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Tilt-induced kink in the plasmon dispersion of two-dimensional Dirac electrons
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The list of two-dimensional Dirac systems with a tilt in their Dirac cone spectrum is expanding, and now,
in addition to the organic system α(BEDT-TTF)2I3, it includes the two-dimensional 8Pmmn-borophene sheet,
which allows for controlled doping by the gate voltage. We analytically calculate the polarization function of
tilted Dirac cone for an arbitrary tilt parameter, 0 � η < 1, and arbitrary doping. This enables us to find two
interesting plasmonic effects solely caused by the tilt. (i) In addition to the standard plasmon oscillations, a
strong enough tilt induces an additional linearly dispersing overdamped branch of plasmons, which is strongly
Landau damped due to overlap with a large density of intraband free particle-hole (PH) excitations. (ii) There
appears a kink in the plasmon dispersion for any nonzero tilt parameter. The kink appears when the plasmon
branch enters the interband continuum of PH excitations. This kink becomes most manifest for wave vectors
perpendicular to the tilt direction and fades away by approaching the tilt direction. Experimental measurements
of the wave vector and energy of the plasmonic kink, when combined with our analytic formula for the kink
energy scale, allow for a direct experimental estimation of the tilt parameter. Furthermore, we find that, for a
fixed chemical potential μ, the screening is significantly enhanced by bringing the tilt η close to 1.
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I. INTRODUCTION

Dirac materials are now quite ubiquitous in condensed mat-
ter physics [1], and include one [2], two [3], and three spatial
dimensions [1,4,5]. In two dimensions, a well-known example
of Dirac material is graphene [6–8], the two-dimensional
character of which allows for functionalization [9] and various
manipulations. The interesting thing about condensed-matter
Dirac systems is that—unlike in high-energy physics—they
can be deformed in many ways. The lattice distortion can
induce anisotropy in the velocity vx, vy [10], or can reshape
the Brillouin zone, which then moves the Dirac cones in
the k space [11]. One particularly interesting deformation of
the Dirac cone is to tilt it. In the case of graphene, a very
small amount of tilting can be achieved through coupling
to lattice deformations [12]. The first example of substantial
tilt in the Dirac cone was, however, realized in the molecu-
lar organic material α-(BEDT-TTF)2I3 [13,14]. The smaller
velocity scales of molecular orbitals compared to atomic pz

orbitals of graphene makes the tilt perturbation quite large in
these systems [13,15,16].

The layered organic conductor α-(BEDT-TTF)2I3, is one
of 2D Dirac cone materials, which consists of conducting
layers of BEDT-TTF molecules separated by insulating layers
of I−

3 anions, where conduction electrons are arranged on
the square lattice with four molecules BEDT-TTF per unit
cell [15]. As the layers are weakly coupled to each other, the
material under hydrostatic pressure above 1.5 GPa is a quasi-
two-dimensional zero-gap conductor with linear dispersion.
However, the major difference between the zero-gap state
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of an organic conductor with the well-known graphene is
that the graphene dispersion is rotationally invariant along
the axis of the Dirac cone, but a single tilted Dirac cone
is not rotationally invariant along the z axis. Moreover, the
cone axis is not normal to the k plane and a tilt parameter
0 � η < 1 quantifies how much the Dirac cone is tilted along
a direction determined by an angle θt in the (kx, ky ) plane.
In addition, unlike graphene, where the two Dirac cones are
located at K and K ′, in an organic conductor, the Dirac
cones are located at general points ±k0 with opposite tilting
direction. Electronic structure calculations suggest anisotropic
velocities vx, vy ∼ 105m/s [15,17–19]. The empirically de-
termined velocities are slightly less than these values [15]. The
tilted anisotropic Dirac equation that describes the low energy
band structure in this system has been confirmed by ab initio
calculations [13,15,20–23].

As pointed out, the tilting can be induced in graphene by
coupling to the lattice deformation, which is accompanied
by rotation symmetry breaking [12,24]. However, this way
of tilting the Dirac cone is more difficult and gives rise to
a small tilt. However, elemental boron—just to the left of
carbon in the periodic table—can also afford to form a two-
dimensional allotrope [25]. The stable structure of borophene
is the so-called orthorhombic 8-Pmmn. This structure with
two nonequivalent buckled sublattices [26], possesses a tilted
anisotropic Dirac cone, which has been suggested by ab initio
calculations [26–28]. The borophene is now synthesized on
Ag(111) surface and features an anisotropic Dirac cone [29].
In this material, the velocities are (vx, vy ) � (0.86, 0.69) ×
106m/s [30]. Therefore the kinetic energy scale of Dirac
electrons in borophene is slightly less than graphene. The
tilted Dirac dispersion in borophene holds in energy scales of
∼1 eV. In organic materials, the kinetic energy is at least an
order of magnitude smaller than the kinetic energy of Dirac
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electrons in graphene, and is on the scale of 70 meV [16]. This
already signals that the many-body fluctuation phenomena in
tilted Dirac cone materials must be even more profound than
in graphene [31].

The two-dimensionality of the latest 8-Pmmn borophene
allows for controlled doping by the gate voltage. Therefore
it is timely to investigate the collective excitations of this
system. For this, one needs an analytical understanding of
the polarization function that describes the density-density
correlations in the system. This fundamental quantity has
been thoroughly calculated for the up-right Dirac cone in
graphene [32,33]. In the case of a tilted Dirac cone, Nishine
and coworkers have given an analytical formula for the imag-
inary part of the polarization function [34]. The real part
in their work is numerically calculated via the Kramers-
Kronig relation from the imaginary part [34]. In a recent
work, Sadhukhan and Agarwal have attempted to give an
analytical calculation of the polarization function. However,
the determination of the signs and Fermi step functions in their
work has not been correctly accomplished [35]. The above
two works do not agree with each other. In this work, as will
be detailed in the appendices, we meticulously calculate the
polarization function for a tilted Dirac cone, and obtain the
analytical representation of both real and imaginary parts of
it for arbitrary doping. Our results agree with the numerical
results of Ref. [34] for the real part.

Our analytical result allows for a detailed study of the
plasmon excitations per valley in tilted Dirac cone systems.
First of all, we find that, when the standard plasmon branch
enters the interband portion of the PH continuum (PHC), it
develops a kink. Again, our analytic formula enables us to
show that the Landau damping in the interband PHC is negli-
gible. Therefore the plasmon branch on both sides of the kink
will be long-lived, and can be experimentally determined. The
entire plasmon structure is anisotropic, and the kink is most
manifest for wave vectors perpendicular to the tilt direction.
We suggest that a knowledge of the wave vector and frequency
of the kink, in hindsight, can be used for direct determination
of the tilt parameter from angular resolved electron energy
loss spectroscopy (EELS) [36]. Our analytic formula further
enables us to find that for large enough tilt parameters, another
branch of linearly dispersing plasmon excitations exists inside
the intraband PHC, which is overdamped due to a very large
density of states (DOS) of PH excitations.

This paper is organized as follows. In Sec. II, we formalize
the tilt and derive our analytic representation of the polar-
ization function. In Sec. III, we give a qualitative discussion
of the role of tilt in plasmonic properties. In Sec. IV, we
identify the kink in the plasmon dispersion and explain the
physics behind it and suggest it as a way to experimentally
measure the tilt. In Sec. V, we provide an asymptotic formula
to address plasmons and static screening in the presence of
kink. In the appendices we give the details of the calculation
to enable the reader to re-derive our results. We end the paper
with the summary of our findings.

II. TILTED DIRAC CONE MODEL

An effective theory of massless tilted Dirac fermions
is given by the following deformation of the Dirac equa-

tion [16,34]:

H (k) = h̄

(
vx0kx + vy0ky vxkx − ivyky

vxkx + ivyky vx0kx + vy0ky

)
, (1)

where the off-diagonal (Fermi) velocities vx and vy are dif-
ferent, and stand for anisotropy, and the diagonal velocities
vx0 and vy0 represent the tilting characteristic of the system. If
we consider vx0 = 0 and vy0 = 0, the isotropic limit with vx =
vy = vF , this model will reduce to the graphene Hamiltonian.
Through the transformation [18,37]

k̃x = kx cos θt + ky

γ 2
sin θt ,

k̃y = −kx sin θt + ky

γ 2
cos θt , (2)

followed by a gauge transformation

U =
(

e−iθt /2 0
0 eiθt /2

)
,

the tilted Dirac cone Hamiltonian (1) can be rewritten as

H (k̃)= h̄vx

(
ηk̃x k̃x − ik̃y

k̃x + ik̃y ηk̃x

)
= h̄vx (ηk̃xσ0 + k̃.σ ). (3)

In Eq. (2), the dimensionless parameters η and θt determine
the tilting characteristic of the system and are defined as

η =
√

v2
x0

v2
x

+ v2
y0

v2
y

, γ = √
vx/vy, cos θt = vx0

vxη
. (4)

Here, γ is the intrinsic anisotropy, and the tilt parameter is
given by 0 � η � 1. The values of η = 0 and γ = 1 corre-
spond to the graphene case [15,38].

The eigenvalues and eigenstates of the transformed Hamil-
tonian are given by

Eλ(k̃) = h̄vx k̃(λ + η cos θ̃k̃ ), |k̃,±〉 = 1√
2

(
1

±eiθ̃k̃

)
, (5)

where λ = ± refers to positive (E+) and negative (E−) energy
branches, and θ̃k̃ is the polar angle of the wave vector, k̃,
with respect to the x axis. Note that the angular dependence
in Eq. (5) persists even when the anisotropy generated by
nonequal vx, vy is not present (i.e., when γ = 1). It is the
genuine anisotropy due to tilting, as it vanishes when η does.
In what follows, to avoid cluttering up with notation, we
replace the notation k̃ with k, and similarly θ̃k̃ with θk. Note
that in the isotropic case, the γ = 1 case considered here, this
will imply that the momentum transfers q and q̃ are related by
a simple rotation, φ = θt + φ̃, where φ and φ̃ are polar angles
of the q and q̃.

The polarization function in linear response theory is de-
fined by

χ (q, ω) =
∫

dt

2πi
eiωt�(t )〈[ρq (t ), ρ−q (0)]〉, (6)

the Lehmann representation of which is given by

χ (q, ω) = gγ 2

A
lim
ε→0

∑
k,λ,λ′=±

nk,λ − nk′,λ′

h̄ω + Ek,λ − Ek′,λ′ + iε

× fλ,λ′ (k, k′). (7)
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Here, expectation value of density operator between two
eigenstates of |k, λ〉 and |k′, λ′〉 is defined by the form factor
fλ,λ′ (k, k′). The spin degeneracy, which is equal to 2, is
included in the constant coefficient g. In this work, as we are
concerned with only a single valley, the resulting PH transi-
tions are also considered around one valley. Ignoring the other
valley, breaks the inversion symmetry. To restore the inversion
symmetry, one has to consider both valleys. The factor of γ 2

comes from the Jacobian of the transformation, Eq. (2). A

is the area of the two-dimensional system, and ε is defined
as an infinitesimal positive constant. The Fermi distribution
function is denoted by nk,λ, which at zero temperature reduces
to step function. The wave vectors are related by k′ = k + q,
with q being the momentum transfer, the direction of which
with respect to x axis is φ. In the following, we analytically
calculate this polarization function and upgrade a numeric
calculation of an existing calculation [34] to an analytical
expression, which is benchmarked against the numerical cal-
culation of Ref. [34]. Our result for the imaginary part of the
polarization function is identical to that in Ref. [34]. While the
authors of this reference use the Kramers-Kronig relation to
numerically calculate the real part of the polarization function,
we are able to find analytic expressions for the real part, which
agrees with the numerical calculations of Ref. [34]. But our
result does not agree with a recent calculation [35].

A. Undoped tilted Dirac cone

In the undoped tilted Dirac cone, which corresponds to
μ = 0, the states with negative (positive) energy, which are
in the lower (upper) part of the cone are always occupied
(unoccupied). Hence the Fermi distribution function at zero
temperature will be one (zero) for the valence (conduction)
band states. Therefore the polarization function (8) reduces to

χ0(q, ω) = gγ 2

A
lim
ε→0

∑
k

f+,−(k, q )

×
{

1

h̄ω + Ek,− − Ek+q,+ + iε

− 1

h̄ω + E−k−q,+ − E−k,− + iε

}
. (8)

Here the subscript 0 in χ0 stands for undoped tilted Dirac cone
and f−,+ is the interband form factor

fλ,λ′ (k, q ) = 1
2 (1 + λλ′ cos(θk − θk′ )) (9)

for λ 	= λ′. Again, to avoid cluttering up with notation, we
define an auxiliary frequency

� ≡ h̄ω − h̄vxqη cos φ, (10)

and we work in units where h̄ = vx = 1. Furthermore, ac-
cording to the fluctuation dissipation theorem for Eq. (8),
χ0(q,−|ω|) = χ∗

0 (−q, |ω|), which implies χ0(q, |�|) =
χ∗

0 (−q,−|�|). Hence we only need to evaluate the integrals
for � > 0. Doing integration on momentum space and using
the Kramers-Kronig dispersion relation (for more details see

Appendix B) gives the following result for the imaginary and
real parts of the undoped polarization function:

�χ0(q, |�|) = − gq2

16h̄vxvy

sgn(�)√
�2 − q2

�(|�| − q ), (11)

χ0(q, |�|) = − gq2

16h̄vxvy

�(q − |�|)√
q2 − �2

. (12)

Here, the functional forms of the real and imaginary parts are
the same as in the undoped graphene [33]. However, the tilt
induced direction dependence is encoded in the definition of
� = ω − qη cos φ. Note that only for undoped graphene the
entire tilt dependence enters into the auxiliary frequency �.
As will be shown in the following, in the case of doped tilted
Dirac cone, the tilt dependence will not solely appear through
� [35], but will in addition, heavily affect the integration
limits.

B. Doped tilted Dirac cone

In the case of doped tilted Dirac cone as a result of nonzero
chemical potential (μ 	= 0), both processes of intra- and inter-
band transitions contribute to the polarization function [33].
As in the case of graphene, it turns out to be more convenient
to subtract the polarization of undoped case from doped one,

�χ (q, ω) = χ (q, ω) − χ0(q, ω),

χ (q, ω) = �χ (q, ω) + χ0(q, ω). (13)

Then the undoped contribution, χ0, can be added at the end.
As pointed out, the subscript 0 stands for the undoped case.
After doing some simplification, �χ (q, ω) can be rewritten
as

�χ (q, i�n) = gγ 2

Ah̄2v2
x

∑
k,λ

�(μ − λEλ(k))P (k, q, iλ�n),

(14)
where

P (k, q, i�n) = (i�n + k) + k′m
(i�n + k)2 − (k′)2

. (15)

Here, k′ = |k + q| and m = cos(θk − θk′ ). The function
P (k, q,±i�n) is a complex function. The essential point in
Eq. (14) is that, in comparison to graphene, the step function
not only is a function of k, but also is dependent on the
direction of wave vector k, which makes the integration
more complicated. At the end, we need to perform the Wick
rotation, i�n → � + iε.

In what follows, in order to calculate the real part of
the polarization function for the doped tilted Dirac cone,
the infinitesimal imaginary part of iε can be ignored, and the
integration on k becomes a Cauchy principal value. Doing
the integration on k, generates a logarithmic function the
branch cut of which needs to be carefully handled. This
makes the angular integration slightly complicated. Our trick
to overcome this difficulty is to represent the logarithm itself
as an integral over some auxiliary variable. Then the calculus
of residues can be used to perform the angular integration.
The integral over the auxiliary variable can be calculated at
the end. For details of calculation see Appendix B. The final
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FIG. 1. Different regions in the space of q/kF and h̄ω/μ. Vari-
ous regions determine the sign structure coming from step functions
in the tilted Dirac cone. This figure is produced for the tilt parameter
η = 0.45 and φ = π/3, which will be extensively used in this paper.
In Ref. [34], a similar figure is produced for η = 0.8. In the limit
η → 0, this figure becomes identical to Fig. 6 of Ref. [33]. Part of the
dashed border that separates region 1B and 2B is where the plasmon
kink develops (see Sec. IV of the main text).

result of integration is summarized as

�χ (q,�) = F 1(q,�)

[
G(X+)

∣∣∣x+
u

x+
d

+
∑

G(X−)
∣∣∣x−

u

x−
d

]

+F 0(q,�), (16)

where

F 0(q,�) = g

16πh̄2vxvy

μ q2√
1 − η2

A(q,�)

D2(q,�)
, (17)

F 1(q,�) = g

16πh̄2vxvy

q2√
|�2 − q2| , (18)

G(x) = B(q,�)x
√

x2 − x ′

− sgn(� − q ) cosh−1 x√
x ′ , (19)

and the summation denoted by � indicates sum over discon-
nected pieces. The quantities x ′ and X± are defined as fol-
lows, x ′ = (� + qη cos φ)2 − (1 − η2)(�2 − q2), and Xλ =
2μ̃x + λ(� + qη cos φ). The μ̃ and upper (xλ

u ) and lower (xλ
d )

limits for λ = +(−), corresponding to intra(inter)band pro-
cesses, are limits of integrations which are separately deter-
mined for each region in Fig. 1. The details of the derivations
of various regions are given in Appendix B. Here, sgn(� − q )
is the sign of � − q. The definitions of coefficients A(q,�),
B(q,�), and D(q,�) are given in Appendix B. These func-
tions strongly depend on the tilt parameter η, and hence on
the direction φ of momentum transfer q. Therefore the tilt and
angular dependence in the doped Dirac cone not only comes
through the auxiliary frequency �, but it also appears in the
coefficients of A,B, and D. The later part is missing in the
calculation of Ref. [35].

As a cross-check of our analytic results against the estab-
lished results on graphene [32,33], if we set the tilt parameter
η = 0, it can be easily seen that the above functions reduce to

FIG. 2. Comparison of real and imaginary parts of the polariza-
tion function for a doped tilted Dirac cone with the result in Ref. [34].
The vertical axis is in units of μ/h̄2vxvy and vx0 = 0.8 and vy0 = 0,
i.e., η = 0.8. The momentum q is in the y direction (φ = π/2) and
equals to 4. The blue (solid) and red (dot-dashed) curves correspond
to our calculation and the result in Ref. [34], respectively.

A(q,�) = q2, B(q,�) = q−2. As a result, the real part (16)
reduces to the real part of doped graphene polarization func-
tion [33].

Now let us look into the simpler calculation, which deals
with the imaginary part of polarization function (14) [34].
This can be straightforwardly calculated thanks to a Dirac
delta function arising from the small imaginary part iε in the
denominator of Eq. (14). The imaginary part of the polariza-
tion function in our notation becomes

��χ (q,�) = F2(q,�)
[
G+

0 (x)
∣∣y+

u

y+
d

+ G−
0 (x)

∣∣y−
u

y−
d

]
, (20)

where

F2(q,�) = g

32πh̄2vxvy

q2√
|�2 − q2| ,

G+
0 (x) = x

√
x2 − 1 − cosh−1 x, (21)

G−
0 (x) = x

√
1 − x2 + sin−1 x.

Here the upper (yλ
u ) and lower (yλ

d ) limits are defined by the
roots of Fermi distribution (step function at zero temperature).
Their explicit expressions are given in Appendix C.

Again it can be seen (see Appendix C) that in the case
of η = 0, the imaginary part as well, will be reduced to the
case of graphene. Finally, as the last step, we should add
the undoped polarization function to the �χ (q,�) to de-
rive the doped polarization function. Let us emphasize again
that the relation between the real momentum coordinate q
and the auxiliary momentum q̃ is given by the linear transfor-
mation (2). In the special case of γ = 1, it becomes a simple
rotation φ → φ − θt . If we use our freedom to choose the kx

axis to lie along the kx axis, then θt will be eliminated from
the density-density response.

C. Benchmark against existing results

Nishine and coworkers have already obtained the analytical
formula for the imaginary part [34]. For the real part, they nu-
merically perform the Kramers-Kronig transformation. There-
fore they have numerical results for the Reχ (q, ω). Let us
ensure that our analytic results agree well with their results. In
the following, we reproduce some of the plots related to their
work. In Fig. 2(a), we compare our analytic Eq. (16) for the
real part of polarization (solid blue curve) with the numerical
result of Nishine and coworkers (red dot-dashed). As can
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FIG. 3. Real part of the polarization function for a doped tilted
Dirac cone, for different values of η as indicated in the legend. The
direction of q is fixed by φ = π/2. The vertical axis is in the unit
μ/h̄2vxvy and the horizontal axis is a dimensionless quantity h̄ω/μ.
The magnitude of q/kF in the various panels is 0.25 in (a), 0.5 in (b),
0.75 in (c), and 2.0 in (d). The solid line is the imaginary part of χ

for η = 0.9. For explanation see the text.

be seen, the agreement is perfect. Panel (b) of this figure
compares the imaginary parts adopted from their curves with
those produced by our Eq. (20). The comparisons are made for
η = 0.8 used in Ref. [34]. Also in both cases, the vertical axis
is in units of μ/h̄2vxvy . Again, as can be seen, the agreement
is perfect. Our analytical formula for the real part will enable
us to analytically explore the plasmons and screening in tilted
Dirac cone. In the following section, we start with a qualitative
discussion of plasmons in presence of tilt.

III. PLASMONS: ROLE OF TILT PARAMETER η

One of the significant collective excitations of the elec-
tronic systems in the long-wavelength limit is the plasmon,
which augments the single-particle picture of an electron gas
at the lattice scale with a self-organized collective oscillation
of appropriate electric fields and charge densities [39,40]. In a
two-dimensional electron gas, whether Dirac [7] or non-Dirac,
the plasmon dispersion relation at the long-wavelength limit is
given by ωpl ∝ √

q. Indeed, this follows from a general hydro-
dynamic consideration [41]. In the linear response formula-
tion, plasmons are zeros of the dielectric function. Within the
RPA approximation, the dielectric function will be given by

ε(q, ω) = 1 − Vqχ (q,�), (22)

where, in a single layer of the two-dimensional system, the
Coulomb interaction is given by Vq = 2πe2/q, and χ is the
bare electron-hole bubble. Since Vq is a positive quantity, a
necessary condition to obtain a plasmon branch of excitations
is to require that the real part of density response function is
positive.

In Fig. 3, we have plotted the real part of the polariza-
tion function χ (in the unit μ/h̄2vxvy) for different values
of η. The dot-dashed, dashed, and dotted plots correspond
to η = 0, 0.45, and 0.9, respectively, as indicated in the
legend. The four panels (a), (b), (c), and (d) correspond to

FIG. 4. The overdamped plasmon mode arising from tilt for the
direction φ = π/2. Left (right) panel corresponds to tilt parameter
η = 0.75 (η = 0.9). The shaded region represents damping. The
amount of damping in the right panel is decreased by a factor of
10 to fit in the panel.

q = |q| = 0.25, 0.5, 0.75, and 2.0, respectively. Since the
polarization function is strongly anisotropic, in this figure we
have fixed the direction φ of q to be at φ = π/2. The solid
line is the imaginary part plot of χ for η = 0.9 only. The
above collective mode equation in units of h̄ = vx = 1 can be
written in the dimensionless form, Reχ = q̄vy/(αc), where
α = 1/137 is the fine structure constant, c is the velocity of
light, dimensionless in their natural units. For example, q is
meant in units of kF . Quite generally, the imaginary part of
χ abruptly changes at ω+ = q(1 + η cos φ), which marks the
upper border of intraband PH excitations in the tilted Dirac
cone [34]. For φ = π/2, this reduces to ω+ = q. This is why
in both the real part and the imaginary part (solid line) there
is a discontinuity at this energy scale, which for φ = π/2,
coincides with q itself. The plasmon mode is obtained by
intersecting a constant horizontal line (given by the above
dimensionless equation) with the real part of χ . Let us first
focus on ω > ω+ region (1B in Fig. 1), where the Imχ is
identically zero. As can be seen in all figures, by increasing
the tilt parameter η, the real part of χ is lifted to larger values.
This, in turn, will shift the plasmon modes to higher energies.
Therefore the generic effect of the increase in the tilt is to
shift the plasmons to higher energies. The η = 0 case would
correspond to the graphenelike situation. This is the standard
plasmon branch. This branch will continue to the 2B region
of Fig. 1, but will acquire small damping as there is a small
density of interband PH excitations in 2B.

Now let us look into ω < ω+ (corresponding to region
1A in Fig. 1), where the imaginary part is nonzero and non-
negligible. It is curious to note that for large values of η

(the red dotted line in all panels), the real part of χ for ω <

ω+ becomes positive. This implies a lower-energy plasmon
branch. However, since in the natural units, the magnitude
of the imaginary part—which quantifies the density of free
intraband PH states (black, solid line) available for Landau
damping—is O(1), such a tilt induced extra plasmon branch
will be overdamped. The dispersion of overdamped plasmon
branch is shown in Fig. 4. The shaded region indicates the
damping; larger width means larger damping [42]. As can be
seen, the mode disperses linearly, but it is heavily damped. In
the right panel corresponding to η = 0.9 the damping is so
large that, in order to fit in the panel, we have reduced the
shaded region indicating the damping by a factor of 10. Note
that for η = 0 situation pertinent to graphene, the real part for
ω < ω+ can never be positive, and hence no extra plasmon
solution is conceivable.
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FIG. 5. Real part of χ in units of μ/h̄2vxvy as a function of
dimensionless h̄ω/μ for fixed q/kF = 0.5 and various values of
angle φ indicated in the legend. The left (right) panel corresponds
to η = 0.45 (η = 0.9).

The above discussion in Fig. 3 was for a fixed φ = π/2
orientation of q. Let us now explore the direction depen-
dence. Since the density response is strongly anisotropic,
in Fig. 5, we have shown the angular dependence of Reχ .
Solid (black), dot-dashed (purple), dashed (blue), long-dashed
(green), sparse-dashed (red), and dotted (brown) correspond
to φ = nπ/5 for n = 0, 1, 2, 3, 4, and 5, respectively. The
left (right) panel corresponds to the tilt parameter η = 0.45
(η = 0.9). The first observation concerns the ω > ω+ (1B in
Fig. 1) region. As can be seen by increasing φ from 0 to π

in both panels, the Reχ curves are pushed to the left as ω+
itself depends on the angle φ. Therefore the corresponding
plasmons will have smaller energies. The second observation,
which is the essential difference between the left (η = 0.45)
and right (η = 0.9) panel, is concerned with the ω < ω+
(1A in Fig. 1) region. As can be seen for η = 0.9 in the
right panel, for all angles, except φ = 0, the Reχ develops
a positive branch which gives rise to overdamped plasmons
in ω < ω+ (1A in Fig. 1) region. This indicates that the
additional overdamped plasmon branch is solely due to (large
enough) the tilt of the Dirac cone.

Quite generally, the anisotropy can come from two sources:
(i) the intrinsic anisotropy due to vx 	= vy , or equivalently
γ 	= 1; and (ii) the tilt also acts as a source of anisotropy which
is manifested in Fig. 5 as a strong angular dependence of the
Reχ -vs-ω curves. To investigate this further, in Fig. 6, we have
plotted the constant energy contours of the plasmon dispersion

FIG. 6. Constant energy cuts of the plasmon dispersion for a
moderate tilt parameter η = 0.45. Curves are generated for vx =
vy = c/1000.

for a fixed tilt parameter η = 0.45, for three representative
energies as indicated in the figure. The contours clearly in-
dicate a tilt pattern. Moreover, it is manifestly symmetric with
respect to φ → −φ, which is expected from the Hamiltonian,
as we have assumed the tilt is along kx axis. The plasmonic
energy contours in Fig. 6 reflect the sole effect of tilt parame-
ter, as we have generated this figure for vx = vy . When the tilt
parameter is set to zero, the above ellipses become concentric,
and the aspect ratio becomes 1, meaning that the ellipses
become circles. The above curve is not inversion symmetric
with respect to the origin of the tilt axis (assumed to be along
x axis). This is because we have considered only one tilted
Dirac cone. A second cone with opposite tilt will restore the
inversion symmetry.

IV. TILT-INDUCED KINK IN THE PLASMON DISPERSION

In the case of graphene where the tilt parameter η is
zero, the region 1B of Fig. 1 reduces to a triangular region
which is void of free PH pairs, and separates the intraband
(lower side) continuum of PH excitations from the interband
(upper side) continuum. The plasmons in region 1B are well
defined. The plasmon branch, however, continues to disperse
inside the region 2B of Fig. 1, which contains very small
amount of DOS of interband PH excitations. Therefore the
plasmon branch continuously enters the interband PHC with
a negligible damping [32]. By turning on the tilt parameter, η,
the density of interband PH states in region 1B will not change
significantly. Therefore the plasmon branch will continue to
the region 2B with negligible damping. But as we will see in
this section, the tilt parameter will induce a kink at the border
separating regions 1B and 2B (dashed line in Fig. 1).

Let us start by monitoring the evolution of plasmon branch
as the tilt parameter grows from zero. In Fig. 7, we have
plotted the dispersion of plasmons in the plane of h̄ω/μ and
q/kF . Panels (a)–(f) correspond to angles φ = nπ/5 with n =
0, . . . , 5. Various curves as indicated in the legend correspond
to tilt parameters η = 0, 0.3, 0.45, 0.6, 0.9. The first point to
notice is the following: a common aspect of all panels (all
directions) in Fig. 7 is that in the long wavelength limit for a
fixed small q, the energy of the plasmon resonance increases
by increasing the tilt parameter η. This is true for all angles
in panels (a) to (f). Such ordering in the energy of plasmon
resonances in terms of η does not hold for larger q values,
anymore. The second point to notice is that for φ = π in
panel (f), the plasmon dispersion is less sensitive to the tilt
parameter η. Note that the asymmetry between the φ = 0 and
π in panels (a) and (f) is related to considering only one valley.
Considering both valleys will restore the broken inversion
symmetry. This is because in the tilted Dirac material, the
two tilted Dirac cones have opposite tilt direction. Therefore
keeping only one Dirac cone amounts to manually breaking
the inversion symmetry. Therefore, taking the second valley
into account, will restor only the inversion symmetry, but still
the full rotational symmetry will be absent.

The third and most remarkable point to notice is the
appearance of a kink in the plasmon dispersion. This is more
manifest in panels (c) and (d) corresponding to φ = 2π/5 and
φ = 3π/5, respectively. Indeed, the most manifest form of
kink appears for φ = π/2. The kink is present for any nonzero
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FIG. 7. Dependence of plasmon dispersion on the tilt parameter
η and angle φ. The horizontal axis is q/kF and the vertical axis is
h̄ω/μ. The tilt parameters η = 0, 0.3, 0.45, 0.6, 0.9 are encoded as
solid (red), dashed (green), dotted (blue), dot-dashed (purple), and
the leftmost solid (black) curves, respectively. (a)–(f) correspond to
directions φ = πn/5, with n = 0, . . . , 5.

tilt parameter η. Therefore the above anisotropic kink is a
direct manifestation of the tilt. This fact can be used to directly
map the tilt parameter from the angle-resolved electron energy
loss spectroscopy (EELS). The kink is very anisotropic. To
bring this out, in Fig. 8, for a fixed moderate value of η =
0.45 [18], we have plotted the plasmon dispersion for various
angles. As can be seen, the position of kink is very sensitive to
the direction φ of the momentum q of the plasmon excitations.

FIG. 8. Angular dependence of the plasmonic kink. The figure
is produced for the moderate tilt parameter η = 0.45, pertinent to
realistic materials [18].

FIG. 9. The position of the kink for the tilt parameter η = 0.45.
The solid (blue) line is the plasmon dispersion, and the dashed (red)
curve is the ωA(q ) given by Eq. (23). (a)–(d) correspond to φ = nπ/5
with n = 1, 2, 3, 4, respectively. Note that the width of the plasmon
dispersion in region 2B is exaggerated by a factor of 50 to emphasize
very small damping.

A. Origin of the kink and direct experimental
measurement of the tilt parameter

To investigate the origin of kink, in Fig. 9 we have plotted
the plasmon dispersion (the solid, blue, curve) for the tilt
parameter η = 0.45 and different momentum direction as φ =
nπ/5 with n = 1, 2, 3, 4 for panels (a)–(d). The thickness is
associated with the damping of plasmons. To be clear, we
have exaggerated the thickness by a factor of 50. This clearly
indicates that the emergence of kink goes hand in hand with
the onset of damping. Therefore the kink appears at the border
separating regions 1B and 2B of Fig. 1. To verify this, we
have plotted the border formula by dashed (red) line. As is
expected, the kink begins exactly when the plasmon branch
crosses this border.

The formula for the dashed border, which now, in hind-
sight, can be dubbed kink energy scale, is given by [34]

ωkink = qη cos φ + 2

1 − η2

−
√

q2 + 4qη cos φ

1 − η2
+

(
2η

1 − η2

)2

, (23)

where ωkink and q are dimensionless energy and momentum
scales in the units μ/h̄ and kF , respectively. The above energy
scale is denoted by ωA in Ref. [34], and defines the upper
border of the region denoted as 1B in Fig. 1. This region is
defined in

q(1 + η cos φ) < ω < ωkink, q < 1. (24)

It can be easily checked that, for η = 0, this region reduces
to the triangular region that separates the inter- and intraband
portion of PHC in doped graphene [32,33]. When the borders
coincide with that of the triangular 1B region of the η = 0
situation, the parts of the plasmon branch in 1B and 2B
regions connect to each other without any kink [32]. However,
the tilt pushes the upper boundary of the triangle down, and
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distorts it to the dashed curve in Fig. 1, whereby a kink in the
dispersion of plasmon branch is generated.

The above kink in plasmon dispersion allows for a direct
measurement of the tilt parameter. As pointed out, beyond
the kink that the plasmon dispersion enters the continuum of
interband PH excitations, the imaginary part of the polariza-
tion function χ is negligibly small (the width of the plasmon
in Fig. 9 is exaggerated by a factor of 50 to emphasize the
connection between damping and kink). Therefore the plas-
mon excitations with wave vectors larger than the kink scale
are expected to live long enough to allow for experimental
detection.

Suppose that for a fixed direction φexp, the kink is exper-
imentally determined to occur at (qexp, ωexp). Then the tilt
parameter η satisfies the following equation:

ωexp = ωkink (qexp, φexp, η), (25)

where the ωkink function in the right-hand side is given by
Eq. (23). All quantities with the suffix “exp” can be directly
measured in the experiment. Therefore the only unknown in
Eq. (25) is the tilt parameter η. Therefore this equation enables
a direct experimental measurement of the tilt parameter, η. A
measurement of the tilt by optical experiments has also been
suggested [43]. It would be interesting to compare the results
for a tilt parameter from optical measurements and our present
suggestion based on an EELS measurement [36].

V. ASYMPTOTIC FORMULA

The hydrodynamic limit in electron liquids is quite gener-
ally given by small temporal and spatial variations, ω → 0
and q → 0. The ratio of ω and q, however, can be finite.
We are working in units where the velocities vx = vy = 1
and h̄ = 1. Hence the ratio ω/q is dimensionless. The tilt
parameter, η, being dimensionless, enters the game through a
combination ωη/q. Let us see this by asymptotically expand-
ing our analytic formula for the Reχ .

A. Tilt-dependence of plasmons

In order to investigate the plasmon dispersion in tilted
Dirac cone, we first find the long wavelength limit of polar-
ization function. As pointed out, the tilt parameter appears as
the ωη/q combination. In the long wavelength limit (q → 0)
our formula gives

Reχ (q → 0, ω)

≈
{

D0q
2

4πω2

(
1 − 2ωη

q

)
, η � q,

ωη

q
� 1

D0q
2

4πω2η2 [cos 2φ + H (η)], η � q,
ωη

q
� 1

, (26)

with

H (η) = η2 + (η2 − 2) cos 2φ√
1 − η2

, D0 = gμ

4πh̄2vxvy

, (27)

where we have restored the constants h̄, vx, vy . The η � q

piece is continuously connected to η → 0. Indeed, setting
η = 0 in the first piece of the above function, we obtain the
correct expression for graphene [33]. Therefore one recovers
the standard plasmon dispersion of graphene given by [32,33]

h̄ωpl = h̄ω0
√

q, (28)

where ω0 = √
gμe2/(8πvxvy ) is set by doping, μ, and

Coulomb interaction e2. As pointed out, the
√

q plasmonic
dispersion is a generic characteristic of 2D systems and can
be obtained from hydrodynamic treatment [41].

Now let us look at the other limit where q is still very
small, but η is finite such that the combination ωη/q is very
large. In this regime, the second piece of Eq. (26) determines
the behavior of plasmons. Therefore the plasmon dispersion
is given by

h̄ωpl = h̄ωη

√
q, ωη = ω0

√
cos 2φ + H (η)

η
. (29)

Note that due to the piecewise nature of Eq. (26), the η = 0
in Eq. (29) does not reduce it to Eq. (28). The η = 0 limit is
consistent with the first piece of Eq. (26). As can be seen in the
case of tilted Dirac cone dispersion, in addition to dependence
on the tilt parameter, η, there is a substantial dependence on
the angle φ of the wave vector q. It is not surprising that the
presence of tilt does not change the generic

√
q dependence

of the plasmon oscillations in a monolayer, as it follows from
quite general hydrodynamic arguments [41].

B. Tilt enhances the static screening

Now let us look at the opposite limit where ω is set to
zero. The static polarization contains information about the
screening of external charges in the ground state. In the limit
of low frequency, setting ω = 0 implies � = −qη cos φ. No-
tice that depending on the orientation φ of the wave vector q
with respect to x axis, the auxiliary frequency � can be either
a positive or a negative quantity. From the general expression
in Eq. (16), for negative � (corresponding to cos φ > 0), we
can find the following representation of polarization for any q

and 0 < φ < π :

Reχ (0, q ) = − gμ

2πh̄vxvy

√
(1 − η2)3

×
[

1 + �(q̌ − 2μ)f

(
q̌

2μ

)]
, (30)

where we have restored the constants h̄, vx, vy . The q̌ is
defined as q̌ = q

√
(1 − η2)(1 − η2 cos2 φ) and

f

(
q̌

2μ

)
= − q2

2q̌2

√
1 −

(
2μ

q̌

)2

(1 − η2)(1 − η2 cos 2φ)

+ q2

4q̌μ
cos−1

(
2μ

q̌

)
. (31)

Again, the first point to note is that for η → 0, the
above expression reduces to the corresponding expression of
graphene [32,33,44]. The second point to notice is that, the
screening is controlled by doping μ, and will be ineffective
when μ = 0, as there will be no single-particle DOS at
the Fermi level to take care of screening. This argument
holds for any tilt parameter, in agreement with Eq. (30). The
third point to notice is the strong direction dependence of
screening.

To manifestly see the role of tilt in screening, let us con-
sider a very special regime corresponding to q̌ < 2μ. In this
situation, the second term in Eq. (30) goes away, and the above
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relation will become q-independent. Then it can be easily
seen that the screening is controlled by μ(1 − η2)−3/2. In the
η → 0 limit, it reduces to the standard formula of graphene,
while for η → 1, the above quantity diverges. Therefore, as
far as static screening is concerned, the role of very large
η � 1 is to effectively enhance μ according to the above
formula. Therefore, for a fixed doping level, the larger tilt η

is expected to give rise to better screening.

VI. SUMMARY AND CONCLUSION

In this paper, we obtained an analytic representation of the
full polarization function for a single tilted Dirac cone with
arbitrary tilt parameter, 0 � η < 1, in two space dimensions
and arbitrary doping. Our formula agrees with the numerical
evaluation of the real part of polarization in Ref. [34] that
numerically implements Kramers-Kronig relation. Our result
does not agree with Ref. [35], and the reason is that the
tilt parameter affects the results both through the auxiliary
frequency, Eq. (10), and through the limits of integration.

Our analytic formula enables us to find—in addition to
a trivial tilt-induced anisotropy—two interesting plasmonic
effects. First of all, for strong enough tilt, a new branch of
overdamped plasmon appears, which overlaps with a large
DOS of intraband PH excitations. When the tilt parame-
ter is zero or even small, there is no chance for such an
overdamped plasmonic mode that disperses linearly. Since
this overdamped mode energetically overlaps with intraband
PHC, it is expected to affect the single-particle properties.
Secondly, the upper boundary of the region 1B in Fig. 1 is
strongly modified by the tilt. This modification gives rise to
a kink in the plasmonic dispersion, the position of which is
right at the dashed border in Fig. 1 that separate 1B and 2B
regions. In region 2B, the mode acquires a negligible damping
which is due to its overlap with interband PH excitations. The
small damping allows the branch in region 2B to live long
enough to allow for an experimental detection of the kink
in the plasmonic dispersion. This has been summarized in
Fig. 10, where for the direction φ = π/2 with respect to the
tilt direction we have plotted the plasmon dispersion along
with the imaginary part of the loss function.

The analytic formula for the kink energy scale in Eq. (25)
can be used for a direct experimental measurement of the
kink parameter by measuring the wave vector q and energy
ω at which the kink is taking place. The static limit of our
analytic formula shows that for a fixed chemical potential μ,
bringing the tilt very close to 1 will substantially enhance
the screening. In these appendices, we provide the detailed
derivation of the analytic form of the polarization function for
a tilted two-dimensional Dirac cone.

APPENDIX A: UNDOPED CASE

The undoped polarization function (8) consists of two
terms. The second term is the same as the first term if we
replace � → −�. The form factor is defied as

fλ,λ′ (k, q ) = fλ,λ′ (k, k′) = 〈k, λ||k′, λ′〉
= 1

2 (1 + λλ′ cos(θk − θk′ )). (A1)

FIG. 10. Imaginary part of the loss function Im|1/ε(q, ω)| and
the dispersion of the plasmons for different tilt parameters and
fixed momentum direction φ = π/2. The solid line is the plasmon
dispersion, and the dashed curve denotes the borders of the PHC.
The lower bound of the interband PHC is the ωkink, which is given
by Eq. (23). The tilt parameter in (a)–(d) is η = 0.3, 0.45, 0.6, 0.9,
respectively.

For simplicity of calculation, we change the integration vari-
able θ − φ → θ (note that for the polar angle θk of the
integration variable k we simply use θ , and the polar angle
of q is φ) and find

cos(θk − θk′ ) = k + q cos θ

|k + q| ,

|k + q| =
√

k2 + q2 + 2kq cos θ. (A2)

Let us start with the imaginary part, which is easier,

�χu(q,�) = −gπγ 2

Ah̄v2
x

lim
ε→0

∑
k

f
ij
−,+(k, q )

×{δ(� − k − |k + q|)
− δ(� + k + |k + q|)}. (A3)

Here, we replaced vxk ≡ k, vxq ≡ q, vx0 = ηvx cos θt , vy0 =
ηvy sin θt , and � ≡ ω − qη cos φ. Furthermore, in Eq. (A3),
the first (second) term is nonzero whenever � > 0 (� < 0).
By the fluctuation dissipation theory, we find �χ0(q, |�|) =
−�χ0(q,−|�|) or �χ0(q, |ω|) = −�χ0(−q,−|ω|). So we
need to do the integration only for one sign of �. In the
following, we perform the momentum space integration for
only the first term in Eq. (A3), which gives

�χ0(q, |�|) = − gq2

16h̄vxvy

sgn(�)√
�2 − q2

�(|�| − q ). (A4)
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Here we used

δ(� − k − |k + q|) = |k + q|
kq

δ(θ − θ0)

| sin θ0| ,

cos θ0 = �2 − 2�k − q2

2kq
, (A5)

which given the fact that −1 � cos θ0 � 1, implies � > q

and � − q � 2k � � + q. Using Kramers-Kronig dispersion
relation, the real part will be given by principle integration on
domain ω′ as

χ0(q, ω) = p

π

∫ +∞

−∞

�χ0(q, ω′)
ω′ − ω

dω′

= p

π

∫ +∞

−∞

�χ0(q,�′)
�′ − �

d�′, (A6)

By substitution of �
′2 − q2 = t2, and doing integration on

0 � t � εD (εD is energy cutoff which goes away by dimen-

sional regularization [45]), we find

χ0(q, |�|) = − gq2

16h̄vxvy

�(q − |�|)√
q2 − �2

. (A7)

The above expressions are identical to that of up-right (non-
tilted) Dirac cone, except that ω → � = ω − qη cos φ. This
is only true for the undoped tilted Dirac cone. In the doped
cases, as we will see, the tilt will heavily affect the limits
of integration. Ignoring this point gives rise to an incorrect
result [35].

APPENDIX B: DOPED CASE

The polarization function of tilted Dirac cone in the doped
case has a more complicated structure due to the combination
of two effects: (i) the angular dependence of the single-
particle dispersion and (ii) the nonzero chemical potential.
In order to find the real and imaginary parts of polarization,
we subtract the polarization function of the undoped system,
and then finally after doing the integration on k space, we
add it back. If we subtract Eq. (8) and toggle the integration
variables in terms involving �(μ − Ek′,+) as k ↔ −k′ and
θk ↔ θk′ + π (k′ = k + q), we find

�χ (q,�) = gγ 2

2Ah̄2v2
x

∑
k

{
�(μ − k − kη cos θk )

(
1 + cos(θk − θk′ )

� + k − k′ + iε
+ 1 − cos(θk − θk′ )

� + k + k′ + iε

)

−�(μ − k + kη cos θk )

(
1 + cos(θk − θk′ )

� − k + k′ + iε
+ 1 − cos(θk − θk′ )

� − k − k′ + iε

)}
. (B1)

It consists of two parts that can be transformed to each other by � → −� and η → −η. The important point in doing the rest
of the calculation is that in Eq. (14) the step function depends on the direction of wave vector k with respect to x axis. In what
follows, we change the integration variable θk as θ + φ → θ , which causes the denominators to be independent of the direction
φ of q and we will have k′ =

√
k2 + q2 + 2kq cos θ . However, the step functions corresponding to Fermi occupation numbers

will depend on the direction of both q and k. This makes the angular integration slightly more complicated than the cases without
angular-dependent energy spectrum—like graphene. It turns out to be more convenient if we first perform the k integration and
finally do the angular integration on θ by using the calculus of residues [46].

1. Real part

The real part of polarization �χ can be represented as a Cauchy principal value. This amounts to setting the imaginary part
in the denominator of Eq. (14) equal to zero,

�χ (q,�) = gγ 2

4π2h̄2v2
x

∫
dk

{
�(μ − k − kη cos(θ + φ))

(� + k) + k′m
(� + k)2 − (k′)2

+�(μ − k + kη cos(θ + φ))
(−� + k) + k′m

(−� + k)2 − (k′)2

}
,

where m is the new representation of cos(θk − θk′ ) after above changing variable and represents as (k + q cos θ )/k′. Now we do
integration on k, where the step function determines the upper limit k as

�χ (q,�) = gγ 2

4π2h̄2v2
x

∫
dθ

∫ μ/(1+η cos(θ+φ))

0
kdk

(� + k) + k′m
(� + k)2 − (k′)2

+
∫

dθ

∫ μ/(1−η cos(θ+φ))

0
kdk

(−� + k) + k′m
(−� + k)2 − (k′)2

.

In the following, we separate the first (+�) and second (−�) terms of the above relation. The integration on k gives a
combination of simple fractions and logarithmic terms. The important technical point to notice is that since the logarithmic
terms appear in a definite integral, which involves the difference between the logarithmic functions at two integration limits, it
will be meaningful when (i) the argument of logarithm is positive definite, or (ii) the argument of logarithm is negative definite.
In the later case, an overall phase of π from the two ends cancels out. Requiring the argument of logarithm to be positive definite,
or negative definite for 0 � θ � 2π gives some constraints for the integration on k of each term of the above equation. Let us
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denote the first (second) term of the above integral as R+ (R−). Then we can write

R+(q,�) = gγ 2

4π2h̄2v2
x

∫
dθ

∫ μ/(1+η cos(θ+φ))

0
kdk

(� + k) + k′m
(� + k)2 − (k′)2

= gγ 2

4π2h̄2v2
x

∫
dθ

{
μ(� + q cos θ )

2(1 + η cos(θ + φ))(� − q cos θ )
+ μ2

2(1 + η cos(θ + φ))2(� − q cos θ )

− μ(�2 − q2)

2(1 + η cos(θ + φ))(� − q cos θ )2
− (�2 − q2)

(
(� + q cos θ )

4(� − q cos θ )2
− (�2 − q2)

4(� − q cos θ )3

)

× ln[K+(μ+)]�(q − �)�(μ − μ+) − (�2 − q2)

(
(� + q cos θ )

4(� − q cos θ )2
− (�2 − q2)

4(� − q cos θ )3

)

× ln[K+(μ)](�(� − q ) + �(q − �)�(μ+ − μ))

}
(B2)

and

R−(q,�) = gγ 2

4π2h̄2v2
x

∫
dθ

∫ μ/(1−η cos(θ+φ))

0
kdk

(−� + k) + k′m
(−� + k)2 − (k′)2

= gγ 2

4π2h̄2v2
x

∫
dθ

{
μ(� − q cos θ )

2(1 − η cos(θ + φ))(� + q cos θ )
− μ2

2(1 − η cos(θ + φ))2(� + q cos θ )

+ μ(�2 − q2)

2(1 − η cos(θ + φ))(� + q cos θ )2
+ (�2 − q2)

(
(� − q cos θ )

4(� + q cos θ )2
− (�2 − q2)

4(� + q cos θ )3

)
ln[K−(μ−

1 )]

×�(� − q )�(μ − μ−
1 ) + (�2 − q2)

(
(� − q cos θ )

4(� + q cos θ )2
− (�2 − q2)

4(� + q cos θ )3

)
ln[K−(μ−

2 )]�(q − �)�(μ − μ−
2 )

+ (�2 − q2)

(
(� − q cos θ )

4(� + q cos θ )2
− (�2 − q2)

4(� + q cos θ )3

)
ln[K−(μ)](�(� − q )�(μ−

1 − μ) + �(q − �)�(μ−
2 − μ))

+ (�2 − q2)

(
(� − q cos θ )

4(� + q cos θ )2
− (�2 − q2)

4(� + q cos θ )3

)
(ln[K−(μ)] − ln[K−(μ

′−)])�(� − q )�(μ − μ
′−)

}
, (B3)

where

K+(μ) = 1 + 2μ(� − q cos θ )

(1 + η cos(θ + φ))(�2 − q2)
, K−(μ) = 1 − 2μ(� + q cos θ )

(1 − η cos(θ + φ))(�2 − q2)
. (B4)

When the k integration runs up to the upper limit given in terms of μ, the argument of the log function given in Eq. (B4) might
change sign. We need to cut the integral off once the sign change occurs. The sign changes from positive (negative) to negative
(positive) occur at μ+, μ−

1 , μ−
2 (μ

′−), where

μ+ = (q2 − �2)
1 + η cos(φ + υ )

2(� − q cos υ )
, υ = arccos

[
αβ −

√
α2β2 − (β2 + ζ 2)(α2 − ζ 2)

(ζ 2 + β2)

]
, (B5)

μ−
1 = (�2 − q2)

1 − η cos(φ + υ )

2(� + q cos υ )
, υ = − arccos

[−αβ +
√

α2β2 − (β2 + ζ 2)(α2 − ζ 2)

(ζ 2 + β2)

]
, (B6)

μ−
2 = (�2 − q2)

1 − η cos(φ + υ )

2(� + q cos υ )
, υ = − arccos

[−αβ −
√

α2β2 − (β2 + ζ 2)(α2 − ζ 2)

(ζ 2 + β2)

]
, (B7)

μ
′− = (�2 − q2)

1 − η cos(φ + υ )

2(� + q cos υ )
, υ = arccos

[−αβ −
√

α2β2 − (β2 + ζ 2)(α2 − ζ 2)

(ζ 2 + β2)

]
. (B8)

Here, in the right-hand side of the above relations, ζ = q + �η cos φ, β = �η sin φ, and α = qη sin φ. The definitions of
μ+, μ−

1 , μ−
2 (μ

′−) are (is) such that the arguments K± of logarithm are always positive (negative) for every value of 0 < θ < 2π .
So far, we have done the integration on k. The next step is to do the angular integration. This can be basically done with

the calculus of residues. This is straightforward for terms involving fractions of polynomials of trigonometric functions of θ .
When we face the logarithmic function, one has to handle a branch cut. For this, the trick we use is to represent the logarithmic
functions in terms of and integration over some auxiliary variable τ as

ln(1 + K ) =
∫ 1

0

Kdτ

1 + τK
. (B9)
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We use this representation and do the angular integration with the calculus of residues. At the end, we perform the integration
on τ . We can summarize the final result for R± as a piecewise continuous function of the following form:

R+(q,�) = F 0(q,�) + F 1(q,�)

⎧⎪⎨
⎪⎩

�(� − q ), G(X+(μ))|10
�(q − �)�(μ+ − μ), G(X+(μ))|x+

u (μ)
0

�(q − �)�(μ − μ+), G(X+(μ+))|x+
u (μ+ )

0

(B10)

and

R−(q,�) = F 0(q,�) + F 1(q,�)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(� − q )�(μ−
1 − μ), G(X−(μ))|x−

u (μ)
0

�(q − �)�(μ−
2 − μ)), G(X−(μ))|x−

u (μ)
0

�(� − q )�(μ − μ−
1 ), G(X−(μ1

−))|x−
u (μ−

1 )
0

�(q − �)�(μ − μ−
2 ), G(X−(μ2

−))|x−
u (μ−

2 )
0

�(� − q )�(μ − μ
′−), G(X−(μ′

−))|x−
u (μ

′− )
0

+G(X−(μ))|x−
u (μ)

0 − G(X−(μ))|1
x−

d (μ)

. (B11)

Using the above R±, we can summarize Re�χ as

�χ (q,�) = F 0(q,�) + F 1(q,�)

(
G(X+)|x+

u

x+
d

+
∑

G(X−)|x−
u

x−
d

)
, (B12)

where the ± in X± points to the R±. The summation
∑

in G(X−) indicates that in the last piece of Eq. (B11) we have three
different regions contributing to the integral. The functions F 0, F 1, and G are given by

F 0(q,�) = g

16πh̄2vxvy

μ q2√
1 − η2

A(q,�)

D2(q,�)
, (B13)

F 1(q,�) = g

16πh̄2vxvy

q2√
|�2 − q2| , (B14)

G(x) = B(q,�)x
√

x2 − x ′ − sgn(� − q ) cosh−1 x

x ′ , (B15)

where sgn(� − q ) is the sign function. The coefficient A(q,�), B(q,�), D(q,�), and Xλ=± have the following definitions:

A(q,�) = q2(η4 + 8η2 − 8) + 4η4�24qη� cos φ(5η2 − 4) + 4η2�2(η2 − 1) cos 2φ − qη3(4� cos 3φ + qη cos 4φ),

B(q,�) = ((q + η� cos φ)2 − η2(�2 − q2) sin2 φ)/D2(q,�), D(q,�) = (q + η� cos φ)2 + η2(�2 − q2) sin2 φ, (B16)

Xλ = 2μ̃x + λ(� + qη cos φ), x ′ = (� + qη cos φ)2 − (1 − η2)(�2 − q2), (B17)

x−
u(d ) = 1

2μ
((� + qη cos φ) − (+)

√
x ′), x+

u = − 1

2μ
((� + qη cos φ) +

√
x ′). (B18)

Here, μ̃ represents either of μ+, μ−
1 , μ−

2 , μ
′−, depending on which piece of the R± functions in Eqs. (B10) and (B11) supports

the value of Re�χ . The above results are benchmarked in Fig. 2 against the numerical results of Ref. [34] (where the real part
is numerically obtained by using Kramers-Kronig relation).

2. Imaginary part

In order to calculate the imaginary part, we start from Eq. (B1) and use �[1/(x + iε)] = −πδ(x) to write

��χ (q,�) = − gπγ 2

2Ah̄2v2
x

∑
k

�(μ − k − kη cos θk )((1 + cos(θk − θk′ ))δ(� + k − k′) + (1 − cos(θk − θk′ ))δ(� + k + k′))

−�(μ − k + kη cos θk )((1 + cos(θk − θk′ ))δ(−� + k − k′) + (1 − cos(θk − θk′ ))δ(−� + k + k′)). (B19)

We only need to evaluate the above function for positive �, and the negative � results can be obtained by appropriate symmetry
relations. This assumption makes the second term in the above relation irrelevant as the Dirac delta function does not pick any
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pole. Therefore we are left with the positive � contribution from the first term that splits into three parts:

I1(q,�) = − gγ 2

8πh̄2v2
x

∫
dk�(μ − k − kη cos θ )(1 + cos(θk − θk′ ))δ(� + k − k′),

I2(q,�) = gγ 2

8πh̄2v2
x

∫
dk�(μ − k + kη cos θ )(1 + cos(θk − θk′ ))δ(−� + k − k′), (B20)

I3(q,�) = gγ 2

8πh̄2v2
x

∫
dk�(μ − k + kη cos θ )(1 + cos(θk − θk′ ))δ(−� + k + k′).

By change of variable θ → θ + φ and using δ[f (z)] = δ(z − z0)/|f ′(z0)|, we rewrite the delta functions as δ(θ −
θ0)/|kq sin θ0|. In this equation, the cos θ0 for each delta function has its own definition, and obviously sin θ0 = ±

√
1 − cos2 θ0.

The trigonometric inequality −1 � cos θ0 � 1 places some constraints on the q and � as follows:

δ(� + k − k′) : cos θ0 = (�2 + 2�k − q2)/2kq, � + 2k > q

δ(−� + k − k′) : cos θ0 = (�2 − 2�k − q2)/2kq, −� + 2k > q

δ(−� + k + k′) : cos θ0 = (�2 − 2�k − q2)/2kq, � − q < 2k < � + q. (B21)

With the above expressions for cos θ0 and sin θ0, the above three integrals can be evaluated to give

I1(q,�) = − gγ 2

32πh̄2v2
x

q2√
q2 − �2

�(q − �)
∫ ∞

1
dp

√
p2 − 1 �(a+(q,�) − b+(q,�)p ± c+(q, ω)

√
p2 − 1)

= − gγ 2

32πh̄2v2
x

q2√
q2 − �2

�(q − �)
{
�(a+(q,�) + b+(q,�))

(
G+

0 (x)
∣∣r+

1

1 + G+
0 (x)

∣∣r+
2

1

)
+�(−a+(q,�) − b+(q,�))�(a+(q,�)2 − b+(q,�)2 + c+(q,�)2)G+

0 (x)|r+
2

r+
1

}
, (B22)

I2(q,�) = gγ 2

32πh̄2v2
x

q2√
q2 − �2

�(q − �)
∫ ∞

1
dp

√
p2 − 1 �(a−(q,�) − b−(q,�)p ± c−(q, ω)

√
p2 − 1)

= gγ 2

32πh̄2v2
x

q2√
q2 − �2

�(q − �)
{
�(a−(q,�) + b−(q,�))

(
G+

0 (x)
∣∣r−

1

1 + G+
0 (x)

∣∣r−
2

1

)
+�(−a−(q,�) − b−(q,�))�(a−(q,�)2 − b−(q,�)2 + c−(q,�)2)G+

0 (x)|r−
2

r−
1

}
, (B23)

I3(q,�) = gγ 2

32πh̄2v2
x

q2√
�2 − q2

�(� − q )
∫ 1

−1
dp

√
1 − p2 �(a−(q,�) − b−(q,�)p ± c−(q, ω)

√
p2 − 1)

= gγ 2

32πh̄2v2
x

q2√
�2 − q2

�(� − q )
{
2�(a−(q,�) + b−(q,�))G−

0 (x)|1−1

+�(a−(q,�) + b−(q,�))�(�−(q,�))�(1 − |u(q,�)|)(G−
0 (x)

∣∣r−
1

−1 + G−
0 (x)

∣∣r−
2

−1

)
+�(a−(q,�) + b−(q,�))�(�−(q,�))�(−1 − u(q,�))G−

0 (x)|r−
2

r−
1

−�(−a−(q,�) − b−(q,�))�(�−(q,�))�(|u(q,�)| − 1)G−
0 (x)|r−

2

r−
1

+�(−a−(q,�) − b−(q,�))�(�−(q,�))�(1 − |u(q,�)|)(G−
0 (x)

∣∣r−
2

−1 + G−
0 (x)

∣∣r−
2

−1

)}
, (B24)

In above equations, p = (2k ± �)/q, where + stands for I1 and − stands for I2, I3. The definition of functions used in the above
relations is given by

G+
0 (x) = x

√
x2 − 1 − cosh−1(x), G−

0 (x) = x
√

1 − x2 + sin−1(x), (B25)

rλ
1(2) = −aλ(q,�)bλ(q,�) − (+)cλ(q,�) + λ

√
�λ(q,�)

(bλ(q,�))2 − (cλ(q,�))2
, �λ(q,�) = (aλ(q,�))2 − (bλ(q,�))2 + (cλ(q,�))2, (B26)

195415-13



Z. JALALI-MOLA AND S. A. JAFARI PHYSICAL REVIEW B 98, 195415 (2018)

where λ = ± and

a±(q,�) = 2μ ± � ± qη cos φ, bλ(q,�) = −(q + �η cos φ),

cλ(q,�) = λη sin φ
√

|q2 − �2|, u(q,�) = a−(q,�)

b(q,�)
. (B27)
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