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Spatial control of carrier capture in two-dimensional materials: Beyond energy selection rules
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The carrier capture from a two-dimensional transition metal dichalcogenide monolayer into a quasi-zero-
dimensional potential is a decisive process to exploit these remarkable materials as, e.g., single-photon sources.
Here, we study theoretically the phonon-induced carrier capture in a MoSe2 monolayer using a Lindblad single-
particle approach. Although one decisive control parameter of the capture efficiency is the energy selection rule,
which links the energy of the incoming carriers to that of the final state via the emitted phonon, we show that
additionally the spatiotemporal dynamics plays a crucial role. By varying the direction of the incoming carriers
with respect to the orientation of the localized potential, we introduce a new control mechanism for the carrier
capture: the spatial control.
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I. INTRODUCTION

The carrier capture from a higher-dimensional system
into a lower-dimensional one is a crucial process, which
has been studied in many semiconductor systems [1–7]
following the experimental developments in device prepara-
tion (see, e.g., Refs. [8–13]). Also in the new class of two-
dimensional (2D) materials, especially the monolayers of a
transition metal dichalcogenide (TMDC) [14–17], quasi-zero-
dimensional (0D) confinement potentials can be effectively
formed by, e.g., strain tuning [18–20], resulting also in the
formation of single-photon emitters [21–26]. To populate such
a TMDC quantum dot, the phonon-induced carrier capture
from the extended 2D monolayer states into the 0D quantum
dot (QD) states could be exploited.

For an efficient carrier capture, having in mind Fermi’s
golden rule for the scattering rates, one might first think of
energy selection rules. For example, if the carrier capture
takes place by emission of a phonon, for an efficient capture
the excess energy of the carriers in the 2D system should
be one phonon energy above the energy of the discrete state
in the QD. The capture rate should then be proportional to
the squared transition matrix element between the delocalized
initial state and the localized final state. However, this simple
picture neglects crucial aspects of the carrier capture on
the nanometer scale. First and foremost, since the electron-
phonon interaction is a local interaction, the carrier capture
happens locally, i.e., it should take place only when the
carriers are close to the QD. Using a simple rate between the
delocalized and localized states would instantaneously reduce
the density in the whole 2D material and not only close to
the QD. This locality is well reproduced by approaches which
fully take into account the off-diagonal nature of the electron
density matrix [27–30]. The local nature, on the other hand,
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opens up the possibility to control the capture process beyond
the energy selection rules. Employing a recently established
Lindblad single-particle (LSP) approach [30] for the electron
density matrix, which combines the ability to correctly treat
the locality of scattering processes and the presence of quan-
tum superposition states with a high numerical efficiency, we
will show that by manipulating only the spatial configuration
of the initial structure, without modifying its energetic charac-
teristics, the spatiotemporal dynamics of the capture process
can be modified in a wide range. Our approach complements
the already existing theoretical approaches, ranging from rate
equations to fully quantum kinetic treatments [2,4,31–36]
providing a computational light approach with the ability to
account for the full spatiotemporal dynamics.

To be specific, we study the dynamics of an electronic wave
packet traveling in a TMDC monolayer, which impinges on
a localized potential forming an asymmetric QD. We partic-
ularly focus on the spatially resolved dynamics in contrast
to the bare relaxation dynamics of the state populations. We
show that the capture process into the localized states of the
QD depends sensitively on the geometry of the problem, in
particular, when the QD is rotated with respect to the wave
front of the incoming packet. This opens up the possibility for
a new way of manipulating the carrier capture, i.e., performing
a spatial control. We demonstrate spatial control of the occu-
pations of the QD as well as of the coherences between the
discrete levels of the QD, which result in spatial oscillations
of the captured charge density, i.e., the here presented spatial
control is naturally quantum mechanical. Our results, which
may be extended to other two-dimensional materials, change
the view of thinking about the carrier capture on the nanoscale
by highlighting the importance of spatial information for
designing future devices with an embedded QD.

II. THEORETICAL BACKGROUND

A. System setup

For our studies we consider an electronic wave packet trav-
eling in a TMDC monolayer impinging on a QD potential as
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FIG. 1. (a) Sketch of the wave packet impinging on an asym-
metric TMDC QD. The semiaxes of the QD are given by a (long
semiaxis) and b (short semiaxis) [see Eq. (2)]. The angle θ defines
the tilt between the propagation direction of the incoming wave
packet and the long axis of the QD. (b) Square moduli of the
bound-state wave functions for the potential in Eq. (2) with θ = 0
and (c) corresponding density of states (DOS) of the conduction band
showing the energies of the four bound states with ε < 0.

sketched in Fig. 1(a). Such potentials could be obtained, e.g.,
by means of strain [18–20], whose presence induce a change
in the dispersion relation [37] and which has allowed several
experimental studies where a strong strain-induced optical
response in correspondence of the potential has been observed
[21–26]. Carriers can be captured inside the potential by the
emission of a longitudinal optical (LO) phonon with energy
ELO, as will be described in Sec. II B.

For the description of the states, we will use the envelope
function formalism, in which the states |α〉 corresponding
to the wave functions ψα (r) are obtained by solving the
Schrödinger equation

[HTMDC + V (r)]ψα (r) = εαψα (r) , (1)

where r is the 2D position vector in the xy plane, HTMDC

is the Hamiltonian of the TMDC lattice, and V (r) the QD
potential (see, e.g., Ref. [38]). For the confinement potential

we assume an elliptically shaped QD with long semiaxis a and
short semiaxis b, as sketched in Fig. 1(a), which we model by

V (r) = −V0sech

(√
x ′(θ )2

a2
+ y ′(θ )2

b2

)
, (2)

where sech is the hyperbolic secant and(
x ′(θ )

y ′(θ )

)
=

(
cos(θ ) sin(θ )

− sin(θ ) cos(θ )

)(
x

y

)
. (3)

According to Eq. (3), the long axis of the QD is tilted by
the angle θ with respect to the x axis. Elongated confinement
potentials in TMDCs are not uncommon, as has been seen
by AFM measurements and is reflected in the polarization
dependence of the light emission [24].

We restrict ourselves here to a single electronic subband.
Details on the TMDC model used in HTMDC can be found in
the Appendix A. The solutions of the Schrödinger equation
are composed of continuum states with energies above the
band gap and delocalized over the 2D monolayer, and of nb

bound states (α = 1, . . . , nb), which are spatially localized in
the QD region and have a discrete energy spectrum below the
TMDC band minimum.

As a material for our simulations we choose MoSe2 with
the material parameters given in Appendix A. For the QD, we
set b = 3 nm, a = √

2b = 4.2 nm, and V0 = 35 meV, while θ

is a variable tilt angle. A potential depth of this magnitude for
the material class of TMDCs is in agreement with estimations
from strain-induced emitters in experiments [24,39] and with
theoretical, e.g., DFT, calculations for experimentally achiev-
able strain values [20,40,41]. With these parameters the QD
has nb = 4 bound states at energies εi lying −19.2,−9.0,
−6.1, and −3.1 meV below the bottom of the conduction
band of the 2D material. The square moduli of the wave
functions of the bound states are depicted in Fig. 1(b) for the
case of θ = 0, i.e., for a QD elongated along the x direction.
State |1〉 is the ground state with even parity and a weak
elongation along x. The excited states |2〉 and |3〉 have an
odd-parity and are elongated along the long and short axes
of the QD, respectively, which for θ = 0 coincide with the
x and y directions. State |4〉 has again even parity and is
elongated along the long axis. The corresponding density
of states (DOS) of the structure is schematically shown in
Fig. 1(c).

The initial wave packet is chosen to be of wave-front type,
which in the basis of the free TMDC states can be written as

ρ◦
k+ k′

2 ,k− k′
2

∝ e− 1
2 (k′

x�x )2
e−ık′

xx0e
−
(

(h̄2k2
x )/(2m∗ )−E0√

2�E

)2

× θ (kx )δ(k′
y )δ(ky ) , (4)

where k = (kx, ky ) is a 2D wave vector and θ (kx ) is the
Heaviside step function. The wave packet has a finite width
in space determined by �x = 10 nm and in energy given by
�E = 5 meV. It is centered at x0 = −70 nm, i.e., sufficiently
far from the QD such that initially there is no overlap with the
QD. The excess energy, which determines the velocity of the
wave packet, is taken to be E0 = 26.8 meV ≈ (ε2 + ε3)/2 +
ELO, such that from an energetic point of view the capture into
the states |2〉 and |3〉 should be equally probable.
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FIG. 2. Sketch of an experimental realization. A spherically sym-
metric wave packet is excited by optical excitation at t = 0 and
subsequently expands as a radially symmetric wave front for t > 0.
In the far field (black rectangle) close to the QD, the wave packet can
be approximated as propagating only in x direction.

We remark that the considered wave packet can be found
in the far field of a photoexcited wave packet as it is sketched
in Fig. 2. However, we keep the form of the wave packet as
simple as possible to be able to extract the physical mech-
anisms most clearly, while calculations with wave packets
having finite ky components possess the same features (not
shown). The energy width of �E = 5 meV corresponds to
the spectral width of a laser pulse of about 150 fs duration,
which is a standard value for femtosecond laser pulses. The
strong spatial localization can be achieved by experimental
techniques able to confine light well below the diffraction
limit, such as near-field spectroscopy or plasmonic nanostruc-
ture [42–49]. These energy and timescales could be combined
as typically done in the field of ultrafast nano-optics (see,
e.g., Ref. [50] for a review on experimental applications).
In view of these experimental developments in the ability of
creating such strongly localized excitations, nanometric wave
packets have been extensively studied in the past (see, e.g.,
Refs. [27,28,51–53]).

We emphasize that the key parameter in our study will
be the relative orientation of the wave-packet propagation
direction with respect to the orientation of the elongated QD.
Because we fix the propagation direction to the x direction,
the relative orientation is quantified by the tilt angle θ of the
potential as introduced in Eq. (2).

B. Description of the dynamics

To describe the dynamics of the wave packet, we set up
the equation of motion for the density matrix ραα′ , which in
general can be written as [52–56]

dραα′

dt
= dραα′

dt

∣∣∣∣
free

+ dραα′

dt

∣∣∣∣
scat

, (5)

where dραα′/dt |free = −ı(εα − εα′ )ραα′/h̄ gives the
scattering-free contributions, while dραα′/dt |scat describes the
scattering.

The initial wave packet [cf. Eq. (4)] corresponds to an
excitation of only continuum states, from which a charge

transfer into the bound states may take place by scattering
mechanisms. We thereby consider the case of carriers excited
in the free particle states of the TMDC. We note that excitonic
effects play a major role in TMDC monolayers, especially
in their optical properties [57–63]. However, in view of the
excess energy and to focus on the effect of 2D spatiotemporal
dynamics rather than excitonic relaxation (see Appendix B for
further comments), we neglect excitonic effects for now.

In view of the initial conditions considered here, we will
concentrate on the carrier capture by emission of intravalley
LO phonon modes, whose Fröhlich interaction induces scat-
tering coefficients gq between states |k + q〉 and |k〉 in the
form of [64,65]

gq ≡ gq = gFr√
A

erfc(qd/2), (6)

with q being the phononic wave vector, while erfc(x) is the
complementary error function and the constants gFr and d

depend on the material. Other scattering mechanisms, i.e.,
with different phonon modes or Coulomb interaction, are not
efficient here and hence disregarded, see Appendix C.

In the dynamics of Eq. (5), we describe the scattering
using the LSP equation which we recently developed [30] by
tailoring an alternative Markov approach [55,66], the latter
already used for spatiotemporal studies in several materials
[52,53,56]. In particular, the scattering terms can be written
as

dραα′

dt

∣∣∣∣
scat

= 1

2

∑
ᾱᾱ′,q

(
A

q
αᾱA

q∗
α′ᾱ′ρᾱᾱ′ −A

q∗
ᾱαA

q
ᾱᾱ′ρᾱ′α′

) + H.c. ,

(7)

where

A
q
αα′ =

√
2π

h̄
gαα′;q

e
−

(
εα−ε

α′ +ELO
2ε̄

)2

(2πε̄2)
1
4

(8)

and H.c. denotes Hermitian conjugate while gαα′;q =∑
k〈α|k〉gq〈k + q|α′〉. We set ε̄ = 3.5 meV (ε̄ → 0) for the

transitions into bound (continuum) states. More details on the
approach, including a discussion about its ability to recover
most of the features obtained in a quantum kinetic description
and the meaning of ε̄, may be found in Ref. [30]. We stress
however that the LSP equation is a Markovian treatment
[55,66], therefore it is computationally much lighter than a
full quantum kinetic approach [28,29,54]. This computational
lightness of the LSP approach has allowed us to extend
previous studies, which have been mainly focused on effective
1D systems, to fully 2D systems. Nevertheless, this treatment
is able to describe arbitrary spatially inhomogeneous carrier
distributions and, importantly, naturally includes the possibil-
ity that the final state of a scattering process is given by a
quantum-mechanical superposition state.

The spatiotemporal dynamics of electrons in the TMDC
monolayer are obtained by numerically integrating the
equations of motion. We remind that diagonal elements of the
density matrix fα = ραα are the populations, while the off-
diagonal ones ραα′ with α′ �= α are the coherences. Outside
the QD region the continuum 2D states are essentially plane
waves, and the full single-electron density matrix including
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FIG. 3. Electronic density n(r) for the wave-packet impinging on the QD for θ = 0 without (left column) and with (right column) electron-
phonon coupling. The charge has been normalized to the height of the initial wave packet. The black line marks the QD region (defined as
where the potential has dropped to 10% of its maximum). The three rows show snapshots of the spatiotemporal dynamics for the three phases:
propagation towards the QD at t = 0.3 ps, crossing of the QD at t = 0.5 ps, and transmission at t = 1.0 ps.

both diagonal and off-diagonal elements has to be taken into
account for describing spatial inhomogeneities. The popula-
tions may be interpreted as distribution in energy, while the
distribution in space is provided by

n(r) =
∑
α,α′

ραα′ψ∗
α′ (r)ψα (r) , (9)

where α, α′ run over all the states (continuum and bound),
thus providing the whole electronic distribution (i.e., captured
or not). The spatial distribution of the trapped charge nQD(r) is
described analogously when restricting α, α′ to the nb bound
states.

III. RESULTS

A. Capture dynamics

We start our analysis by discussing the spatiotemporal
dynamics of the capture process. Snapshots of the spatiotem-
poral evolution of the wave packet without electron-phonon
coupling (left column) and with electron-phonon coupling
(right column) are shown in Fig. 3. The dynamics can be
separated into three phases: (i) the wave-packet propagation
towards the QD (first row), (ii) the crossing of the wave packet
over the QD (second row), and (iii) the motion of the trans-
mitted wave packet (third row). The wave-packet propagation
in phase (i) is essentially the same with and without phonon
interaction. At t = 0.3 ps, the wave front has just reached the
QD and the phonon emission is not yet effective. There is
only a very weak redistribution within the continuum states
due to the small amount of occupation above the LO phonon
energy. Already the first phase shows that the locality of the
capture is well reproduced by the simulation: without over-
lapping between wave packet and QD the electron-phonon
interaction cannot lead to transitions from continuum into
localized states. Technically, this can be traced back to a
cancellation between diagonal and off-diagonal contributions
in the equation of motion for the density matrix [30].

When arriving at the QD [phase (ii)], the wave front shape
of the wave packet is lost and a pattern appears. Already on the
scattering-free level, we note an intense peak of charge in the
QD region along the y = 0 line, which is strongly elongated
along x. Although during phase (ii) a capture of electrons into
the localized potential sets in, the density in the QD area is
still rather similar with and without carrier-phonon coupling,
showing that this density is still mainly associated with the
continuum states and caused by their deviations from plane
waves above the QD due to their orthogonality with respect
to the bound states. In contrast, after the wave packet has
traversed the QD [phase (iii)], an electronic density remaining
in the QD area is clearly visible only in the presence of
electron-phonon interaction. The fringes of the transmitted
wave packet exhibit only slight quantitative modifications
by the scattering processes, while their qualitative shape is
preserved. To get a more quantitative picture of the capture
dynamics, we now analyze the occupations fi of the bound
states as a function of time. They are shown in Fig. 4(a) for
three different orientations of the QD: θ = 0, π/4, and π/2.
For all occupations, we find a similar behavior: after a certain
time, the occupations rise monotonically up to their respective
maximal values and subsequently stay constant. This again
reflects the locality of the capture process: Only when the
wave packet is in the region of the QD a capture takes place.
In analogy with the 1D case [30], we can define a scattering
time which is here ranging between 300 and 400 fs, the exact
value depending on the angle θ and the state |i〉.

Because the energy distribution of the initial wave packet
and the energies of the bound states are independent of the
angle θ , based on energy selection rules one might expect that
the final occupations f̄i (i.e., the occupations fi after the wave
packet has traversed the QD) are weakly dependent of the
angle θ . In particular, the occupation of the states |2〉 and |3〉
should be rather similar due to the choice of excess energy of
the wave packet. However, when looking at Fig. 4(a), we find
pronounced differences in the occupations of these states upon
variation of θ . When comparing the final occupations for a QD
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FIG. 4. (a) Evolution of the occupations of the bound states for
θ = 0 (top), π/4 (center), and π/2 (bottom). (b) Dependence of the
final occupations f̄i (upper panel) and the relative occupations ηij

(lower panel) on the QD orientation θ . All occupations are normal-
ized to the density contained by the initial electronic distribution in a
stripe of height b/L.

elongated along the x direction (θ = 0, upper panel) and the y

direction (θ = π/2, lower panel), we find that the occupations
of the states |2〉 and |3〉 are inverted in the two cases: while
for θ = 0 the occupation of state |2〉 is much higher than
the one of state |3〉, for θ = π/2 the occupation of state |3〉
is higher than the one of state |2〉. Taking into account the
spatial shape of the wave functions, we thus find that capture
occurs predominantly into the state which is elongated along
the propagation direction. Indeed, for θ = π/4, i.e., when the
QD lies diagonal with respect to the incoming wave packet,
the occupations of |2〉 and |3〉 are almost the same (central
panel). Remarkably, at θ = 0, we find that also f̄4 is bigger
than f̄3, despite its energetic separation from the resonant
energy being much bigger than the one of state |3〉, suggesting
a spatial selection rule able to go beyond the pure energetic
considerations.

We quantify the orientation dependence of the captured
populations in Fig. 4(b), where in the upper panel we show
the final occupations f̄i as functions of the angle θ . We find

that the stationary populations corresponding to the states |i〉
elongated along the major axis (i.e., f̄1, f̄2, and f̄4) decrease
by rotating the QD from 0 to π/2, while the occupation f̄3 of
state |3〉, which is elongated along the orthogonal direction,
increases. Thanks to their different spatial shapes, a rotation
of the QD results in the fact that f̄3 overcomes first f̄4 and
then f̄2: this spatial selectivity is quantified in the lower panel
in terms of the relative occupations

ηij = f̄i − f̄j

f̄i + f̄j

, (10)

where the switch in the state occupations is reflected in a
change of the signs.

This θ dependence is the signature of a spatial selection
rule based on the relative orientation of the propagation
direction of the wave packet and the QD long axis, which
complements the energy selection rule determined by the
phonon energy ELO. This implies that several aspects vary
with the angle: the effective scattering matrix elements, which
are determined by the wave packet’s propagation direction,
and also the overlap between receiving bound state and
emitting traveling wave packet, i.e., the interplay between
nontrivial spatiotemporal evolution and the locality of the
carrier capture.

B. Coherence control

The spatial control is not limited to the magnitude of the
captured occupations, it further has great impact on the quan-
tum coherences between the bound states. When the potential
consists of several bound states, in general a capture into a
coherent superposition of these states takes place, resulting
in an oscillation of the captured density [27,28,30]. Such
quantum coherences can be experimentally detected by var-
ious types of quantum beat spectroscopy. Quantum beats have
been observed in different systems, e.g., by time-resolved
luminescence from QD ensembles [67], four-wave-mixing
spectroscopy from a single QD [68], ultrafast pump-probe
spectroscopy from bulk GaAs [69], or THz emission from
quantum wells [70]. Such a build up of superposition states
cannot be described by approaches which treat the capture
only in terms of scattering rates between the different states.
However, we have recently shown that the LSP approach,
though being of Markovian nature, indeed adequately de-
scribes this genuine quantum mechanical capture behavior
[30] because it fully includes off-diagonal elements of the
electron density matrix.

We start analyzing the dynamics of the trapped density
nQD(x, y), i.e., the density in the subspace of the bound states,
for the three orientations discussed above. Figure 5(a) shows
snapshots of this quantity, normalized as in Fig. 3, while the
full time evolution is displayed in supplemental movie 1(a) in
Ref. [71]. Let us start our discussion with the cases of wave-
packet propagation along the long (θ = 0, top row) or short
(θ = π/2, bottom row) QD axis. In both cases, we observe
charge oscillations induced by the capture process along the
propagation direction. These oscillations can also be seen in
the top and bottom row of Fig. 5(b), where a cut through the
captured density at y = 0 is plotted as a function of position
x and time t . The charge distributions are always symmetric
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FIG. 5. (a) Snapshots of the captured charge density nQD(r) (see supplemental movie 1(a) in Ref. [71] for the full time evolution). (b)
Spatiotemporal dynamics of the captured charge density along the x axis [i.e., nQD(x, y = 0, t )]. (c) Temporal evolution of the x and y

components of the center of mass of the trapped charge distribution (see also supplemental movie 1(b) in Ref. [71]). (d) Evolution of the
normalized coherences. All figures are for the three QD orientations θ = 0 (upper row), π/4 (central row), and π/2 (lower row).

with respect to y = 0 and have their maximum at y = 0. This
is also confirmed by looking at the time dependence of the
center of mass of the charge distribution, defined as

〈rx〉 =
∫

x nQD(x, y)dxdy∫
nQD(x, y)dxdy

,

(11)

〈ry〉 =
∫

y nQD(x, y)dxdy∫
nQD(x, y)dxdy

,

and plotted in Fig. 5(c) (see also supplemental movie 1(b)
in Ref. [71]). In the top and bottom panels, we find for the
transverse component 〈ry〉 = 0 at any time, while the longitu-
dinal component 〈rx〉 exhibits oscillations, which are roughly
sinusoidal. From a closer look, we can identify an oscillation
period for θ = 0 with T0 ≈ 0.7 ps. For θ = π/2, we find the
period to be Tπ/2 ≈ 0.3 ps. The time evolutions in space of
the center of mass (〈rx〉, 〈ry〉) are shown in supplemental
movie 1(b) in Ref. [71] (top and bottom row), where we see a
left/right oscillatory motion.

In contrast, for a QD tilted by an angle θ = π/4 with
respect to the propagation direction a much more complicated
spatiotemporal behavior is observed (central row in Fig. 5
and supplemental movie 1(a) in Ref. [71]). Now we find an
oscillation that, although roughly along the long axis of the

QD, is not fixed in time, which can be seen from the fact
that in the central panel of Fig. 5(c) the components 〈rx〉 and
〈ry〉 are not always proportional to each other, as it would
be the case for a strict oscillation along the long axis of
the QD. In the center of mass motion (see central panel in
supplemental movie 1(b) in Ref. [71]), a quasiergodic motion
of (〈rx〉, 〈ry〉) following the form of the potential ellipse V (r)
is observed. Despite the complexity of the oscillations, we can
still estimate the period to roughly Tπ/4 ≈ 0.7 ps.

The spatiotemporal dynamics of the captured charge den-
sity can be understood when looking at the off-diagonal
elements of the density matrix ρij in the subspace of the bound
states. Their moduli |ρij |, normalized in the same way as the
diagonal elements in Fig. 4, are shown in Fig. 5(d). Like the
diagonal elements they show the characteristic capture behav-
ior: Before the wave packet has reached the QD region they
are zero. Then they build up and remain constant when the
wave packet has passed the QD. For the coherences, the de-
pendence on the orientation angle θ is even more pronounced
than for the occupations. For θ = 0 (top panel), we find at any
time ρ13 = ρ23 = ρ34 = 0, while for θ = π/2 (bottom panel),
we have ρ12 = ρ23 = ρ24 = 0. This reflects the symmetry
of the setup: the incoming wave packet is symmetric in y.
Therefore it can never excite a superposition between a state
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with even and one with odd parity in y direction. For θ = 0,
state |3〉 is the only state with odd parity in y direction. Indeed,
no coherences with this state are excited and the charge
distribution keeps its mirror symmetry with respect to y = 0.
Correspondingly, for θ = π/2 state |2〉 is the only state with
odd parity in y direction and no coherences with this state are
excited. The spatial selection rule is thus able to inhibit com-
pletely the appearance of specific coherences. When looking
at the magnitude of the excited coherences, we find for θ = 0
a dominant excitation of ρ24. The corresponding energy differ-
ence is ε4 − ε2 = 5.9 meV giving rise to the oscillation period
T0 ≈ 0.7 ps. There is an additional pronounced contribution
from ρ12 with an energy difference ε2 − ε1 = 10.2 meV, from
which one can identify a second period T ≈ 0.4 ps, which
leads to the fast oscillations in Fig. 5(b). For θ = π/2, there
are two contributions of almost equal strength, ρ13 with an
energy difference of ε3 − ε1 = 13.1 meV corresponding to
the period of Tπ/2 ≈ 0.3 ps and ρ34 with ε4 − ε3 = 3.0 meV,
corresponding to a period of about 1.3 ps which gives rise
to the long time modulations visible in Fig. 5(c). In both
cases there is a weak excitation of the coherence ρ14, which
leads to a slight breathing mode contribution of the charge
dynamics. This coherence is allowed for symmetry reasons
but it is strongly suppressed by the weak overlap of the wave
functions and the large energy difference of the states.

If the axis of the QD is tilted by θ = π/4 with respect to
the propagation direction of the wave packet, the symmetry
selection rules are relaxed because none of the bound states
has a definite parity with respect to the y axis. Therefore all
quantum coherences can be excited and, as can be seen in the
central panel of Fig. 5(d), they indeed are all excited. The
strongest one is ρ24, which gives rise to oscillations along
the long axis with the period Tπ/4 ≈ 0.7 ps, like in the case
θ = 0. The next strongest coherence is ρ23, which is neither
excited for θ = 0 nor for θ = π/2. This coherence induces a
rotational-like oscillation in the charge density. Finally, there
are almost equally strong contributions from ρ12, modifying
the oscillation along the long axis, as well as from ρ13 and ρ34,
introducing oscillations along the short axis. The combination
of all these coherences gives rise to the complicated charge
dynamics. We finally stress that all the oscillations in Fig. 5
are genuine quantum mechanical phenomena, i.e., the here-
introduced spatial control is quantum mechanical in nature.
Only by an off-diagonal treatment of the density matrix, here
within a Lindblad approach [cf. Eq. (7)], it is possible to take
these effects into account.

IV. CONCLUSION

In this paper, we have shown how in two-dimensional
materials, like the here considered monolayer of MoSe2, the
carrier capture from a traveling electronic wave packet into
localized states of an embedded quantum dot changes with
the relative orientation of traveling direction and quantum dot
elongation, despite all the energetic parameters remain fixed.
This proves the effectiveness of spatial selection rules, which
are beyond the usual energetic ones and may find several
applications in controlling charge carrier dynamics on the
nanoscale. To be specific, we considered a monolayer of the
transition metal dichalcogenide MoSe2 with a localization

potential (as can be formed, e.g., by a local strain distribution).
In this material, the electrons are efficiently coupled to optical
phonons, which leads to the capture of carriers into the
localized states.

To model such a spatial control a theoretical approach
is needed which, on the one hand, fully includes spatially
inhomogeneous structures and spatially inhomogeneous car-
rier distributions and, on the other hand, is able to describe
genuine quantum features like capture processes into coherent
superposition states and the subsequent dynamics of these
superpositions. For this purpose, we have employed a recently
developed Lindblad single-particle approach in the density
matrix formalism including electron-phonon scattering. A big
advantage of this approach compared to, e.g., a fully quan-
tum kinetic treatment, is its strongly reduced computational
complexity, which allowed us to simulate the full 2D problem
discussed here. Though treating the interaction processes on a
Markovian level, this approach has been shown to well repro-
duce the locality of the scattering process, a basic ingredient
to describe the spatial control employed here.

To be specific, we have considered a wave packet traveling
in a MoSe2 monolayer impinging on an asymmetric local-
ized potential with bound states. The carriers can be trapped
into the bound states by emission of LO phonons. We have
shown that the spatial control realized by varying the angle
between wave-packet propagation direction and long axis of
the quantum dot affects two aspects of the carrier capture.
(a) The occupations of the bound states depend sensitively
on the angle and can be varied significantly by changing the
orientation. This happens despite the energy selection rules
do not change when varying the relative orientation. (b) The
coherences between bound states, which build up during the
capture process, strongly depend on the orientation. Specific
coherences can be entirely switched off in the case of highly
symmetric configurations of wave packet and quantum dot
orientation. The capture into superpositions of the bound
states is particularly visible in the spatiotemporal dynamics of
the trapped density, which shows an oscillatory behavior. The
period of the oscillations depends on the involved states and
hence is a direct measure for the strength of the coherences.
For a less symmetric situation, e.g., for a tilt angle of θ = π/4,
a large number of coherences may be excited by the capture
process leading to a complicated spatiotemporal dynamics.

In conclusion, the locality of carrier capture is crucial for
a correct description of such processes. This has allowed us
to exploit the spatial control of carrier capture processes,
which go beyond the energy selection rules. We emphasize
that not only the populations, but also the quantum interstate
coherences and nontrivial spatiotemporal dynamics can be
manipulated—i.e., the here presented spatial control is nat-
urally quantum mechanical. In the process of miniaturization,
the spatiotemporal dynamics will play a more and more deci-
sive role. In this context, our studies establish the foundations
for describing and exploiting the spatial control of charge
carrier dynamics in 2D systems.
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APPENDIX A: TMDC STRUCTURE

A free-standing monolayer TMDC has a hexagonal
lattice with direct band gap at K and K′ valleys,
where the Hamiltonian results in a single-electron
dispersion relation reading Ek,b̄,s̄,v̄ = v̄ s̄ λc+λv

2 +
a0 t b̄

√
[(�G − v̄s̄(λv − λc ))/(2a0t )]2 + |k|2, where k

is a two-dimensional wave vector, the constants �G, λc/v ,
providing respectively band gap and half conduction/valence
band splitting, and the parameters a0 and t depend on
the specific TMDC, while the label b̄ = ± 1 stands for
conduction/valence band, s̄ = ±1 for spin up/down and
v̄ = ±1 for valley K/K′ [72–74]. Although a TMDC
monolayer has an involved band structure [58,59,75,76], in
view of the scales involved (see Appendix C) in this work
we restrict ourselves to one subband with b̄ = s̄ = v̄ = 1
and to a region close to its minimum, where the dispersion
relation is almost parabolic and the associated eigenstates
may be approximated as scalar states like in conventional
semiconductors, ψk(r) ≡ 〈r|k〉 = eık·r/

√
A, with A = L2

being the normalization area of the two-dimensional
device. Note that Eq. (1) has been solved by expanding
the wave functions ψα (r) in these states |k〉 with
〈k|HTMDC|k′〉 = Ek,1,1,1δk,k′ .

In this work, we focus on MoSe2, whose above-introduced
dispersion relation is given by material parameters λc =
−10.5 meV [77], λv = 90 meV, a0 ≈ 3.3 Å, �G = 1.47 eV
and t = 0.94 eV [74], resulting in an effective mass of m∗ =
0.54m0 for b̄ = s̄ = v̄ = 1 (m0 being the free electron mass).
Concerning the Fröhlich interaction of Eq. (6), the effective
layer thickness d and gFr have been given in Ref. [65] for
MoS2; considering the differences in the material parameters
of MoS2 and MoSe2 [78], here we use d = 5.36 Å and gFr =
419.7 meV Å.

APPENDIX B: EXCITONIC EFFECTS

The presented work wants to highlight the importance
of geometric and spatiotemporal dependencies in capture
processes from a 2D system into 0D states. In order to
present the underlying mechanisms of this spatial control,
we want to restrict ourselves to a simple model showing
these effects. Therefore we reduce our system to a one-band
model and neglect the Coulomb interaction. However, we
expect the presented results to be relevant also in a real
system for the following reasoning: with an excess energy
of 26.8 meV the optical excitation leads to the formation
of traveling unbound electron and hole wave packets and
stationary excitonic wave packets directly after the pulse [27].
Therefore the free carrier transport should dominate right after
the pulse. Due to subsequent relaxation processes also deeply

bound excitonic states with finite center of mass momentum
may be populated [57,79–82]. Nevertheless, the build up and
propagation of excitonic wave packets occurs in parallel to
and not instead of the aforementioned dynamics of electron
and hole wave packets. This is affirmed by recent experiments
showing that always a mixture of free carriers and excitons are
observed in TMDCs [83], while the ratio between unbound
and bound electron-hole pairs has been theoretically studied
in Ref. [84] as a function of several parameters such as, e.g.,
excitation density, dielectric screening/substrate and tempera-
ture. This indicates that free carrier transport takes place also
in the TMDCs despite their strong Coulomb interaction. Of
course, the Coulomb interaction is expected to alter also the
continuum states, e.g., due to the Coulomb enhancement, but
we expect these modifications to lead mainly to quantitative
changes and not to qualitative ones. We therefore leave the
study of excitonic wave-packet dynamics for future work.

APPENDIX C: SCATTERING MECHANISMS

In view of the energetic separation between continuum and
bound states, we disregard the intravalley acoustical phonon
modes. In general, TMDCs have six optical modes, of which
however only two—the so-called LO and A1 modes—are
able to effectively influence the electron dynamics [78]. For
MoSe2, the electron-LO phonon coupling coefficients in the
long wavelength limit are one order of magnitude bigger
than the electron-A1 phonon ones [78]; as a consequence,
here we restrict ourselves to intravalley LO phonons with a
fixed energy of ELO ≈ 34.4 meV [78]. We consider the low
temperature limit, kBT  ELO (T denoting the temperature
and kB Boltzmann’s constant), in which only (spontaneous)
phonon emission processes are possible. The surrounding
material [58,85] can modify the electron-LO phonon scatter-
ing coefficients [78]. This would, however, affect mostly the
quantitative magnitude of the captured charge, and only in a
minor way the qualitative features discussed here. In view of
chiral optical selection rules and spin splittings, a wave packet
initially located in the s̄ = v̄ = 1 subband can be realized by
circularly polarized excitation [74]. Although intervalley scat-
tering mechanisms could, in principle, transfer charge from K
to K′, the intervalley relaxation time in TMDCs is of several
picoseconds in the low temperature limit [86]. In addition,
here the spin preserving intervalley transitions are strongly
suppressed in view of our excess energy E0 lying very close
to the minimum of the subband with same spin in K′ (located
2|λC |=21 meV above the minimum of the subband with s̄ = 1
in K). Spin-flipping processes induce slow relaxation times
of the order of tens of picoseconds at low temperatures [87].
In view of the subpicosecond timescale considered here (see,
e.g., Fig. 4), we thus restrict our attention to one subband.
In this work, we consider low-density excitations, where the
Coulomb-induced scattering is negligible as well [27,30],
such that we do not take the Coulomb interaction into account
in our present studies.
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