνη

√
sin ϕνη

η3/2

× R(Lνη/LT ) sin (θνη(kF))j0(2πφνη/φ0)

]2

. (17)

In evaluating Eqs. (11) and (12), we identified μ0 with EF, ne-
glecting the temperature correction to the chemical potential
which is of order (T/TF)2 � 1.

The canonical correction (17) to the free energy is an
order

√
kFa lower than the grand-canonical contribution (15).

The condition �F (2) � |�F (1)|, on which the validity of the
decomposition (9) is based, then reposes on a more strin-
gent constraint than that of the semiclassical approximation
(kFa � 1). The fulfillment of the condition �F (2) � |�F (1)|
translates into |χ (2)| � |χ (1)| for sufficiently large kFa, but
the previous inequality might not hold for moderate values
of kFa (in the same way as we may have |�F (1)| � F 0 and
|χ (1)| � |χL|). When |χ (2)| � |χ (1)|, the orbital response of
an individual nanoparticle is then dominated by the grand-
canonical contribution. However, as we will see, in certain
cases the latter may become negligible once the average over
an ensemble of nanoparticles is performed. Thus, Eq. (17)
is crucial to obtain nonvanishing quantities for the resulting
magnetic response of an ensemble of noninteracting nanopar-
ticles with an important size dispersion (see Sec. V).

Using the leading-in-h̄, field-dependent contribution (15)
to the free energy, the grand-canonical contribution to the
magnetic moment [see Eq. (5)] is given by the semiclassical
expression

M(1)

μB
= − 4√

π
(kFa)5/2

∑
ν>0
η>2ν

(−1)ν cos2 ϕνη

√
sin ϕνη

η3/2

× R(Lνη/LT ) cos (θνη(kF))j ′
0(2πφνη/φ0) (18)

in terms of the Bohr magneton μB = eh̄/2mc. Here, j ′
0(z)

denotes the derivative of j0(z) with respect to z. The corre-
sponding zero-field susceptibility is [38]

χ (1)

|χL| = 6
√

π (kFa)3/2
∑
ν>0
η>2ν

(−1)ν cos3 ϕνη sin3/2 ϕνη√
η

× R(Lνη/LT ) cos (θνη(kF)). (19)

Similarly, from Eq. (17) we obtain the semiclassical ex-
pressions for the canonical contribution to the magnetic
moment

M(2)

μB
= − 24(kFa)2

∑
ν>0
η>2ν

∑
ν ′>0

η′>2ν ′

F ν ′η′
νη

η cos ϕνη sin ϕνη

× R(Lνη/LT )R(Lν ′η′/LT )

× sin (θνη(kF)) sin (θν ′η′ (kF))

× j ′
0(2πφνη/φ0)j0(2πφν ′η′/φ0) (20)

195417-5



GÓMEZ VILORIA, WEICK, WEINMANN, AND JALABERT PHYSICAL REVIEW B 98, 195417 (2018)

and the zero-field susceptibility

χ (2)

|χL| = 36πkFa
∑
ν>0
η>2ν

∑
ν ′>0

η′>2ν ′

F ν ′η′
νη

× R(Lνη/LT )R(Lν ′η′/LT )

× sin (θνη(kF)) sin (θν ′η′ (kF)). (21)

In Eqs. (20) and (21) we have defined

F ν ′η′
νη = (−1)ν+ν ′

η1/2η′−3/2 cos3 ϕνη cos ϕν ′η′

× sin5/2 ϕνη sin1/2 ϕν ′η′ . (22)

In the following sections we will evaluate the previous semi-
classical expressions in different parameter regimes.

IV. GRAND-CANONICAL MAGNETIC RESPONSE

The grand-canonical sums (18) and (19) over the topo-
logical indexes can be readily evaluated numerically since
the thermal factor (16) acts as a cutoff for long trajectories,
keeping us away from the typical convergence problems of
semiclassical expansions. At the practical level, we perform
the sums by only retaining trajectories that are shorter than
10LT , and since the sum over η converges relatively fast (the
summand decreases as 1/η2 when η � ν), we perform it up to
ηmax = 100ν (for a given ν). We have checked that including
trajectories with larger ν and/or η does not lead to significant
changes in the final results.

The zero-field susceptibility (19) is shown in Fig. 2 as a
blue solid line as a function of the size a for a temperature
T/TF = 5 × 10−3 that approximately corresponds to room

temperature [68]. As can be seen from the figure, χ (1) oscil-
lates and changes sign as a function of kFa. Moreover, the
magnetic susceptibility can take values that are much larger
than the magnitude of the Landau value |χL|. Depending
on the nanoparticle size, large paramagnetic or diamagnetic
responses can be obtained. The rapidly oscillating behavior of
the zero-field susceptibility as a function of the sphere radius
stems from the dependence of the density of states on the
action of the dominant periodic orbits. A similar behavior has
been found in two dimensions [52,53], and also the prefactor
(kFa)3/2 of χ (1) in Eq. (19) is in line with the two-dimensional
case. The beating pattern present in the susceptibility χ (1) is
due to interferences between periodic trajectories of different
length. The overall amplitude of these beatings decays for
the largest sizes due to the thermal factor (16) appearing in
Eq. (19), such that limkFa→∞ χ (1) = 0. Within this limit, one
thus recovers the Landau bulk susceptibility χL for the total
orbital susceptibility of the system.

That the result of the semiclassical sum (19) with the
above-explicited approximations gives a good account of the
quantum results can be checked in the parameter range acces-
sible to both approximations (compare the blue and black lines
in Fig. 2, which are almost indistinguishable on this large-
scale figure, and the violet and orange lines in Fig. 3). The
perturbative quantum calculation (to second order in the mag-
netic field), limited to small clusters and low temperatures,
results from a numerical evaluation over the eigenstates of the
unperturbed problem [35,37] (see Appendix A for details).

While the previous agreement is not surprising, given
that Fig. 2 presents results in the semiclassical limit kFa �
1 for high (room) temperature, Fig. 3 shows that at low
temperatures (T/TF = 5 × 10−4) the semiclassical sum (19)
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FIG. 2. Grand-canonical zero-field susceptibility χ (1), in units of the absolute value of the Landau susceptibility χL, as a function of the
radius a (scaled with the Fermi wave vector kF). Blue line: semiclassical result from Eq. (19). Black line: quantum-mechanical result from
Eq. (A5). In the figure, room temperature (T/TF = 5 × 10−3) is chosen and χ = 0 is indicated by the dashed gray line.
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olet line). The quantum-mechanical result (A5) (black line: T/TF =
5 × 10−3; orange line: T/TF = 5 × 10−4) and approximate semiclas-
sical result (23) for T/TF = 5 × 10−4 (green line) are shown for
comparison purposes.

also reproduces the quantum result (A5). The paramagnetic
peaks, with values that exceed the Landau susceptibility by
orders of magnitude, are observed at the eigenenergies of
the unperturbed system, while the negative (diamagnetic)
background is given by the small quadratic (in magnetic field)
contribution represented by the last term on the right-hand
side of Eq. (A5). Although not visible on the scale of Fig. 3,
the diamagnetic background increases with kFa due to the
incorporation of more states in the sums as the Fermi energy
increases. The dependence of the energy levels on the applied
magnetic field discussed in Appendix A and shown in Fig. 12
allows for an understanding of the peak structure in the
susceptibility that is found at low temperatures (see Fig. 3).
The positive curvature of the individual levels yields the dia-
magnetic background that becomes stronger when more levels
are occupied. The crossings of levels with different magnetic
quantum number at zero applied field translate in a diverging
negative curvature of the total energy and a corresponding
paramagnetic peak when the chemical potential coincides
with such a level crossing. Temperature smears the peaks and
limits their height due to admixtures of contributions from
neighboring levels. The rapid oscillations of the susceptibility
found at room temperature as a function of the chemical
potential and/or sphere radius are the remainders of that peak
structure. It is remarkable that a semiclassical expansion like
that of Eq. (19) is able to reproduce signatures characteristic
of individual eigenenergies. We notice, however, that each
energy represents 2(2l + 1) degenerate unperturbed states,
with l the angular momentum quantum number, and that
very long trajectories have to be included in the semiclassical
calculation to approach the quantum result of Fig. 3.

The semiclassical sum (19) may be challenging to
implement at low temperature, due to the non-negligible
contribution from very long trajectories to χ (1). It is then
useful to further develop the semiclassical expansion (19)
by an approximate analytical calculation. Such a calculation,
presented in Appendix B, relies on trading the thermal factor
(16) by a Heaviside function that limits the contributing

trajectories to the maximal length Lmax = αLT and
performs the ν sum by Poisson summation rule,
followed by a stationary-phase approximation. The
cutoff length Lmax is chosen as that in which the
thermal factor (16) presents the maximum derivative,
yielding α � 1.6. When the thermal factor is replaced
by �(Lmax − Lνη ), such a value of α yields at low
temperature results for χ (1) in excellent agreement with the
original expression (19). The resulting magnetic susceptibility
is then given in the limit kFa

T
TF

� 1 (keeping kFa � 1) by

χ (1)

|χL| � 3

4(kFa)2

∞∑
η=3

jmax∑
j=jmin
(j odd)

j 3

√
1 −

(
j

2kFa

)2

cos(ηSj ), (23)

where the phase factor Sj , which corresponds to the (dimen-
sionless) radial action, is defined as

Sj =
√

(2kFa)2 − j 2 − j arccos

(
j

2kFa

)
− 3π

2
. (24)

In Eq. (23), the summation over j (which must be an
odd integer) depends on the value of η. For 3 � η � ηc,
with ηc = αLT /2a = (α/π )(kFa

T
TF

)−1, we have jmin = 1 and
jmax = �2kFa cos ϑη� with ϑη = π/2η if η is odd and jmin =
2kFa sin ϑη� and jmax = �2kFa cos ϑη� if η is even. For
η > ηc, we have jmin = 2kFa cos (arcsin (ηc/η) + ϑη )� and
jmax = �2kFa cos ϑη�. Here, �x� and x� denote the floor and
ceiling functions, respectively.

The sum (23) is considerably simpler to implement, as
compared with that of Eq. (19), and gives rather accurate
results for low temperatures and/or small nanoparticle sizes
(see the green line in Fig. 3). For high temperatures, the
sharp cutoff imposed when L > Lmax is a too restrictive
approximation that ignores the exponential fall off of the
thermal factor (16), and the previous agreement deteriorates.
Nevertheless, in this regime the evaluation of Eq. (19) is again
simple, since we only need to include the contribution of
the shortest trajectories with a winding number of ν = 1 and
the appropriate exponential fall off resulting from R(L1η/LT )
(results not shown).

The grand-canonical finite-field magnetization according
to the semiclassical expression (18) is presented in Fig. 4 as
a function of the cyclotron frequency ωc ∝ H (blue lines).
The range of h̄ωc/EF corresponds to realistic values of the
magnetic field that are at present experimentally available
(for Au, h̄ωc/EF = 10−3 corresponds to a field of the or-
der of H = 45 × 104 Oe). The different slopes at the origin
obtained for the selected values of a are in line with the
rapid oscillations of χ (1) as a function of size (see Fig. 2).
The diamagnetic or paramagnetic character of the zero-field
susceptibility might change at finite fields due to the possible
nonmonotonic behavior of M(1)(H ) and its possible sign
inversion for particular values of kFa (see dashed lines in
Fig. 4). Large values of the magnetic moment (of several
hundreds of μB) can be attained. We further show in Fig. 4 by
black lines the perturbative quantum result from Eq. (A4). As
it is the case for the zero-field susceptibility shown in Figs. 2
and 3, the semiclassical result gives a very good qualitative
account of the quantum one.
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FIG. 4. Grand-canonical magnetic moment M(1) in units of the
Bohr magneton μB for three different nanoparticle sizes as a function
of the cyclotron frequency ωc ∝ H (in units of EF/h̄). Blue lines:
semiclassical result from Eq. (18). Black lines: perturbative quantum
result from Eq. (A4). In the figure, T/TF = 5 × 10−3.

V. MAGNETIC RESPONSE OF AN ENSEMBLE
OF NONINTERACTING NANOPARTICLES

The experiments yielding unusual magnetism in gold
nanoparticles are typically performed on ensembles of
nanoparticles [25,26]. We thus consider in this section the
orbital response of such ensembles, neglecting any possible
interparticle interaction. This approximation should be valid
in relatively dilute samples.

For an ensemble of N nanoparticles, the expected value of
the zero-field susceptibility is

χens(ā, δa) = χ (1) + χ (2), (25)

while the root-mean-square deviation with respect to the
previous value is

χrmsd � 1√
N

[
(χ (1) )2

]1/2
. (26)

The averages indicated by a bar are taken with respect to a
probability distribution of sizes P (a). In writing Eq. (26), we
have used the fact that the typical values of χ (1) are much
larger than those of χ (2), which is valid for sufficiently large
values of kFa and T/TF.

The magnetic response of an ensemble of nanoparticles
crucially depends on its size distribution. The large diversity
that can be encountered for the latter is at the origin of
the rich range of observed physical behaviors. In order to
provide quantitative predictions, we will focus on setups well
described by a Gaussian probability distribution

P (a) = 1√
2πδa

exp

(
− (a − ā)2

2δa2

)
, (27)

characterized by the average radius ā of the ensemble and its
size dispersion δa.

The rapidly oscillating cosine in Eq. (19) (see Figs. 2 and
3) results in a χ (1) which decreases exponentially with kFδa

and is thus much smaller than |χL| when the size dispersion
δa � k−1

F ∼ 1 Å. In situations where the dispersion δa is
larger than 1 Å, as is usually the case in experiments [25,62],
χ (1) is therefore negligible. It is thus χ (2) which yields the

dominant contribution to the averaged magnetic susceptibility
of the ensemble. Similar considerations and definitions hold
for the magnetic moment per particle. The identification of
χens with the measure on an ensemble of N nanoparticles is
statistically sound only for a sufficiently large N such that
χrmsd � χens. There are then two parameters that might result
in large variations of the zero-field susceptibility: the size
dispersion δa and the number of nanoparticles N .

Averaging M(2) and χ (2) [cf. Eqs. (20) and (21)] over the
Gaussian distribution (27) (for kFδa � 1), we obtain

Mens(ā, δa)

μB
= − 12(kFā)2

∑
ν>0
η>2ν

∑
ν ′>0

η′>2ν ′

F ν ′η′
νη

η cos ϕνη sin ϕνη

× R(Lνη/LT )R(Lν ′η′/LT )

× cos (θνη(kF) − θν ′η′ (kF))

× j ′
0(2πφνη/φ0)j0(2πφν ′η′/φ0)

× e−2[kFδa(η sin ϕνη−η′ sin ϕν′η′ )]2
(28)

and
χens(ā, δa)

|χL| = 18πkFā
∑
ν>0
η>2ν

∑
ν ′>0

η′>2ν ′

F ν ′η′
νη

× R(Lνη/LT )R(Lν ′η′/LT )

× cos (θνη(kF) − θν ′η′ (kF))

× e−2[kFδa(η sin ϕνη−η′ sin ϕν′η′ )]2
, (29)

respectively. In Eqs. (28) and (29), the quantities Lνη and θνη

are evaluated for a = ā, and F ν ′η′
νη is defined in Eq. (22).

Sums like (28) and (29), running over four topological
indexes (corresponding to two different families of periodic
orbits), are even more challenging to evaluate than those run-
ning over two indexes, as Eqs. (18) and (19), especially at low
temperatures, where a large number of classical trajectories
has to be considered. The ensemble-averaged zero-field sus-
ceptibility resulting from Eq. (29) at high (room) temperature
T/TF = 5 × 10−3 is presented in Fig. 5 as a function of the
average nanoparticle radius ā, for increasing size dispersions
δa. The orbital response of the nanoparticle ensemble at zero
magnetic field is paramagnetic (χens > 0) in all tested cases.
As discussed in the introduction, such is also the case in
ensembles of quasi-two-dimensional semiconductor quantum
dots [50–53,55,56]. The orbital susceptibility of the ensemble
χens can reach large values (in units of |χL|) for not too large
mean radii, but it goes to zero when kFā � 1. The monotonic
decrease of χens with kFā obtained for large size dispersions
(kFδa � 20 in Fig. 5) evolves into an oscillating behavior for
smaller size dispersions.

The dependence on magnetic field of the ensemble-
averaged magnetic moment per particle according to Eq. (28)
is presented for various average radii and size dispersions
in Fig. 6. The ensemble-averaged magnetic moment per
nanoparticle can reach several tens of μB for room temper-
ature (T/TF = 5 × 10−3). Moreover, the behavior of Mens as
a function of the applied magnetic field in a given interval
depends significantly on the average size of the ensemble.
For the smallest size considered in Fig. 6 (kFā = 20, black
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average radius ā for various size dispersions δa at T/TF = 5 × 10−3,
from Eq. (29). The diagonal contribution to the averaged susceptibil-
ity χ d

ens(ā) [Eq. (30)] is shown for comparison as a black solid line.

lines), the magnetic moment increases monotonically with the
magnetic field for the whole range of the parameter h̄ωc/EF ∝
H considered. For kFā = 60 (red lines), Mens becomes a
decreasing function of the magnetic field after a critical value
that depends on the size dispersion δa. For larger sizes (kFā =
100, blue lines), the previous nonmonotonic behavior appears
at a smaller critical field, and eventually there occurs a sign
inversion of Mens for even larger fields. In Sec. VII we link
these findings with the existing experimental results found in
the literature.
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In the case kFδa � 1, the exponential factor in Eqs. (28)
and (29) selects only the “diagonal” subensemble of topolog-
ical indexes for which ν = ν ′ and η = η′. When applicable,
such an approximation considerably simplifies the evaluation
of the semiclassical expressions and allows for simple estima-
tions of the zero-field susceptibility and the magnetic moment.
The diagonal part of the magnetic susceptibility (29) can be
written as

χd
ens(ā)

|χL| = 18πkFā
∑
ν>0
η>2ν

F νη
νη R2(Lνη/LT ), (30)

which is positive since F νη
νη > 0 [cf. Eq. (22)]. As can be seen

in Fig. 5, this diagonal contribution (black solid line) provides
a good account of the behavior of χens for large kFδa.

Interestingly, Eq. (30) is a function of the single parameter
kFā

T
TF

= 2ā/πLT when scaled with kFā. This can be seen
from the argument of the thermal function (16), Lνη/LT =
πη sin ϕνηkFā

T
TF

, and is exemplified in Fig. 7, where the
circles correspond to a numerical evaluation of the sum over
the topological indexes in Eq. (30). Remarkably, for kFā

T
TF

�
1 (with kFā � 1), Eq. (30) follows the Curie-type law

χd
ens

|χL| = C

T/TF
, (31)

independent of the average size ā of the nanoparticles.
The prefactor C of the above Curie law can be analytically

evaluated along the lines leading to the semiclassical result
(23) and presented in Appendix C. First, the thermal factor
(squared) in Eq. (30) is replaced by a Heaviside step function
which cuts trajectories longer than Lmax = αLT (α � 1.6, see
Sec. IV). Second, the sums over the topological indexes are
approximately evaluated by replacing them by integrals. To
leading order in kFā

T
TF

� 1, we then obtain

C = 9α

16
. (32)
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The result (31), together with Eq. (32), is shown by the solid
line in Fig. 7. As can be seen from the main figure, there is ex-
cellent quantitative agreement between the numerical evalua-
tion of Eq. (30) (circles) and the approximate result (31) (solid
line) for small nanoparticle sizes and/or low temperatures.

For larger values of the parameter kFā
T
TF

, the susceptibility
resulting from Eq. (30) deviates from the Curie-type law
and is exponentially suppressed with temperature. It can be
fitted by

χd
ens(ā)

|χL| = c1kFā exp

(
−c2kFā

T

TF

)
, (33)

with c1 � 22 and c2 � 12. Such a behavior can be traced
back to the exponential suppression induced by the thermal
factor (16) even for the shortest trajectories, in line with
our discussion of the high-temperature regime for χ (1) in
Sec. IV.

Similarly to the case of the zero-field susceptibility, we
consider the diagonal contribution [terms with ν = ν ′ and
η = η′ in Eq. (28)]

Md
ens(ā)

μB
= −12(kFā)2

∑
ν>0
η>2ν

F νη
νη

η cos ϕνη sin ϕνη

×R2(Lνη/LT )j ′
0(2πφνη/φ0)j0(2πφνη/φ0)

(34)

to the magnetic moment per nanoparticle, which becomes
dominant in the case kFδa � 1 (solid lines in Fig. 6). Once
scaled with (kFā)2, Eq. (34) only depends on the two follow-
ing parameters: (i) the normalized flux φ̄/φ0 appearing in the
argument of the spherical Bessel function and its derivative
in Eq. (34) (φ̄ = πā2H is the average magnetic flux through
a nanoparticle); (ii) the ratio between average radius and
thermal length 2ā/πLT = kFā

T
TF

through the argument of the
thermal reduction factor (16). Figure 8 presents the flux de-
pendence of the diagonal contribution (34) scaled with (kFā)2.
For weak flux, φ̄ � φ0, the magnetic moment increases

linearly with magnetic field and its temperature dependence
follows a Curie-type law as shown for the susceptibility [see
Eq. (31)]. For larger flux, a maximal value is attained and
Md

ens decreases until it reaches negative values and oscillates
as a function of flux, resembling the de Haas-van Alphen
oscillations [34] that would occur for much larger magnetic
flux. As the temperature decreases, the magnetic moment
increases significantly at weak magnetic field, reaching very
high values.

VI. MAGNETIC RESPONSE OF INDIVIDUAL
NANOPARTICLES

In the previous section we discussed the situation of a
nanoparticle ensemble, which is the case were the magnetic
response has been abundantly measured. The magnetic re-
sponse of an individual nanoparticle, given by

M = M(1) + M(2) (35)

and

χ = χ (1) + χ (2), (36)

has considerable interest for two reasons. Firstly, M and
χ become relevant when analyzing the experimental condi-
tions aiming at measurements on relatively small numbers
of particles or in the case of single nanoparticles. These
conditions could be achieved, e.g., using magnetic force mi-
croscopy [26,75] of nanoparticles deposited on a nonmagnetic
substrate. Secondly, as we discuss in Appendix D, if interac-
tions among the nanoparticles of the ensemble are included
in the description, the single-particle magnetic moment M
becomes a crucial ingredient of the model describing the
magnetic response of coupled nanoparticles.

As discussed in Sec. III, the fulfillment of the condition
�F (2) � |�F (1)|, at the basis of our semiclassical thermo-
dynamic formalism, depends on the values of kFa and T/TF.
In order to quantify these constraints, we present in Fig. 9(a)
[Fig. 9(b)] the values of �F (1) [χ (1)] in blue, and �F (2)

[χ (2)] in red, for room temperature (T/TF = 5 × 10−3) and
a reduced kFa span as compared to the one shown in Fig. 2.
At the lowest values considered for kFa, �F (2) is comparable
to |�F (1)|, but it rapidly becomes comparatively smaller for
kFa � 30 and then completely negligible for kFa � 50. The
semiclassical thermodynamic formalism is then applicable
at room temperature over almost all the kFa range, even if
|χ (2)| typically dominates |χ (1)| up to kFa � 30. Consistent
with these results, the magnetic moment M of an individual
nanoparticle at room temperature is essentially given by M(1)

for the sizes shown in Fig. 4, where M as a function of kFa

is indistinguishable from M(1) on the scale of the figure (data
not shown).

The situation at low temperature T/TF = 5 × 10−4 is pre-
sented in Fig. 10 for a smaller range of kFa. Again, we
can observe that the canonical contribution �F (1) (blue line)
is typically larger than the grand-canonical one �F (2) (red
line). Even though the grand-canonical contribution to the
susceptibility is larger that the canonical one, we expect the
semiclassical formalism to yield at least qualitatively correct
results for these and larger values of kFa.
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FIG. 9. Blue lines: grand-canonical (a) free energy �F (1) at H =
0 (scaled with the Fermi energy EF) from Eq. (15) at a temperature
T/TF = 5 × 10−3 and (b) corresponding zero-field susceptibility
χ (1) from Eq. (19) (cf. blue line in Fig. 2) as a function of kFa.
Red lines: canonical contribution �F (2) from Eq. (17) [panel (a)]
and zero-field susceptibility χ (2) from Eq. (21) [panel (b)].

VII. DISCUSSION

The variety of possible magnetic responses (diamagnetic,
paramagnetic, or ferromagnetic) experimentally observed
calls for a systematic evaluation of the results yielded by
different theoretical descriptions. Within our model presented
in Sec. II, we obtained in Sec. V a paramagnetic response at
weak fields for the case of an ensemble with a large number of
noninteracting nanoparticles and a rather large size dispersion,
as it is often the case in experiments. For increasing fields the
magnetization of the nanoparticle ensemble could switch from
its low-field paramagnetic behavior to a diamagnetic response
(decreasing of the magnetization with the field and even a
magnetization antialigned with the applied field, see Figs. 6
and 8). While these changes are often observed in experiments
[25], such behavior is usually interpreted as coming from
spurious diamagnetic elements of the sample [24].

In order to test the relevance of our approach, we will
disregard the cases where the parameters of the sample are
not completely known and exclude observations of ferromag-
netism where, presumably, the interparticle interactions are
important. We will thus concentrate on the experiments where
the paramagnetic behavior has been clearly established.

The pioneering experiments of Refs. [17,18], which also
included palladium nanoparticles, have been extremely impor-
tant in fostering the interest on the subject, by yielding large
values of the saturation magnetic moment per nanoparticle
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FIG. 10. Low-temperature T/TF = 5 × 10−4 results for the con-
tributions to (a) the free energy and (b) the susceptibility. As in Fig. 9,
blue lines represent the grand-canonical contributions from Eqs. (15)
and (19), and red lines depict the canonical contributions of Eqs. (17)
and (21).

(about 20 μB) in a regime where the magnetic interaction
between the nanoparticles could be neglected. In Fig. 11, we
reproduce the magnetization per gram of gold in the sample
Mens of Refs. [17,18] for gold nanoparticles surrounded by
polyvinyl pyrolidone (PVP) ligands (red dots) having a mean
diameter 2ā � 2.5 nm and a relatively narrow size dispersion
(2δa � 0.4 nm) at T = 1.8 K. These experimental data, well
represented by the Langevin function and exhibiting quasi-
paramagnetic field and temperature dependences, have been
reproduced in different samples with various ligands (see
triangles in Fig. 11), except in the case where strong covalent
bonds get established with the nanoparticles [19].

The solid line in Fig. 11 represents Mens/�V , where Mens

is given in Eq. (28) and � = 19.3 g/cm3 is the mass density
of gold, for the temperature, mean diameter, and width of the
size distribution of the experimental data [76]. As no fitting
parameters are invoked, the qualitative agreement between our
theory and these sets of data makes us conclude that the orbital
response is indeed a crucial ingredient in the cases where the
nanoparticle interaction is negligible.

It should be remarked that for the small values of a and T

used in Fig. 11, the semiclassical thermodynamic formalism
becomes questionable. Notwithstanding, while in the formal-
ism of Sec. III the temperature is the only parameter to smooth
out the oscillations of the density of states of an individual
nanoparticle, in an ensemble of nanoparticles there are other
additional factors that contribute to smooth the density of
states and then reduce the values of �F (2). Among them,
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FIG. 11. Dots and triangles: measured magnetization Mens of an
ensemble of Au nanoparticles functionalized with various ligands (in
electromagnetic units per gram of gold nanoparticles in the sample)
as a function of applied field H (in œrsted), with mean diameter
2ā = 2.5 nm, size dispersion 2δa = 0.4 nm, and at a temperature
T = 1.8 K. The data are taken from the experiments of Refs. [17–
19]. The corresponding ligands are: polyvinyl pyrolidone (PVP) [red
dots (Refs. [17,18]) and red triangles (Ref. [19])], polyacrylonitrile
(PAN) [green triangles (Ref. [19])], and polyallyl amine hydrochlo-
ride (PAAHC) [blue triangles (Ref. [19])]. Solid line: nondiagonal
magnetization from Eq. (28) with 2δa = 0.4 nm. Dashed line: diag-
onal approximation (34), corresponding to 2δa → ∞.

the size dispersion characterized by P (a), the possibility
of having deviations with respect to the perfectly spherical
shape, and effects of structural or impurity-induced disorder.
It is based on the latter effect that the canonical correction
has been obtained for the problem of persistent currents in
metallic nanostructures [44,45].

For comparison purposes, we also present in Fig. 11
(dashed line) Mens according to the diagonal approxima-
tion (34). On one hand, we see that the simple diagonal ap-
proximation is enough to provide a qualitative agreement with
respect to the experimental data. On the other hand, we verify
that the effect of the size dispersion δa, which is responsible
for the difference between the two expressions, appears as a
key element in achieving a quantitative agreement.

The existing data yielding a paramagnetic zero-field sus-
ceptibility are more difficult to relate with the theoretical
prediction of Figs. 5 and 7 and Eqs. (29) and (31). While
the value of χ that can be extracted from the magnetization
curve of Refs. [17,18] is in qualitative agreement with Eq. (31)
and the reported zero-field susceptibility follows a clear Curie
law, the numerical values are two orders of magnitude larger
than the theoretical prediction. The inconsistency between the
magnetization and susceptibility results of Refs. [17,18] might
be due to an incorrect handling of the units [77].

The magnetization measurements of Yamamoto et al. [20]
yielded a paramagnetic susceptibility for an ensemble of
gold nanoparticles with 2ā = 1.9 nm and a log-normal size
distribution. The reported susceptibility follows a Curie-type
law, but with values which are several orders of magnitude
smaller than the previously-discussed data or the theoretical
curve of Fig. 7, and it has been explained from the orbital
moment of the Au 5d electrons.

The susceptibility results of Bartolomé et al. [22] on
gold nanoparticles with naturally thiol-containing protective
agents, between T = 2.7 K and 10 K, exhibit a paramagnetic
response with a clear Curie law, but an order of magnitude
smaller than the data of Refs. [17,18]. The findings of
Ref. [22] have been interpreted by invoking the holes
of the Au 5d band induced by the thiols, and thus the
comparison with our ligand-independent theoretical approach
is problematic.

Some of the reported ferromagnetic samples present an ex-
tremely narrow hysteresis loop [11,12], such that a quasipara-
magnetic zero-field susceptibility can be inferred. The values
thus obtained from the low-temperature data of Refs. [11,12]
result in a paramagnetic susceptibility which is one to two
orders of magnitude smaller than our theoretical prediction,
depending on the nature of the protective ligands.

We thus conclude that the orbital magnetism contribu-
tion is always important for analyzing the cases yielding a
paramagnetic response of an ensemble of nanoparticles. In
the cases where the ligands do not considerably alter the
electronic states of the isolated nanoparticles, a qualitative
agreement between theory and experiment is obtained for
the magnetization curves and in the fulfillment of a Curie-
type law of the zero-field susceptibility for a large range of
temperatures (up to about room temperature, for sufficiently
small nanoparticles).

The diamagnetic response obtained in some experi-
ments [6,8,11,23] can also be accounted for from the orbital
magnetism, provided a narrow size dispersion or a peaked size
distribution of the nanoparticles in the ensemble allow for
the fluctuations of χ (1) (see Figs. 2 and 3) to dominate over
the paramagnetic contribution of χ (2). The speculation that a
paramagnetic response of the ensemble could turn into a dia-
magnetic one under the influence of spin-orbit coupling [23],
in analogy with the sign inversion of the magnetoconduc-
tance [78], is invalidated by the theoretical result of Ref. [61].

The ferromagnetic results are not accountable from our
model of noninteracting nanoparticles. However, as we show
in Appendix D, the semiclassical approach to orbital mag-
netism settles the basis of a rich interacting model that can
be tackled by numerical calculations.

VIII. CONCLUSION

We have investigated orbital magnetism in gold nanopar-
ticles. Specifically, we have considered spherical metallic
particles in the jellium approximation and treated the electron-
electron interactions within a mean-field approach. The orbital
response of individual as well as ensembles of nanoparticles
with a smooth size distribution have been calculated within
a semiclassical formalism. While the magnetic response at
weak fields of an individual nanoparticle can be anything from
strongly diamagnetic to strongly paramagnetic depending on
its size, the ensemble-averaged response is always paramag-
netic when neglecting the interparticle interactions. In partic-
ular, we have predicted that the ensemble-averaged zero-field
susceptibility should present a Curie-type law at low tempera-
ture, independent of the average size of the nanoparticles. We
have obtained a qualitative agreement with the existing ex-
perimental data on the magnetization of ensembles of diluted
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nanoparticles in the case where interparticle interactions are
negligible and where the local modifications induced by the
surrounding ligands are irrelevant. Our results do not depend
on details of the electronic structure and are thus not limited to
gold but can be applied to any spherically-symmetric metallic
nanoparticles. Moreover, the proposed mechanism does not
rely on organic ligands surrounding the particles.

An important conclusion of our work is to counter the
claim [19,20] that the strong paramagnetic response of the
nanoparticle ensemble constitutes a proof that the individual
nanoparticles are ferromagnetic. Indeed, we have shown that
the orbital response of a large nanoparticle ensemble with a
relatively broad size distribution can attain a large paramag-
netic value through the flux accumulation of the underlying
classical trajectories.

In order to obtain analytically-tractable results, we
assumed that the nanoparticles are perfectly spherical.
However, crystallographic faceting at the surface of the
particles, as well as static impurities inside the clusters, would
presumably render the underlying classical dynamics of the
electrons chaotic. As is well known [51–53,55,56], the orbital
magnetism of classically-chaotic and/or disordered systems
is less pronounced than that of purely integrable ones. The
high values of magnetic susceptibilities we obtain should
thus be taken with care when comparing our results with
existing experiments using larger nanoparticles and/or when
disorder becomes important. However, the qualitative trends
we are predicting should not be affected by fine details of the
electron dynamics.

This work is an important step toward understanding the
effect of orbital magnetism in assemblies of nanoparticles.
While the results presented here may explain a tendency to-
ward the low-field paramagnetic behavior of certain samples,
two potentially important ingredients for fully understanding
some experiments reporting an anomalous magnetic behav-
ior of gold nanoparticles have been put aside in this work,
namely the interparticle magnetic dipolar interactions and
a nonsmooth, peaked size distribution. The former may be
necessary to obtain ferromagnetic behavior, as is observed in
certain samples, and can in principle be addressed with the
semiclassical tools developed in this paper within the model
sketched in Appendix D. The latter might occur depending
on the fabrication process due to shell effects [3,4]. The size
dispersion was shown to be a crucial factor in determining
the magnetic response, and in the limit where it becomes
so small as to represent a peaked size distribution, we no
longer expect the vanishing of the contribution of χ (1) upon
the ensemble average. The resulting strong oscillation as a
function of nanoparticle size could explain the variation in
the observed behavior from strong paramagnetism to strong
diamagnetism in macroscopically similar samples having very
narrow size distributions. We hope that our work will motivate
future experimental and theoretical work considering these
challenging issues.
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APPENDIX A: EXACT AND PERTURBATIVE
QUANTUM CALCULATIONS

The semiclassical approach developed in this work is
particularly useful in order to calculate the paramagnetic
component of the magnetization and the zero-field suscepti-
bility that determine the magnetic response of an ensemble of
noninteracting nanoparticles. The contributions M(1) and χ (1)

to the magnetic response of an individual nanoparticle can be
accessed either through the semiclassical theory or through
perturbative quantum calculations. It is therefore important
to use the latter in order to establish a benchmark of the
former and validate the use of semiclassics in the cases where
the quantum calculations are too difficult to be implemented,
like that of the average magnetization which necessitates to
impose the condition of a constant number of electrons at
finite temperature.

To second order in the magnetic induction B, nondegener-
ate perturbation theory yields for the spectrum of the mean-
field Hamiltonian (4) the analytical result [35,37]

Enlmz
= E

(0)
nl + E

(1)
nlmz

+ E
(2)
nlmz

. (A1)

Here, E(0)
nl = E0ζ

2
nl are the eigenenergies of a zero-field sphere

with infinite potential walls, where ζnl is the nth zero of the
spherical Bessel function jl (z), with l the angular momentum
quantum number. The first-order contribution correspond-
ing to the paramagnetic term of the Hamiltonian (4) reads
E

(1)
nlmz

= h̄ωcmz/2 (in terms of the magnetic quantum number
mz), while the second-order correction (diamagnetic term) is
E

(2)
nlmz

= mω2
ca

2RnlYmz

l /8, with

Rnl = 1

3

[
1 + (2l + 3)(2l − 1)

2ζ 2
nl

]
(A2)

and

Ymz

l = 1 − 1

2l + 1

[
l2 − m2

z

2l − 1
+ (l + 1)2 − m2

z

2l + 3

]
. (A3)

In Fig. 12, we compare the perturbative spectrum (A1)
(red lines) for a given span of magnetic fields with the exact
spectrum Eex resulting from a numerical diagonalization of
the Hamiltonian (4) (black lines). The magnetic fields needed
to reach the regime of quantum Hall effect emerging at the
right part of the plot are extremely high for the nanoparticles
under consideration but might be attainable for larger metallic
nanoparticles or for semiconducting structures. The agree-
ment between the perturbative and exact spectrum is very
good up to magnetic fields corresponding to the (reduced)
flux φ/φ0 � 5, with φ = πa2B (compare the solid red and
black lines), while for larger fields, the perturbative energy
levels (shown as dotted red lines) depart from the exact
result. For the magnetic fields which we consider in the main
text, the quantitative agreement is excellent, and the use of
nondegenerate perturbation theory is appropriate since the
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FIG. 12. Black lines: exact spectrum Eex of the mean-field Hamiltonian (4) (scaled by E0 = h̄2/2ma2) of a sphere as a function of the
magnetic flux φ = πa2B in units of the flux quantum. Red lines: perturbative spectrum Enlmz

from Eq. (A1), showing the perturbative regime
(0 < φ/φ0 � 5, solid red lines) and the region where perturbation theory starts to depart from the exact result (5 � φ/φ0 � 10, dotted red
lines).

perturbation does not break the cylindrical symmetry of the
system.

The quantum-mechanical magnetic moment M(1)
q and the

corresponding zero-field susceptibility χ (1)
q can be readily

obtained from the perturbative spectrum (A1) via the ex-
pressions M(1)

q = −2
∑

nlmz
(∂BEnlmz

)f (Enlmz
) and χ (1)

q =
(∂BM(1)

q )(B=0)/V , where the factor of 2 takes into account the
spin degeneracy, yielding [35,37]

M(1)
q

μB
= − 2

∞∑
n=1

∞∑
l=0

+l∑
mz=−l

f (Enlmz
)

×
[
mz + (kFa)2h̄ωc

4EF
RnlYmz

l

]
(A4)

and

χ (1)
q

|χL| = 3π

kFa

∞∑
n=1

∞∑
l=0

(2l + 1)f
(
E

(0)
nl

)

×
{[

1 − f
(
E

(0)
nl

)] l(l + 1)

(kFa)2T/TF
− Rnl

}
. (A5)

The component M(1)
q arising from the perturbative spectrum

(A1), and shown in Fig. 12, is presented in Fig. 4 (black lines),
thus validating the use of semiclassical expansions at finite
magnetic fields. We have checked that both the approximate
quantum result Enlmz

and the exact diagonalization procedure
yielding Eex result in the same values for M(1)

q .

APPENDIX B: SEMICLASSICAL EVALUATION OF THE
GRAND-CANONICAL ORBITAL MAGNETIC

SUSCEPTIBILITY

In this appendix, we provide details of the semiclassical
calculation of the grand-canonical orbital magnetic suscep-
tibility leading to Eq. (23) in the main text. In the limit of
low temperatures and/or small sizes (kFa

T
TF

� 1), we replace
the thermal factor appearing in the semiclassical expansion
(19) by a Heaviside step function that limits the contribut-
ing trajectories to the maximal length Lmax = αLT , yielding
the condition on the topological index η � ηc, with ηc =
αLT /2a = (α/π )(kFa

T
TF

)−1 � 1. Here, the parameter α �
1.6 is chosen in such a way that the thermal factor (16)
presents the maximum derivative. Taking into account the
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FIG. 13. Topological indexes (ν, η) contributing to the double
sums in Eqs. (B1) and (C1) (red dots). The critical value ηc =
αLT /2a separates the two summation regions with different values
of νmax(η) given by the explicit formulas (solid lines). The dotted line
depicts the limiting value of νmax when η → ∞.

above restriction and reordering the summations over ν and
η in Eq. (19) then lead to

χ (1)

|χL| � 6
√

π (kFa)3/2
∞∑

η=3

νmax(η)∑
ν=1

Re{e−iθνη (kF )}

× (−1)ν cos3 ϕνη sin3/2 ϕνη√
η

. (B1)

We have defined νmax(η) = � η−1
2 � for 3 � η � �ηc� and

νmax(η) = � η

π
arcsin ( ηc

η
)� for η � ηc�. The grid of points

that represent the topological indexes (ν, η) contributing to
the double sums of Eq. (B1) are represented by red dots in
Fig. 13.

The summation over the winding number ν in Eq. (B1)
is then expressed using the Poisson summation formula,

yielding

νmax(η)∑
ν=1

(−1)ν cos3 ϕνη sin3/2 ϕνη e−iθνη (kF )

=
+∞∑

l=−∞

∫ νmax(η)+1/2

1/2
dν cos3 ϕνη sin3/2 ϕνη ei�νη,l , (B2)

with the phase �νη,l = (2l + 1)πν − θνη. The above inte-
gral over ν is then performed using a stationary phase
approximation that results in the stationary points ν̄ =
(η/π ) arccos ([l + 1/2]/kFa). Imposing that the latter belong
to the ν integration interval in Eq. (B2) gives the following
restriction over the index l:

2kFa cos

(
π

η

[
νmax(η) + 1

2

])
� 2l + 1 � 2kFa cos

(
π

2η

)
.

(B3)

Substituting j = 2l + 1 in Eq. (B2) thus leads to

νmax(η)∑
ν=1

(−1)ν cos3 ϕνη sin3/2 ϕνη e−iθνη (kF )

=
∑
odd j

(
j

2kFa

)3
√

1 −
(

j

2kFa

)2√
η

πkFa
e−iηSj , (B4)

where the reduced radial action Sj is defined in Eq. (24) and
where the summation over the odd integer j is restricted by
the condition (B3). Incorporating the result (B4) into Eq. (B1)
then yields Eq. (23).

APPENDIX C: DERIVATION OF THE CURIE-TYPE LAW
FOR ENSEMBLES OF NONINTERACTING

NANOPARTICLES

In this appendix, we demonstrate the Curie-type law for the
orbital magnetic susceptibility of noninteracting ensembles of
metallic nanoparticles that arises at low temperature and/or
for small sizes [cf. Eq. (31) in the main text]. Here and in
what follows, we adopt the notation of Appendix B, with the
modification of changing the individual nanoparticle radius a

by the average radius ā of the ensemble.
Starting from Eq. (30), in the limit kFā

T
TF

� 1 we replace
the thermal factor squared by a Heaviside step function which
cuts trajectories longer than Lmax = αLT , leading to

χd
ens

|χL| � 18πkFā

∞∑
η=3

νmax(η)∑
ν=1

F νη
νη , (C1)

with F νη
νη = 1

η
cos4 ϕμη sin3 ϕμη [cf. Eq. (22)]. Like in the case

of Appendix B, the grid (ν, η) of points contributing to the
double sums of Eq. (C1) are represented by red dots in Fig. 13.
Since F νη

νη has a smooth dependence on ν, we approximate the
summation over ν in Eq. (C1) by an integral, leading to

νmax(η)∑
ν=1

F νη
νη � 1

π

{
1

5

[
cos5

(
π

η

)
− cos5

(
πνmax(η)

η

)]

− 1

7

[
cos7

(
π

η

)
− cos7

(
πνmax(η)

η

)]}
. (C2)
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In Eq. (C1) the summation over η is dominated by rela-
tively large values of η. Therefore we make the approximation
cos5 (π/η) ≈ cos7 (π/η) ≈ 1 in the expression above. More-
over, for η � �ηc�, we have cos (πνmax(η)/η) � sin (π/2η),
so that cos5 (πνmax(η)/η) ≈ cos7 (πνmax(η)/η) ≈ 0, while
for η � ηc�, we have cos (πνmax(η)/η) = [1 − (ηc/η)2]1/2.
Thus, Eq. (C1) yields

χd
ens

|χL| � 18πkFā

⎧⎨
⎩2ηc

35
+
∫ ∞

ηc

dη

⎡
⎣1

5

⎛
⎝1 −

[
1 −

(
ηc

η

)2
]5/2

⎞
⎠

− 1

7

⎛
⎝1 −

[
1 −

(
ηc

η

)2
]7/2

⎞
⎠
⎤
⎦
⎫⎬
⎭ (C3)

in the limit ηc � 1. Performing the remaining η integral, we
find the Curie-type law (31), with the prefactor C as given in
Eq. (32).

APPENDIX D: INTERACTING MODEL

Throughout this work we have neglected the magnetic
dipolar interactions between the different nanoparticles com-
posing the nanoparticle ensemble encountered in the existing
experiments. While such a hypothesis seems reasonable for
fairly diluted samples, the appearance of a macroscopic ferro-
magnetic response in certain samples indicates that interparti-
cle interactions might be at play.

Disregarding the possibility that individual nanoparticles
are themselves ferromagnetic, and then possess a perma-
nent magnetic moment, the single-particle magnetic moment
arising from the orbital motion only exists at nonvanish-
ing magnetic fields. The formalism developed in this work
(see Secs. III and IV) allows us to write the macroscopic

magnetization of an ensemble of N nanoparticles as

M =
∑N

i=1 Mi∑N
i=1 Vi

. (D1)

We note Mi and Vi the magnetic moment and the volume, re-
spectively, of the individual nanoparticles. The orientation of
the magnetizations of different nanoparticles may be different
once interactions are present. We thus have to consider the
magnetization vector Mi here. The effective field Hi acting
on nanoparticle i is given by the external field H and the
contributions generated by the other nanoparticles, that is

Hi = H +
N∑

j=1
(j �=i)

3r̂ij (r̂ij · Mj ) − Mj

r3
ij

, (D2)

where r̂ij is the unit vector in the direction linking nanopar-
ticles i and j , separated by the distance rij . Assuming
sufficiently weak internal fields, such that Mi = ViχiHi ,
with χi the size-dependent orbital susceptibility of nanopar-
ticle i given by Eq. (36), Eqs. (D1) and (D2) give rise to an
extremely involved self-consistent problem.

The above model includes disorder, through the random
positions of the nanoparticles, and frustration, through the
highly oscillating function χi that depends on the nanoparticle
size, which are the two ingredients characterizing the rich
physics at play in spin glasses [79,80]. However, the problem
at hand has two features that make its treatment even more
difficult: the genuinely long-ranged nature of the magnetic
dipolar interparticle interactions and the absence of a per-
manent magnetic moment of the nanoparticles. Numerical
simulations, beyond the scope of the present paper, need to
be developed by taking special care to the finite-size effects
and to the contribution χ (2) to the highly oscillating zero-field
susceptibility of the individual nanoparticles.
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