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Energy losses and transition radiation in graphene traversed by a fast
charged particle under oblique incidence
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We perform fully relativistic calculations of the energy loss channels for a charged particle traversing a
single layer of graphene under oblique incidence in a setting pertinent to a scanning transmission electron
microscope (STEM), where we distinguish between the energy deposited in graphene in the form of electronic
excitations (Ohmic loss) and the energy emitted in the far field in the form of transition radiation (TR). Our
formulation of the problem uses a definition of two in-plane, dielectric functions of graphene, which describe
the longitudinal and transverse excitation processes that contribute separately to those two energy loss channels.
Using several models for the electric conductivity of graphene as the input in those dielectric functions enables
us to discuss the effects of oblique incidence on several processes in a broad range of frequencies, from the
terahertz (THz) to the ultraviolet (UV). In particular, at the THz frequencies, we demonstrate that the nonlocal
effect in the graphene’s conductivity is not important in the retarded regime, and we show that the longitudinal
and transverse contributions to the emitted TR spectra exhibit strongly anisotropic angular patterns that are
readily distinguishable in a cathodoluminescence measurement in a STEM. Moreover, we explore the possibility
of exciting the so-called transverse mode in the optical response of graphene at the mid-infrared (MIR) range
of frequencies by means of a fast charged particle under oblique incidence. Finally, we demonstrate that,
aside from the usual high-energy peaks in the longitudinal contribution to the Ohmic energy loss in the MIR
to the UV frequency range, there may arise strongly directional features in the in-plane distribution of the
transverse contribution to the Ohmic energy loss for an oblique trajectory, which could be possibly observed
via momentum- and angle-resolved electron energy loss spectroscopy of graphene in STEM.
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I. INTRODUCTION

Advances in two-dimensional (2D) materials, coupled with
deeper understanding of the physics of their plasmonic fea-
tures, have opened up a wide range of potential applica-
tions [1–4]. Graphene is at the forefront of these develop-
ments, both as a reference model for other low-dimensional
systems, and for its well-known though intriguing proper-
ties [5–8]. Plasmonic applications take advantage from its
performance in the terahertz (THz) and mid-infrared (MIR)
frequency ranges (0–2 eV), that makes graphene an optimal
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material for optoelectronic devices, energy storage, biosens-
ing, etc. [7,9–12]. In that range, conveniently doped graphene
sustains low-energy plasmon modes that can be tuned using
an external gate voltage [13]. But graphene also supports col-
lective excitation modes in the visible to the ultraviolet (UV)
range of frequencies (≈2–30 eV), which is dominated by the
high-energy interband transitions of π and σ electrons [14].

Electron energy loss spectroscopy (EELS) is a powerful
tool used to survey the optical response of materials [15].
Furthermore, EELS implemented in a scanning transmission
electron microscope (STEM) has become a reference tech-
nique in nanoscience due to its high spatial resolution [16,17],
and has been extensively applied to characterize the plasmonic
properties of graphene [18–20]. Nowadays, it is possible to
obtain momentum-resolved energy loss spectra in the low
UV range, including the range 0–2 eV which was usually
inaccessible due to the presence of a zero-loss peak [21].
Even spatial mapping of plasmon modes in graphene and
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graphene-related nanostructures has been accomplished in
recent works [22,23].

Interaction with external electrons also presents interest
for the photonics community, as electron beams impinging
on graphene can generate radiation in a range of frequencies
from THz to IR and even x ray. Several studies explore
this possibility with different electron trajectories including
aloof scattering, cyclotron electron beam, and free electron
beam [24–26]. Besides, electromagnetic radiation can be mea-
sured in a STEM equipped for the detection of cathodolu-
minescence (CL) light from the target material [27]. This
opens the possibility of studying the low-energy losses beyond
the detection limit through the emitted radiation patterns.
Finally, to further motivate our study here, we mention that
the systematic study of radiative and nonradiative losses is
known to provide insight into what limits fundamental phys-
ical properties of plasmonic systems, for example, plasmon
propagation lengths in nanoparticles [28].

In recent papers we have developed a fully relativis-
tic description of the energy losses suffered by an ener-
getic electron perpendicularly traversing a single layer of
graphene (SLG) [29], as well as a multilayered graphene stack
(MLG) [30,31]. An extension of this work also considered the
stopping of electrons traveling on aloof trajectories, parallel
to a graphene layer [32]. Our formulation gave analytical
expressions for the probability density of energy loss. We have
shown that the total energy lost by the electron comes from
an Ohmic contribution, due to electronic excitations, and a
radiative term due to the so-called transition radiation (TR),
generated by the passage of the electron through the interface.
The radiative term is purely relativistic and is absent in the
parallel trajectory case [32]. For a perpendicular trajectory,
only longitudinal fields are relevant since the transverse terms
are canceled out due to symmetries of the considered con-
figuration, hence, making it sufficient to consider a scalar
in-plane conductivity to describe the response function of
graphene [29–31]. For a parallel trajectory, on the other hand,
it was found necessary to include transverse polarization in
the response of graphene by using a tensorial formulation for
its conductivity [32].

In this work, we extend our formalism to an arbitrary
oblique trajectory, and accordingly we consider a tensorial
conductivity with different components along the longitudinal
and the transverse directions with respect to the in-plane wave
vector k. The formulation is made for a general conductivity
tensor, which allows us to apply different models to describe
the energy losses of the external charged particle in both
the low-energy range (THz to MIR) and in the UV domain.
We find that both the longitudinal and transverse excitation
mechanisms operate in the case of a general oblique trajectory,
which are conveniently described by introducing two in-plane
dielectric functions for the response of graphene layer. In
each frequency range, we assess contributions to the external
particle energy loss coming from both the radiative and nonra-
diative (Ohmic) channels, and for each one of them we distin-
guish between the longitudinal and transverse contributions.
By exploring the parameter space, specifically, the charged
particle speed and its incidence angle, we are able to analyze
the ranges of importance for relativistic effects, which govern

FIG. 1. Geometry of the problem consisting of a 2D graphene
sheet placed in vacuum and traversed by a fast charged particle under
oblique incidence.

both the radiative energy loss and the transverse component
of the Ohmic energy loss.

The paper is structured as follows: In Sec. II we describe
the theoretical formulation used to obtain the probability den-
sities of energy loss, in terms of the induced electromagnetic
fields and the conductivity tensor, giving a detailed description
of different models used for the conductivity. Section III is
devoted to present and analyze the obtained results. Finally, in
Sec. IV we give some concluding remarks. Unless otherwise
stated, we use Gaussian units of electrodynamics throughout
the paper [33].

II. THEORY

We consider a structure with monolayer graphene of large
area placed in the xy plane (z = 0) in a three-dimensional
(3D) Cartesian coordinate system with coordinates R =
{r, z}, where r = {x, y}. Graphene is traversed by an exter-
nal pointlike particle with charge Ze, moving with constant
velocity v at an arbitrary angle θ0 with respect to the z axis
(see Fig. 1). We assume that the structure is placed in vacuum
in order to be able to neglect any other sources of radiation
or dissipation, apart from those pertaining to graphene. While
the assumption of a free-standing graphene layer is realistic
in the context of EELS experiments in STEM [18], we note
that the existence of a dielectric substrate with the relative
dielectric constant εd > 1 on one side of graphene could
possibly give rise to Cherenkov radiation for the incident
particle speeds exceeding the threshold c/

√
εd > 1, as well

as to the transition radiation that normally arises when a
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charged particle traverses an interface between materials with
different dielectrics constants [33]. Those two sources of
radiation would be absent when graphene is surrounded by
a homogeneous, nonmagnetic material with the dielectric
constant εd and for the particle speeds below the threshold
for Cherenkov radiation, but details of the dispersion relation
for the collective modes in graphene would be modified
near the THz frequencies by widening of the light cone
in such material [34]. At the same time, the magnitude of
the incident charged particle electromagnetic (EM) fields
would be reduced by a factor of 1/εd , giving rise to an
overall reduction of its interaction with the charge carriers
in graphene. Moreover, the existence of dynamic modes in
the surrounding material(s), which could be encoded via a
frequency-dependent dielectric function εd (ω), such as in the
case of a polar substrate or nearby metallic gate(s) [35], could
give rise to a strong hybridization of their modes with those
in graphene [36]. However, studying the above effects of
dielectric substrate(s) is beyond the scope of this work.

Considering the geometry of the problem, we find it con-
venient to introduce a dyadic Green’s function (DGF), which
may be derived from the electric Hertz vector [37]. This
vector can be easily obtained by solving a nonhomogeneous
Helmholtz vector equation with an electric current density as
the source term by means of a free-space, retarded, scalar
Green’s function [29].

A. Self-consistent solution for electromagnetic fields

Assuming translational invariance inside the graphene
sheet, we may perform a 2D spatial Fourier transform (r →
k), as well as a Fourier transform with respect to time (t →
ω). Thus, defining the electric field as

E(R, t ) =
∫∫

d2k
(2π )2

eik·r
∫ ∞

−∞

dω

2π
e−iωtE(k, z, ω), (1)

we may express it in the Fourier space in terms of the
corresponding current density J as

E(k, z, ω) =
∫ +∞

−∞
dz′ ←→G e0(k, z − z′, ω) · J(k, z′, ω), (2)

where
←→
G e0(k, z − z′, ω) is the electric DGF (EDGF) for free

space. Although the above relation can be always expressed
in Cartesian coordinates, we take advantage of the fact that
graphene is isotropic in the z = 0 plane and express all quanti-
ties in terms of their longitudinal and transverse (LT) in-plane
components. With ẑ being a unit vector in the direction of the z

axis, and k̂ the unit vector in the direction of the in-plane wave
vector k that describes longitudinal components, we define
the unit vector τ̂ = ẑ × k̂, which describes transverse in-plane
components (see Fig. 1). Thus, adopting the triad (k̂, τ̂ , ẑ), the
EDGF may be written in tensorial form as

←→
G e0(k, z, ω) = i

ω

2π

q

{ − q2k̂k̂ + k2
0 τ̂ τ̂ − ikq sign(z)

× (ẑk̂ + k̂ẑ) + [k2 − 2qδ(z)] ẑẑ
}
e−q|z|,

(3)

where k0 = ω/c and

q(k, ω) =
⎧⎨
⎩−i ω

c

√
1 − (

ck
ω

)2 ≡ −iκ (k, ω), |ω| > ck

|ω|
c

√(
ck
ω

)2 − 1 ≡ α(k, ω), |ω| < ck.

(4)

In the above equation, α ≡
√

k2 − k2
0 describes the inverse

of the localization length for collective excitation modes of
charge carriers in graphene that occur in the range of the (k, ω)
plane lying outside the light cone.

Defining the volume charge density associated with the
external charged particle as ρext (R, t ) = Zeδ(R − vt ), we
obtain the Fourier transform of the corresponding current
density as

Jext (k, z, ω) = Ze

vz

v eiQz, (5)

where Q = �/vz with � = ω − k · v‖, whereas v‖ and vz =
ẑ · v = v cos θ0, with v = ‖v‖, are the parallel and perpendic-
ular components of its velocity v with respect to the plane
of graphene. Given that graphene exhibits in-plane isotropy,
it is natural to express wave vector k using the plane polar
coordinates k = {k, φ}, where k = ‖k‖ and φ is the angle
with respect to the direction of v‖, so that k̂ · v‖ = v‖ cos φ

and τ̂ · v‖ = −v‖ sin φ, where v‖ = ‖v‖‖ = v sin θ0. In order
to obtain the electric field produced by the external particle,
we insert Eqs. (5) and (3) into Eq. (2), giving

Eext (k, z, ω) = i

ω
A(k, ω)

[ − q2k̂k̂ + k2
0 τ̂ τ̂ − kQ(k̂ẑ + ẑk̂)

+ (
k2

0 − Q2
)
ẑẑ

] · Jext (k, z, ω), (6)

where

A(k, ω) = 4π

q2 + Q2
. (7)

As a consequence of the dynamic polarization of charge
carriers in graphene due to the moving external charge, the
induced in-plane charge current in graphene may be expressed
via the 2D Ohm’s law j(k, ω) = ←→σ (k, ω) · E‖(k, 0, ω),
where E‖(k, 0, ω) is the component of the total electric field
parallel to graphene, evaluated at z = 0, simply the in-plane
electric field. Here, ←→σ (k, ω) is the 2D conductivity tensor of
graphene,

←→σ (k, ω) = σl (k, ω)k̂k̂ + σt (k, ω)τ̂ τ̂ , (8)

where any nonlocal effects are expressed via its dependence
on k = ‖k‖ owing to the isotropy of graphene. Invoking
the zero thickness approximation for graphene, the induced
current in the structure may be written as

Jind(k, z, ω) = δ(z) j(k, ω)

= δ(z) ←→σ (k, ω) · E‖(k, 0, ω). (9)

We may easily obtain the induced electric field by inserting
Eqs. (3) and (9) back into Eq. (2) as

Eind(k, z, ω) = ←→
G e0(k, z, ω) · ←→σ (k, ω) · E‖(k, 0, ω).

(10)

Thus, in order to determine induced electric field through-
out the structure, we require a self-consistent procedure to

195410-3



KAMRAN AKBARI et al. PHYSICAL REVIEW B 98, 195410 (2018)

find the in-plane total electric field E‖(k, 0, ω). This may be
achieved by taking the in-plane components of Eqs. (5) and
(9), followed by setting z = 0, and using them to express
E‖(k, 0, ω) = Eext‖(k, 0, ω) + Eind‖(k, 0, ω). As a result, we
obtain a 2D “constitutive relation” in graphene

←→ε (k, ω) · E‖(k, 0, ω) = Eext‖(k, 0, ω), (11)

where Eext‖(k, 0, ω) is the component of the external elec-
tric field parallel to graphene, evaluated at z = 0. In the
above equation, we have introduced a 2D dielectric tensor of
graphene as

←→ε (k, ω) = εl (k, ω)k̂k̂ + εt (k, ω)τ̂ τ̂ , (12)

where the longitudinal and transverse dielectric functions of
graphene are defined as

εl (k, ω) = 1 + 2πi
q(k, ω)

ω
σl (k, ω), (13)

εt (k, ω) = 1 − 2πi
ω

c2q(k, ω)
σt (k, ω), (14)

respectively.
It is clear from Eqs. (11) and (12) that the longitudinal

and transverse responses of graphene are decoupled. By eval-
uating the in-plane external electric field Eext‖(k, 0, ω) from
Eq. (6), one can easily solve Eq. (11) for the in-plane total
electric field, which we write as E‖(k, 0, ω) = E0l k̂ + E0t τ̂ ,
and obtain its longitudinal and transverse components as

E0l = A
εl

(
1 − ω

c2k
k̂ · v‖

)
, (15)

E0t = −A
εt

ω

c2k
τ̂ · v‖, (16)

respectively. Here, A = −ik Ze
vz

A is the amplitude of the
longitudinal component of the in-plane external electric field
in the case of normal incidence v‖ = 0. It is obvious from
Eq. (16) that the transverse component of the total in-plane
electric field can only be exited in graphene in the case of
oblique incidence, i.e., when v‖ 
= 0.

Finally, having obtained E‖(k, 0, ω) = E0l k̂ + E0t τ̂ , we
can use Eq. (10) to express the induced electric field through-
out the structure as

Eind(k, z, ω) = 2πe−q|z|
[(−iq

ω
σlE0l

)
k̂ +

(
iω

c2q
σtE0t

)
τ̂

+
(

k

ω
sign(z) σlE0l

)
ẑ
]
. (17)

Moreover, one can obtain the induced magnetic field by the
help of Eq. (17) along with Maxwell’s equations as

Hind(k, z, ω) = 1

ik0

(
ik + ẑ

∂

∂z

)
× Eind(k, z, ω)

= 2π

c
e−q|z|

[
(σtE0t ) sign(z) k̂

− (σlE0l ) sign(z) τ̂ + i
k

q
(σtE0t )ẑ

]
. (18)

B. Definitions of probability densities

As shown in Refs. [29,30], relativistic treatment of the
interaction of an external charged particle with 2D materials
in vacuum implies that the total energy lost by that particle
goes into two contributions: (1) the Ohmic loss due to the
electronic excitations and subsequent damping processes in
those materials, and (2) the energy emitted in the far-field
region in the form of TR. Accordingly, for each contribution,
we may define the corresponding joint probability density as
a function of the energy loss h̄ω � 0, and the momentum
transfer h̄k, of the external particle. For the total energy loss
of the external charged particle, we obtain

Fext (k, ω)

= − 1

4π3ω
Re

{∫ +∞

−∞
dz J∗

ext (k, z, ω) · Eind(k, z, ω)

}

= |A|2
4π3ω

[(
1 − ω

c2k
k̂ · v‖

)2
Re

{
σl

εl

}

+
( ω

c2k
τ̂ · v‖

)2
Re

{
σt

εt

}]
, (19)

with εl and εt given in Eqs. (13) and (14), respectively. The
joint density for the Ohmic loss is obtained as

FOhm(k, ω) = 1

4π3ω
Re

{∫ +∞

−∞
dz Jind(k, z, ω) · E∗(k, z, ω)

}

= 1

4π3ω
[|E0l|2Re{σl} + |E0t |2Re{σt }], (20)

with E0l and E0t given in Eqs. (15) and (16), respectively.
The joint density for the radiative energy loss in the up-

per/lower half-space is obtained from the complex Poynting
vector for ω > ck as

F
↑↓
rad(k, ω) = 1

4π3ω
lim

z→±∞ Re{± ẑ · P (k, z, ω)}, (21)

where the complex Poynting vector is defined via

P (k, z, ω) = c

4π
Eind(k, z, ω) × H∗

ind(k, z, ω)

= π

ω

(
|σl|2|E0l|2 + ω2

c2κ2
|σt |2|E0t |2

)
K, (22)

with K = k + κ sign(z) ẑ being the three-dimensional (3D)
wave vector with the magnitude of ‖K‖ = ω/c, which repre-
sents the direction of the Poynting vector, i.e., the direction
of the transfer of EM energy into the far-field region. One
may, also, obtain the total radiative energy loss Frad(k, ω) =
F

↑
rad(k, ω) + F

↓
rad(k, ω) as

Frad(k, ω) = κ

2π2ω2

[
|σl|2|E0l|2 +

(
ω

cκ

)2

|σt |2|E0t |2
]
,

(23)

with E0l and E0t given in Eqs. (15) and (16), respectively.
Furthermore, for radiation emitted at a frequency ω in a
direction with the angle θ with respect to ẑ and with polar
angle φ with respect to v‖, one can replace k = ω

c
sin θ in

the expression for Frad(k, ω) = Frad(k, φ, ω) in Eq. (23), and
hence obtain the spectral angular distribution of the radiative
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energy loss as

S (θ, φ, ω) = ω3

c2
|cos θ |Frad

(
ω

c
sin θ, φ, ω

)
. (24)

It should be mentioned that the longitudinal contribution in
Eq. (23) is a result of the term Eind,lH

∗
ind,t in the Poynting

vector, so that the radiated wave is TM polarized, whereas
the transverse contribution in Eq. (23) is a result of the term
Eind,tH

∗
ind,l in the Poynting vector, so that the radiated wave is

TE polarized with respect to the direction of propagation K̂ in
the far-field region.

One should notice that in all of the above expressions
for the joint energy loss densities, Eqs. (19), (20), and (23),
the first terms in square brackets represent the contributions
of the longitudinal response of graphene, while the second
terms in square brackets represent the contributions of the
transverse response of graphene. Moreover, it can be easily
verified that the conservation of energy is explicitly upheld
via the relation Fext (k, ω) = FOhm(k, ω) + Frad(k, ω). While
the radiative losses are restricted to frequencies above the light
line, ω > ck, both the total energy loss of the external particle
and the Ohmic energy loss occur at all frequencies, ω > 0. In a
range below the light line, ω < ck, we can denote the energy
loss by F<

ext (k, ω) = F<
Ohm(k, ω), which may be written in a

more familiar form in terms of the longitudinal and transverse
loss functions of graphene Im{−1/εl} and Im{1/εt } as

F<
Ohm(k, ω) = 2

π2

(
Ze

vz

)2 1

(α2 + Q2)2α

[
(k − k0β‖ cos φ)2

× Im

{−1

εl

}
+ α2β2

‖ sin2φ Im

{
1

εt

}]
, (25)

where we have defined the reduced parallel speed as β‖ =
v‖/c. In the nonretarded limit, one should set β‖ → 0 and
change α → k in Eq. (25), confirming that transverse re-
sponse of graphene only arises in a fully retarded regime.

It is further of interest to study the role of collective
modes pertaining to the charge carrier excitations in graphene.
Those modes can be formally identified in domains of the
(k, ω) plane where (a) the interband electron transitions may
be neglected, (b) Landau damping due to the continuum of
electron-hole excitations is absent, and (c) dissipative pro-
cesses due to electron scattering on impurities, phonons, or
atomic-scale defects in graphene are sufficiently small. Under
such conditions, one may set Re{σl} → 0+ and Re{σt } →
0+, so that the loss functions Im{−1/εl} and Im{1/εt } in
Eq. (25) become proportional to Dirac delta functions peaked
along the dispersion relations for longitudinal and transverse
modes in graphene ω = ωl (k) and ω = ωt (k), respectively.
The corresponding eigenfrequencies ωl (k) and ωt (k) may
be obtained under such conditions by solving the equations
Re{εl (k, ω)} = 0 and Re{εt (k, ω)} = 0, where

Re{εl (k, ω)} = 1 − 2π
α(k, ω)

ω
Im{σl (k, ω)}, (26)

Re{εt (k, ω)} = 1 + 2π
ω

c2α(k, ω)
Im{σt (k, ω)}, (27)

showing that the longitudinal and transverse modes in
graphene can only exist at frequencies below the light line,

such that Im{σl (k, ω)} > 0 and Im{σt (k, ω)} < 0, respec-
tively.

Finally, an integrated probability density can be expressed
as the integration of the joint probability densities over the
whole wave-vector range via

P�(ω) = 1

h̄2

∫∫
d2k F�(k, ω)

= 1

h̄2

∫ 2π

0
dφ

∫ ∞

0
dk k F�(k, φ, ω), (28)

where � = ext, Ohm, rad. As one would expect, the energy
conservation maintains that Pext (ω) = POhm(ω) + Prad(ω) for
all ω > 0.

C. Models of conductivity

For the optical response of graphene in the THz-MIR range
of frequencies, it suffices to take into account low-energy
excitations involving its π electron bands described within
the Dirac cone approximation. We consider in this work three
models of conductivity of doped graphene in this range of
frequencies: (a) Drude model for intraband excitations, suit-
able at THz frequencies, (b) optical conductivity of graphene
combining the intraband and interband excitations, suitable
at the THz to MIR frequencies, and (c) a model due to
Lovat et al. [38], which includes the intraband electron-hole
continuum of excitations, and is suitable at THz frequencies
and finite wave numbers k. While the Drude model and the
optical conductivity are given in a strict long-wavelength limit
k → 0, the Lovat’s model introduces nonlocal effects into the
Drude model.

We note that the longitudinal and transverse conductivities
of graphene, σl (k, ω) and σt (k, ω), are generally different
quantities when the wave number k is finite, as in the case
of Lovat’s model, but in the long-wavelength limit, they
both become equal to a frequency-dependent conductivity of
graphene, σl (0, ω) = σt (0, ω) = σ (ω), which may be mod-
eled either by the Drude conductivity or by the optical con-
ductivity of graphene.

We will also consider a higher-frequency range, corre-
sponding to the energy losses of ω � 1 eV, which is usually
probed in the low-energy EEL spectrum obtained with a
(S)TEM [18,19,39,40]. In this case, we employ a two-fluid hy-
drodynamic model (HD) suitable for describing high-energy
interband electron transitions in intrinsic (undoped) graphene
in the optical regime, which we amend by a Dirac correction
to account for the lower-energy interval [41].

1. Drude model conductivity

It has been shown that the intraband excitations in doped
graphene are well represented by a Drude-type model of
conductivity [42,43], which is given at finite temperature T

by

σintra (ω) = i

4π

v2
F kTF

ω + iγ
, (29)

where kTF = 8e2 kBT
(h̄vF )2 ln [2 cosh ( μ

2kBT
)] is the Thomas-Fermi

wave number, with μ being the chemical potential of
graphene and vF ≈ c/300 its Fermi speed. In the zero-
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temperature limit, one obtains μ → EF = h̄vF kF and hence
kTF → 4 vB

vF
kF , where EF is the Fermi energy of graphene and

kF = √
π |n| its Fermi wave number for charge carrier density

n, whereas vB ≡ e2

h̄
≈ c/137 is the Bohr speed. In Eq. (29), γ

is the damping rate due to electron scattering processes, which
is largely unknown parameter that depends on the purity of
graphene.

It is convenient to adopt nondimensionalized variables k =
k
kc

and ω = ω
ωc

, where kc = 1
4kTF( vF

c
)2 and ωc = ckc. We note

that, for typical doping densities of graphene, the relevant unit
of frequency is νc = 2π

ωc
∼ 1 THz. Thus, the Drude conductiv-

ity is given in reduced form by σ intra ≡ σintra
c

= i
π

1
ω+iγ

, where
γ = γ

ωc
is the reduced damping rate. In an idealized case when

γ → 0, upon using the Drude conductivity in Eqs. (26) and
(27), one obtains a longitudinal mode pertaining to the so-
called Dirac plasmon polariton (DPP), whereas no transverse
modes exist because Im{σ intra} > 0. A dispersion relation for
the DPP mode obtained from the Drude model may be then
expressed in a simple form using the reduced variables as

α = 1
2ω2, where α ≡ α

kc
=

√
k

2 − ω2 .
The range of validity of the Drude model in Eq. (29) is

given by a double inequality kvF � ω � ωF , where ωF =
EF /h̄ is the frequency associated with the Fermi energy in
graphene [44]. In the reduced units, these inequalities amount
to vF

c
k � ω � ϕ, where ϕ ≡ c

vB
≈ 137 is the inverse of the

fine structure constant.

2. Nonlocal model conductivity

Effects due to finite wave number k can be introduced
into the conductivity of graphene at sufficiently low frequen-
cies, such that ω � ωF , by using the model developed by
Lovat et al. [38]. Their model essentially generalizes the
Drude conductivity by introducing the effects of intraband
electron-hole continuum in the domain 0 < ω < kvF of the
(k, ω) plane, thereby relaxing the lower-frequency constraint
of the Drude model kvF � ω. Those authors obtained the
longitudinal and transverse conductivities of graphene, which
may be expressed in the reduced units used in our work as

σ l (k, ω) = 2
σ intra

1 + χ

1

χ − i
γ

ω
(1 − χ )

, (30)

σ t (k, ω) = 2
σ intra

1 + χ
, (31)

respectively. Here, σ intra (ω) is the Drude conductivity given
in Eq. (29) and the auxiliary factor χ (k, ω) is defined as

χ =
√

1 −
(

vF

c

)2(
k

ω + iγ

)2

. (32)

While the longitudinal and transverse conductivities attain
different values in the model due to Lovat et al., the smallness
of the factor ( vF

c
)2 ≈ 10−5 indicates that nonlocal effects are

only observable at frequencies ω � k, which lie deeply in the
nonretarded regime, and hence they are expected to be sup-
pressed in the transverse response of graphene in comparison
to its longitudinal response. Therefore, to the order of ( vF

c
)2 ≈

10−5, the longitudinal and transverse conductivities become
equal, and are given by the Drude model σ l = σ t = σ intra (ω).

On the other hand, taking the limit γ → 0 for frequencies
outside the continuum of intraband single-electron excitations
ω > k vF

c
, one can ensure that the real parts of both σ l and

σ t vanish, while their imaginary parts are found to be both
positive. Therefore, by using Eqs. (30) and (31) in Eqs. (26)
and (27), respectively, it follows that only a longitudinal mode
exists with a dispersion relation, which is very close to that of
a DPP mode from the Drude conductivity model.

3. Optical model conductivity

The upper frequency constraint of the Drude model ω �
ωF may be relaxed by adding to it the low-energy interband
contribution, which is sometimes called Dirac conductivity.
This contribution is given at zero temperature by [42,45]

σinter (ω) = i
vB

4π
ln

(
2ωF − ω − iγ

2ωF + ω + iγ

)
. (33)

It was shown by ab initio calculations [36] that, in the strict
long-wavelength limit, the conductivity of graphene at fre-
quencies up to about 2ωF is well represented by the sum of the
intraband and interband contributions given in Eqs. (29) and
(33), σopt (ω) = σintra (ω) + σinter (ω), respectively. We shall
call such model optical conductivity and apply it to the range
of frequencies up to MIR, corresponding to an energy loss of
the incident particle of about 1 eV.

Switching to reduced variables, we note that in the zero
damping limit γ → 0, the reduced interband conductivity
becomes [45]

σ inter = 1

4ϕ

[
�(ω − 2ϕ) + i

π
ln

∣∣∣∣ω − 2ϕ

ω + 2ϕ

∣∣∣∣
]
, (34)

where � is the unit step function. One observes that
Re{σ inter} ≈ 0 and Im{σ inter} < 0 for frequencies ω < 2ϕ ≈
274, thus opening the possibility for excitation of a trans-
verse mode in that interval. Indeed, by taking γ → 0 in
that same frequency interval for the optical conductivity, we
ensure that its real part vanishes Re{σ opt (ω)} → 0, while
its imaginary part Im{σ opt (ω)} changes its sign at a critical
frequency ω∗ ≈ 1.667 ϕ ≈ 228. Therefore, using the optical
conductivity σ opt (ω) in Eqs. (26) and (27), one finds that a
longitudinal mode can be excited at frequencies 0 < ω < ω∗
and a transverse mode can be excited in the interval ω∗ <

ω < 2ϕ. We note that this interval covers a range around
1 eV, using the physical units. The corresponding dispersion
relations of those modes are given in reduced units as α =
αl (ω) and α = αt (ω), where

αl (ω) = ω2

2

[
1+ ω

4ϕ
ln

(
2ϕ − ω

2ϕ + ω

)]−1

, 0 < ω < ω∗ (35)

αt (ω) = −2

[
1+ ω

4ϕ
ln

(
2ϕ − ω

2ϕ + ω

)]
, ω∗ < ω < 2ϕ. (36)

Therefore, in the case of optical conductivity, we can use
Eq. (25) to obtain a modal decomposition in the regime when
Re{σ (ω)} → 0, where the loss functions for the longitudinal
and transverse responses of graphene are to be replaced by the
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Dirac delta functions, according to

Im

{−1

εl

}
→ παl (ω) δ(α − αl (ω)) for 0 < ω < ω∗,

(37)

Im

{
1

εt

}
→ παt (ω) δ(α − αt (ω)) for ω∗ < ω < 2ϕ,

(38)

respectively.
We note that the transverse mode in doped graphene was

predicted by Mikhailov and Ziegler [46], and was studied in
some detail by Stauber [47], but its confirmation has eluded
experimentalists so far. Therefore, we use the optical model
of conductivity to explore here the possibility to excite the
transverse mode in graphene via electron beam under oblique
incidence.

It is interesting to mention that, if a small gap � is opened
between graphene’s valence and conduction π electron bands,
then the optical conductivity for an undoped graphene would
be given by an expression similar to that given in Eq. (33)
for interband transitions, but with the frequency ωF replaced
by �/(2h̄) [47]. When a graphene layer that exhibits a finite
gap � is also doped with its Fermi level shifted into the
conduction or the valence band, then its optical conductivity
would consist of both interband term governed by � and an
intraband term of the Drude form in Eq. (29), governed by the
doping density of gapped graphene.

4. Extended hydrodynamic model conductivity

The optical response of graphene in the range of high
frequencies, from MIR to UV, corresponding to the energy
losses in an interval 1–30 eV, is characterized by the high-
energy π → π∗ and σ → σ ∗ interband transitions [48,49].
The energy loss function shows conspicuous features at about
4 and 14 eV [50,51], which are usually labeled as the π and
σ + π “plasmon” peaks, and their dispersion can be assessed
through standard k-resolved EELS experiments [40]. In that
range of energies, a two-fluid hydrodynamic (HD) model was
found to be a good description for the polarization function
χ0, obtained as the sum of the contributions from π and σ

electrons, χ0 = χπ + χσ , with

χν (q, ω) = n0
νq

2/m∗
ν

s2
ν q

2 + ω2
νr − ω(ω + iγν )

, (39)

where n0
ν , m∗

ν , ωνr , sνr , and γν are the equilibrium surface
number density of electrons, effective electron mass, restoring
frequency, acoustic speed, and the damping rate in the νth
fluid (where ν = π, σ ), respectively. In the optical limit, the
conductivity of graphene is obtained as the sum of two Drude-
Lorentz–type terms

σHD(ω) = −ie2ω lim
q→0

χ0(q, ω)

q2

= −ie2ω

[
n0

π/m∗
π

ω2
πr −ω(ω + iγπ )

+ n0
σ /m∗

σ

ω2
σr − ω(ω + iγσ )

]
.

(40)

While this model provided a good fit of the dominant π

and σ + π peak structures in the spectra of graphene at
energy losses �3 eV [18,51], there are indications in the more
recent experimental data that the Dirac physics of low-energy
excitations in graphene could play an important role at energy
losses �2 eV [19,21,39,41]. The inadequacy of the model in
Eq. (40) at such energies is readily indicated by the fact that
σHD(0) = 0, whereas the conductivity of undoped graphene
should approach the value of vB/4 when ω → 0, i.e., the
so-called universal optical conductivity of graphene [52]. In
order to include the low-energy range, Djordjević et al. [41]
extended the hydrodynamic model by adding a Dirac term
σD (ω) describing the π → π∗ interband electron transitions
that occur near the K points in the Brillouin zone of graphene.
The structure of the extended HD (eHD) model and its
various parameters are determined through the application
of the Kramers-Kronig relations and the f -sum rule, which
maintains the conservation of the number of electrons partic-
ipating in various excitation processes [41]. This yields the
conductivity of undoped graphene in the form

σeHD(ω) = e2

{
1

4h̄

ω4
∗

ω4∗ + ω4
+ i

ω

me

[
ω2

∗ + ω2

ω4∗ + ω4

ω∗me

√
2

8h̄

−
(

1 − ω∗me

√
2

8h̄nat

)
n0

π

ω2
πr − ω(ω + iγπ )

− n0
σ

ω2
σr − ω(ω + iγσ )

]}
. (41)

It should be noted that the addition of the Dirac term in-
troduces a parameter ω∗ in Eq. (41), so that the universal
conductivity of graphene is approached when ω � ω∗, giving
σeHD(0) = vB/4. The parameter ω∗ may be qualitatively in-
terpreted as a cutoff frequency that separates the low-energy
π → π∗ electron transitions near the K points in the Brillouin
zone of undoped graphene, which give rise to the universal
conductivity when ω → 0, from the high-energy π → π∗
electron transitions near the M points, which give rise to the
π plasmon peak near ωπr [41].

We adopt the above model with the following values for
the parameters: n0

π = nat = 38 nm−2, n0
σ = 114 nm−2, ωπr =

4.19 eV, ωσr = 14.15 eV, γπ = 2.04 eV, γσ = 2.178 eV, and
ω∗ = 3.54 eV. These values ensure that the model reproduces
satisfactorily several sets of experimental data for EELS on
single-layered graphene [41], and agrees well with ab initio
calculations of graphene’s optical conductivity in a broad
range of frequencies [36].

III. RESULTS AND DISCUSSION

In this section, we present calculations corresponding to
the energy loss spectra of the electrons impinging on graphene
under oblique incidence, using the conductivity models de-
scribed in the previous section for diverse frequency regimes.
One should note that, while the results of calculations using
the eHD conductivity model for the high-frequency range are
presented in the physical units, it is convenient to nondimen-
sionalize the relevant variables in the other three models for
low frequencies, covering the THz to MIR range, as described
in the previous section.
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FIG. 2. Normalized integrated energy loss density of the external charged particle P ext = Pext/Pc with Pc = 4/(πEF ) where EF is the
Fermi energy of graphene, for two angles of incidence: (a) θ0 = 0 and (b) θ0 = 60◦, and for several external particle speeds β, versus the
reduced frequency ω = ω/ωc. Also shown are, in each panel, two separate contributions of longitudinal (dashed curves) and transverse (dotted
curves) dielectric functions to the external loss. Nonlocal effects of the graphene’s conductivity model on the loss spectra is depicted by the
comparison of the Lovat’s (thick lines) and Drude (thin lines) models. The reduced damping rate is fixed at γ = γ /ωc = 0.05.

There are several parameters that influence the low-energy
loss spectra; two of them are associated with the external
charged particle, i.e., the direction of its motion relative to
graphene (quantified by θ0) and its speed (quantified by β),
and two of them are associated with the graphene sheet, i.e.,
the damping of its charge carriers’ excitations (quantified by
the rate γ ) and the collective excitations of its charge carriers,
or plasmon polariton modes described by the corresponding
dispersion relations in the (k, ω) plane. In the low-frequency
regime, we shall keep the normalized damping ratio fixed
at a relatively low value of γ = 0.05, unless we turn to a
discussion of the role of the dispersion relations, which are
obtained from the zeros of the dielectric functions in Eqs. (13)
and (14) in the limit of vanishing damping. We have chosen a
relatively small value of γ = 0.05 in order to emphasize res-
onant features in the spectra due to the excitation of plasmon
polariton modes at low-energy losses. However, it should be
stressed that we have found in our previous publications that
increasing values of γ exert rather strong influence on both the
Ohmic and radiation energy losses, especially at the sub-THz
frequencies [29–31].

Throughout this section, we shall present and compare the
decomposition of all energy-loss channels into their longitu-
dinal and transverse components in order to emphasize the
importance of the oblique trajectories of the external particle
for generating EM fields with different polarizations by the
two types of the excitation mechanisms of charge carriers in
graphene, which are descried by the dielectric functions in
Eqs. (13) and (14).

A. Energy losses at the THz frequencies

The dynamic response of graphene in the THz range of
frequencies is expected to be well described by the Lovat’s
model, as well as by the Drude model as its local limit. By
comparing the results from those two models, we can directly
assess the effects of nonlocality in the energy loss densities at
those frequencies.

Figure 2 shows the normalized integrated energy loss
density of the external charged particle P ext = Pext/Pc with
Pc = 4/(πEF ) where EF is the Fermi energy of graphene, for
two angles of incidence: θ0 = 0 in Fig. 2(a) and θ0 = 60◦ in
Fig. 2(b), and for several external particle speeds β. We also
show in each panel two separate contributions to the function
P ext (ω) coming from the longitudinal (dashed curves) and
transverse (dotted curves) dielectric functions [see Eq. (19)
with Eq. (28)].

Under the normal incidence (θ0 = 0), shown in Fig. 2(a),
there only exists a longitudinal contribution to the energy
loss density P ext (ω). The effect of nonlocality only becomes
visible in the frequency range 0.1 � ω � 100 for the very low
speed of β = 0.01, i.e., in the nonretarded regime. For the
low-frequency range ω � 0.1, the function P ext (ω) exhibits
a ∝ω−1 dependence and increases in magnitude with the
increasing speed of the charged particle. This is consistent
with the findings of our previous work [29,31], where it was
shown that both the Ohmic energy loss (for finite damping
rate) and the radiative energy loss exhibit the characteristic
∝ω−1 dependence when ω → 0+, with their respective mag-
nitudes increasing with β. Specifically, for the Ohmic energy
loss, this can be seen from Eq. (15) in Ref. [31], whereas
for the radiative energy loss, one can obtain from Eq. (48) in
Ref. [29] that, in the limit ω → 0+ and for zero damping, the
normalized integrated radiation energy loss density scales as
P rad(ω) ∼ 2

3
β2

ω
to within an accuracy of 10% for the normal

incidence at the speeds β � 0.5.
On the other hand, a peak is observed in Fig. 2(a) at

frequencies ω � 1, where the Ohmic energy loss plays a dom-
inant role (see Fig. 3 in Ref. [29]). That peak results from an
interplay of the longitudinal Dirac plasmon polariton (LDPP)
mode in graphene and the amplitude |A|2 [see Eq. (19)]. The
position of this LDPP-induced peak is seen in Fig. 2(a) to shift
towards higher frequencies as the particle speed decreases.
To understand such behavior of the peak in the energy loss
spectra under the normal incidence, it suffices to consider the
limit of zero damping, and refer to Eq. (47) in Ref. [29], which
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FIG. 3. Normalized integrated probability densities for (a) Ohmic energy loss P Ohm(ω) = POhm/Pc and (b) radiative energy loss P rad (ω) =
Prad/Pc for the charged particle speed of β = 0.01 (the nonretarded case) and for several angles of incidence. The differences between the
Lovat’s (thick lines) and Drude (thin lines) models, as well as the relative weights of the longitudinal (dashed lines) and transverse (dotted
lines) contributions to the Ohmic and radiative integrated densities in a nonretarded limit, are also shown. The reduced damping rate is fixed at
γ = 0.05.

yields a peak in the integrated Ohmic energy loss density
that is positioned at ωpeak = 2

√
β−2 − 2. This shows that the

peak frequency decreases with increasing speed, and the peak
disappears for the speeds β > 1/

√
2.

When the charged particle’s trajectory becomes oblique to
the plane of graphene, the transverse part begins to contribute
to the energy loss density P ext (ω), which is shown in Fig. 2(b)
with the same speeds as in Fig. 2(a), but for the angle of
incidence of θ0 = 60◦ [53]. It is observed that the transverse
part mostly contributes to the energy loss in the low-frequency
range. Even though the transverse contribution remains gen-
erally smaller than the longitudinal contribution, their mag-
nitudes can become comparable, e.g., for the speed β ∼ 0.1
at frequencies ω � 0.01, as seen in Fig. 2(b). Furthermore,
the effect of the nonlocality, which is exposed by comparing
the Lovat’s and Drude models for both the longitudinal and
transverse contributions, appears to be similar to what was
observed in Fig. 2(a). Namely, the nonlocal effect is only
visible for sufficiently low speeds, i.e., in the nonretarded
regime and, while it affects the longitudinal contribution in
the same range of frequencies as in the case of the normal
incidence, the nonlocal effect is practically ignorable for the
transverse contribution, as indicated by the dotted black lines
in Fig. 2(b). It is further noticed that both the transverse
and the longitudinal contributions exhibit the same charac-
teristic ∝ω−1 dependence at the lowest frequencies, which
is accompanied by an increase in magnitude with increasing
particle speed, similar to the behavior observed in Fig. 2(a).
On the other hand, while the longitudinal contribution exhibits
a LDPP-induced peak at frequencies ω � 1 in Fig. 2(b),
with a similar peak position as in Fig. 2(a), the transverse
contribution is heavily suppressed at such frequencies.

As was noticed above, the nonlocal effects only matter
at low speeds, i.e., in the nonretarded regime. In order to
investigate this regime in some detail, we study in Fig. 3 the
normalized integrated densities for both the Ohmic energy
loss P Ohm = POhm/Pc, in Fig. 3(a), and the radiative energy
loss P rad = Prad/Pc, in Fig. 3(b), for the charged particle

speed of β = 0.01 and for several angles of incidence. In
this figure, one can further clarify the differences between the
Lovat’s and Drude models, as well as elucidate the relative
weights of the longitudinal and transverse contributions to
the Ohmic and radiative integrated densities in a nonretarded
limit. As expected for this low speed, the effect of nonlocality
is apparent at frequencies ω � 0.1, but only for the Ohmic
energy loss, as shown in Fig. 3(a). At the same time, Fig. 3(b)
confirms that there is no effect of the nonlocality in the
radiative energy loss, neither in the longitudinal nor in the
transverse contributions, which is expected since the radiation
loss is a purely relativistic phenomenon.

Regarding the magnitude of various contributions to the
energy loss in Fig. 3, one notices that the radiative loss chan-
nels are significantly smaller than the corresponding Ohmic
loss channels, as expected at such low speed. Moreover,
the nonretarded regime is also responsible for the transverse
contributions to both the Ohmic and the radiative energy
losses being much smaller than the corresponding longitudi-
nal contributions. Comparing Figs. 3(a) and 3(b) in that figure
at frequencies ω � 1, one further notices that the longitudinal
contribution to the Ohmic energy loss increases, while the
same contribution to the radiation energy loss decreases with
increasing angle of incidence θ0. The latter observation is
consistent with the observations in Fig. 2, implying that it is
the normal component of the external particle speed β cos θ0

that likely governs the magnitude of the longitudinal contribu-
tion to the radiative energy loss channels. Namely, given that
the radiation is most effectively produced by accelerating the
charge carriers in graphene, a reduction in the perpendicular
component of the speed would bring down the “abruptness”
of graphene’s interaction with the external charged particle
and hence reduce the production of TR. Clearly, for a strictly
parallel trajectory, there can be no radiation [32]. For a
more quantitative assessment, one may invoke the analysis of
Fig. 2(a) based on Eq. (48) in Ref. [29], and hence surmise
that the longitudinal contribution to the radiative energy loss
scales as ∝(β cos θ0)2.
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Regarding the dependence of the transverse contributions
to the Ohmic and radiative energy losses on the incident
angle, similar conclusions can be drawn as for the longitudinal
contributions, with a peculiar “anomaly” seen in Fig. 3(b),
where the transverse contribution to the radiative energy loss
exhibits an apparently symmetric maximum about the inci-
dent angle θ0 = π/4. This can be explained in the following
way. By looking at the transverse part of Eq. (23), with the
transverse component of the in-plane tangential electric field
given in Eq. (16), which contains the factor τ̂ · v‖. Therefore,
the magnitude of the transverse contribution to the radiative
energy loss is proportional to sin2 θ0, so it vanishes as the
incident particle approaches graphene under a grazing angle
of incidence, i.e., on a near-parallel trajectory. On the other
hand, one notices in Fig. 3(b) that there exist equal spacings
between any pair of the curves representing the transverse or
longitudinal contributions to the radiative energy loss at low
frequencies, ω � 1, for incident angles θ0 � π/4. This indi-
cates that the transverse contribution likely scales the same
way as the longitudinal contribution to the radiative energy
loss in terms of the normal component of the external particle
speed, that is, ∝cos2 θ0. Thus, one may surmise that the trans-
verse contribution to the radiative energy loss is proportional
to sin2 (2θ0) for the incident speeds β � 0.5, and it therefore
should exhibit a symmetric maximum about θ0 = π/4.

As we have discussed so far, the effect of nonlocality on the
energy loss spectra becomes salient for nonretarded speeds.
However, relative contribution of the transverse part with
respect to the longitudinal part in the energy loss is expected to
increase with increasing speed of the external particle, i.e., by
going into the regime where the retardation effects dominate.
To explore that regime, we show in Fig. 4(a) decomposition
into the longitudinal and transverse contributions to the energy
loss spectra in a manner similar to that employed in Fig. 3,
but for a significantly higher incident speed of β = 0.5. In
this regime, the Ohmic and radiative energy losses attain
comparable magnitudes, at least at the frequencies ω � 1 and
at the angles of incidence that are not too oblique. Thus, in
addition to showing the Ohmic energy loss in Fig. 4(a) and
the radiative energy loss in Fig. 4(b), we also show the total
energy loss of the external particle in Fig. 4(c), all for various
angles of incidence. As expected, no differences are observed
between the Drude and Lovat’s models in any of the shown
spectra, confirming that the nonlocal effects are negligible at
such high speed.

The dependencies on the angle of incidence for all
contributions shown in Figs. 4(a) and 4(b) at low frequencies
are analogous to the trends observed in Fig. 3. As in Fig. 3(a),
one notices in Fig. 4(a) that the longitudinal contribution to the
Ohmic loss at low frequencies increases with the increasing
angle of incidence. This may be tentatively explained by the
increasing time that the incident particle spends interacting
with the near fields induced by the graphene’s charge carriers,
which scales as ∝sec θ0. However, it is remarkable that, for
incident angles θ0 > 60◦, the longitudinal contribution to
the Ohmic energy loss at low frequencies in Fig. 4(a) has a
comparable magnitude as the same contribution in Fig. 3(a),
which is quite surprising given the large difference in the
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FIG. 4. Normalized integrated probability densities for (a)
Ohmic energy loss P Ohm(ω), (b) radiative energy loss P rad (ω),
and (c) external energy loss P ext (ω) = P Ohm(ω) + P rad (ω) for the
charged particle speed of β = 0.5 and for several angles of incidence.
The differences between the Lovat’s (thick lines) and Drude (thin
lines) models, as well as the decomposition of the longitudinal
(dashed lines) and transverse (dotted lines) contributions to those
integrated densities are shown. Also included are, in (a), calculations
for the Ohmic energy loss density at high frequencies using the
approximation for P || given in Eq. (42) for θ0 � 60◦ (dashed–double-
dotted curves). The reduced damping rate is fixed at γ = 0.05.
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incident speed β between the two figures and the trend
observed in Fig. 2.

One can observe in Fig. 4(a) that, while both contributions
to the Ohmic loss increase in magnitude with increasing
angle of incidence, the longitudinal contribution dominates at
higher frequencies, where it exhibits an LDPP-induced peak,
whereas the transverse contribution may become dominant
at lower frequencies, say ω � 0.1, for sufficiently oblique
trajectories, say θ0 � 60◦. The latter observation may be ratio-
nalized by recalling that the transverse contribution is mostly
a result of retardation effects, which are enhanced at lower
frequencies and for larger parallel components of the incident
speed. At the same time, one observes in Fig. 4(b) that the
total radiative energy loss decreases with increasing angle of
incidence, with a similar rationale as that provided in the case
studied in Fig. 3. Moreover, for all directions of incidence, the
transverse contribution to the radiative energy loss is seen to
be negligible compared to the longitudinal contribution, while
still exhibiting a symmetric maximum at the incident angle
θ0 = π/4, as discussed in Fig. 3(b).

The LDPP-induced peak in the longitudinal contribution
to the Ohmic energy loss density is observed in Figs. 4(a) and
4(c) at a frequency that is significantly lower than the peak in
Fig. 3(a), which is consistent with the trend observed Fig. 2
for increasing total speed β. It is important to notice that this
peak grows larger in magnitude for trajectories closer to the
parallel direction. This may be also rationalized by noticing
that the more time the incident particle spends interacting with
the near fields induced by the graphene’s charge carriers, the
more of its energy will go to the excitation of the LDPP mode
in graphene.

It is worthwhile exploring the evolution of the position and
the shape of the LDPP-induced peak as the incident angle θ0

of the charged particle increases towards parallel trajectory. To
that effect, we consider the overlap of the resonance condition
for exciting the LDPP mode with a dispersion relation [29]

ω = ωLDPP(k), where ωLDPP(k) =
√

2(−1 +
√

1 + k
2
) [29],

and the so-called kinematic condition ω = k · v‖, which max-
imizes the amplitude A of the excitation mechanism, given in
Eq. (7) [32]. One notices that the latter condition covers the
region 0 � ω � kβ‖ in the (k, ω) plane, with an upper bound-
ary that increases with increasing incident angle. In the limit
of a (near-) parallel trajectory, we may refer to the longitudinal
contribution in Eq. (21) of Ref. [32], to further observe that the
Ohmic energy loss rate R = dW

dt
is maximized when ω = kv‖

or ω = kβ‖. Hence, using the crossing of the LDPP dispersion
relation with the upper boundary of the kinematic region
in the (k, ω) plane, we obtain an equation ωLDPP(k) = kβ‖,
which is readily solved for k to yield a reduced frequency
ω‖ = 2

√
β−2

‖ − 1 = 2
√

β−2cosec2θ0 − 1, corresponding to a
maximal rate of excitation of the LDPP mode for a given
incident trajectory. This frequency is found to closely match
the positions of the cusplike peaks observed in Fig. 4(a) in
the solid curves describing the longitudinal contribution to the
Ohmic energy loss for sufficiently large angles of incidence.

Moreover, one can estimate the total energy W lost to the
excitation of the LDPP mode for a near-parallel trajectory
by invoking the result for the energy loss rate R(b) for the
case of a parallel trajectory with the external particle moving

at a fixed distance b from graphene, which is given by the
first term in Eq. (21) of Ref. [32]. Using the adiabatic ap-
proximation [54], one may then write W = 1

vz

∫ ∞
−∞ dbR(b) ≡

h̄2
∫ ∞

0 dω ωP‖(ω), which, in the limit of zero damping, read-
ily yields an estimate for the longitudinal contribution to the
Ohmic energy loss density for a sufficiently grazing angle of
incidence

P ‖ ≈ 2π

β2 sin(2θ0)

ω

ω2 + 4

�(ω − ω‖)√
ω2 − ω2

‖
. (42)

We note that the result in Eq. (42) closely reproduces solid
curves in Fig. 4(a) for frequencies ω > ω‖ and for the incident
angles θ0 � 60◦.

B. Angular distribution of the emitted THz radiation

Since the transverse contribution to the radiative energy
loss densities in the Figs. 3(b) and 4(b) was always found
to have much smaller magnitude than the longitudinal con-
tribution, it is instructive to further compare those two con-
tributions in the angular distribution of TR at several typical
frequencies. In Fig. 5, we show the angular distribution of the
spectral density for TR in reduced units S (θ, φ, ω) = S/Sc

with Sc = (Ze)2/c for the external particle with the speed
β = 0.5 and the angle of incidence of θ0 = 60◦, and for three
different frequencies ω = 0.5, 1, and 5. In the left, middle,
and right columns, we show the longitudinal contribution,
transverse contribution, and the total angular radiative spectra,
respectively [53]. As expected, the radiation patterns are
always symmetric with respect to the plane of graphene, as
well as with respect to the xz plane, i.e., the plane of incidence
of the external charged particle. By the comparison of the left
and middle columns, it is seen that, generally, the longitudinal
contribution is larger in magnitude when compared to the
transverse contribution, but the difference is not as large
as implied by the curves in Fig. 4(a). As a matter of fact,
by increasing the frequency, the transverse contribution in
Fig. 5 becomes even comparable to the longitudinal contri-
bution when viewed in different directions, although both
contributions decrease in overall magnitude as the frequency
increases.

Another important point to note is that the longitudinal
contribution mostly radiates in directions far from the z axis
or, more precisely, in directions close to the plane of graphene
θ ≈ π/2, covering a broad range of the polar angle φ values
with a peak in the (projected) direction of motion of the
external particle. At the same time, the transverse contribution
mostly radiates in directions close to the z axis, i.e., perpen-
dicular to graphene with θ close to 0 or π , whereas the range
of values covered by the polar angle φ becomes broader with
increasing frequency ω, showing a pronounced minimum in
the (projected) direction of motion of the external particle
φ = 0. Thus, the longitudinal and the transverse contributions
to TR exhibit somewhat complementary angular patterns,
both with respect to the plane of graphene and the plane of
incidence of the external charged particle.

In order to further expose the anisotropy of the radiation
patterns, we show in Fig. 6 the cross sections of the angular
distribution of the spectral density for TR in the plane of
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FIG. 5. Angular distribution of the spectral density for TR in reduced units S (θ, φ, ω) = S/Sc with Sc = (Ze)2/c for the external particle
with the speed β = 0.5 and the angle of incidence of θ0 = 60◦, and for three different frequencies ω = 0.5, 1, and 5. In the left, middle, and
right columns, we show the longitudinal contribution, transverse contribution, and the total angular radiative spectra, respectively. The reduced
damping rate is fixed at γ = 0.05 and the Lovat’s model has been used for the conductivity tensor.

incidence S (θ, φ = 0, ω) for an external particle with the
speed β = 0.5 and three angles of incidence, θ0 = 15◦ in
Fig. 6(a), θ0 = 45◦ in Fig. 6(b), and θ0 = 85◦ in Fig. 6(c),
for several frequencies. These panels represent the total
angular distribution, which is identical to the longitudinal
contribution, because the factor sin2 φ renders the transverse
contribution identically zero in the plane of incidence

[see Eqs. (16), (23), and (24)]. One can see in Fig. 6 that
the overall magnitude of the TR patterns decreases with
increasing frequency and with increasing angle of incidence
θ0. In general, all the TR patterns are skewed towards the
plane of graphene, and they become more asymmetric with
respect to the z axis as the incident trajectory becomes
more oblique. Interestingly, while the main lobes of the TR
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FIG. 6. The cross section of the angular distribution of the spectral density for TR in the plane of incidence S (θ, φ = 0, ω) for an external
particle with the speed β = 0.5 and three angles of incidence (a) θ0 = 15◦, (b) θ0 = 45◦, and (c) θ0 = 85◦ for several frequencies. These
panels represent the total angular distribution, which is identical to the longitudinal contribution. The spectra are calculated employing Lovat’s
conductivity model for graphene where the reduced damping rate is fixed at γ = 0.05.

patterns occur between the direction of motion of the external
particle and graphene, i.e., in a range of emission angles
θ0 < θ < π/2 for the incident angles θ0 = 15◦ and 45◦, when
the angle of incidence is very close to graphene, θ0 = 85◦,
the lobes of the maximum TR occur at the emission angles
above the direction of motion θ > θ0, although quite close to
it. With such peculiar features, it would be quite feasible to
perform the CL type of measurements of the emitted radiation
in STEM [27], which would be able to not only detect the
anisotropy in the angular patterns of the emitted radiation
from graphene, but also resolve the polarization of the
emitted waves coming from the longitudinal and transverse
contributions as the TM and TE polarizations, respectively.

On the other hand, the interaction of externally moving
charged particles with 2D materials plays an important role
in the prospective design of a stable, highly tunable source of
THz radiation. In this regard, there have been several recent
proposals to use the EM radiation from graphene induced by
a fast electron beam, moving either parallel [24,25] or normal
to graphene [26]. In all of those proposals, both the doping
density in graphene and the speed of the external particle were
suggested as possible tuning parameters for such radiation
sources, while the issue of the polarizability of the radiated
EM waves was not explicitly addressed. We have seen that the
direction of the trajectory of motion of the external particle
relative to a 2D material may also be used as a suitable tuning
parameter for such sources of radiation, which could possibly
help select different polarizations of the radiated EM waves.

C. A search for the transverse mode

While all the above results were obtained using the Drude
and the Lovat’s models of graphene’s conductivity, which
cover the frequencies ω � 100, we next investigate the pos-
sibility to excite the transverse mode by adopting the optical
model of graphene’s conductivity, which supports both the
LDPP mode due to the intraband electronic excitations at low
frequencies and the transverse mode due to the interband elec-
tronic transitions involving the range of frequencies 228 <

ω < 274, as discussed in the previous section. Figure 7 depicts
the integrated probability density for the Ohmic energy loss
POhm of a graphene sheet described by the optical conductivity

model, along with its decomposition into the longitudinal and
transverse contributions, for a charged particle at the speed
β = 0.5. While in Fig. 7(a) we show the results for different
angles of incidence, in fig. 7(b) we explore the effects of
varying the damping rate γ .

One observes in Fig. 7(a) that the Ohmic energy loss
increases in magnitude as the external particle’s trajectory
becomes more inclined towards graphene, as noted above.
Particularly, the LDPP-induced peak at ω > 1 in the longitu-
dinal contribution becomes more pronounced with increasing
θ0, whereas at low frequencies, both the longitudinal and
transverse contributions to the Ohmic energy loss echo the
behavior observed in Fig. 4(a) at ω < 1. As was discussed
in our previous work [29,31], the very-low-frequency range
ω � 1 is where the effect of damping rate is rather strong,
and the middle frequency range 1 � ω � 100 is where the
excitation of the LDPP mode is dominant, whereas the MIR
frequency range of 228 � ω � 274, shown in the insets in
Fig. 7, is where the excitation of the transverse mode should
take place. In the inset of Fig. 7(a), we see negligibly small
energy loss densities for both the longitudinal and transverse
contributions, which do increase with the increasing angle
of incidence. However, the transverse contribution is always
smaller than the longitudinal contribution, which exhibits a
high-frequency tail, with a dip that extends over the frequency
range 228 < ω < 274, owing to the finite value of damping
rate γ = 0.05, used in Fig. 7(a).

In order to demonstrate a regime where only the transverse
contribution would survive, we explore the effects of varying
the damping ratio in Fig. 7(b) with a special role played by the
idealized case of zero damping γ = 0. Namely, in that case
the only mechanism for energy loss of the external charged
particle involves Ohmic losses due to excitation of the collec-
tive modes in graphene [31]. Specifically, by using Eq. (25)
in (28) to evaluate the Ohmic energy loss density by means of
Eqs. (37) and (38), we expect that the LDPP mode will give a
nonzero longitudinal contribution in the range of frequencies
0 < ω < 228, and a nonzero transverse contribution in the
range of frequencies 228 < ω < 274, respectively.

While both the longitudinal and transverse contributions to
the Ohmic energy loss in Fig. 7(b) show great variability with
increasing γ at low frequencies ω � 1, the situation in the
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FIG. 7. Integrated probability density for the Ohmic energy loss POhm of a graphene sheet described by the optical conductivity model,
along with its decomposition into the longitudinal (dashed lines) and transverse (dotted lines) contributions, for a charged particle at the speed
β = 0.5. (a) Represents the results for different angles of incidence with fixed γ = 0.05 and (b) shows the investigation of the effects of
varying the damping rate γ which includes the probability density for the excitations of the LDPP and TDPP modes. The inset of each panel
depicts a closer focus at the range of 228 � ω � 274 where the excitation of the transverse mode occurs.

inset to Fig. 7(b) is not much changed compared to the inset
to Fig. 7(a), except in the case γ = 0. Namely, one observes in
the inset to Fig. 7(b) that, for γ = 0, the tail of the density for
the longitudinal contribution (blue dashed line) terminates at
the frequency ω = 228, whereas the density of the transverse
contribution (blue dotted line) shows an onset on that fre-
quency, and it continues increasing with the frequency going
up to ω = 274, where this contribution terminates. Hence,
this shows that the transverse mode may indeed be excited
by an external charged particle under oblique incidence upon
graphene, although its signature in the energy loss density
would not be in the form of a well-defined peak, as in the case
of the LDPP mode. Rather, the transverse mode in a graphene
with negligible damping of its charge carriers would show as
a cusp in the Ohmic energy density at a frequency ω � 274,
with a hopelessly low probability.

It should be finally mentioned that the effects of finite
temperature make the transverse mode unstable, as shown in
Ref. [55]

D. EELS of graphene at high frequencies

While most experiments using EELS of graphene in STEM
[18,19,39], as well as the theoretical models of those experi-
ments [39,41,48,51], considered fast electrons under normal
incidence upon graphene, there has been recent work that
also studied oblique incidence in a momentum-resolved mea-
surement of the dispersion properties of the π and σ + π

“plasmon” peaks in the energy loss spectra [40]. With the
advent of the novel monochromatic techniques in STEM [21],
it became possible to probe electron energy losses well below
1 eV, thereby accessing the range of the low-energy interband
π → π∗ electronic transitions in intrinsic (undoped) graphene
in the Dirac cone approximation. Therefore, we use the eHD
model of graphene’s conductivity to assess the relative roles
of the longitudinal and transverse contributions to both the
Ohmic and radiative energy loss spectra of electrons travers-

ing the graphene layer under oblique incidence in a STEM
setting.

In Fig. 8(a) we show the integrated probability density of
the energy loss Pext (ω), as a function of the energy ω (we
set here h̄ = 1), lost by an incident electron with the speed
β = 0.5 for a broad range of incident angles, whereas in the
inset to that figure we show the corresponding energy loss due
to the emitted TR, Prad(ω). One notices that the magnitude
of the radiation energy loss is very much smaller than Pext (ω),
so that practically Pext (ω) ≈ POhm(ω). One may confirm from
Fig. 8(a) that, while the Ohmic energy loss density increases
in magnitude with increasing angle of incidence, in a propor-
tion that scales with sec θ0 for angles θ0 � 60◦, the opposite
trend is seen for the radiative energy loss density in the inset
to that figure, which decreases with the increasing θ0. Those
trends are consistent with observations made in Figs. 3 and
4 at the THz range of frequencies. Namely, the increase in
the Ohmic energy loss scales with increased time the external
particle spends interacting with the near fields induced by the
excitation of graphene’s charge carriers, whereas the decrease
in the radiative energy loss is governed by a decrease in
the perpendicular component of the external particle speed
β cos θ0, which reduces the “abruptness” of the graphene
interaction with the external particle. On the other hand, one
notices a small red-shift in the main peaks in Prad(ω) in com-
parison to the peak positions in Pext (ω), but it is interesting
that the positions and the shapes of the peaks in each of those
densities are rather insensitive to variations of the incident an-
gle. We note that the strong increase observed in both Pext and
Prad as ω → 0 is a signature of the Dirac-term contribution to
the eHD conductivity, coming from the low-energy interband
π → π∗ electronic transitions in undoped graphene. Such
feature in the experimental EELS data of graphene may have
been observed in recent measurements [19,21].

In Fig. 8(b) we show the integrated probability density of
the energy loss of the external particle Pext as well as the
longitudinal and transverse contributions to that density for
several incident angles. One notices that, while the transverse
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FIG. 8. (a) Integrated probability density of the external energy loss Pext (ω) as a function of the energy ω (with h̄ = 1) lost by an incident
electron with the speed β = 0.5 for a broad range of incident angles. Shown in the inset of (a) is the corresponding energy loss due to the emitted
TR, Prad (ω). Since the magnitude of the radiation energy loss is very much smaller than Pext (ω), practically Pext (ω) ≈ POhm(ω). (b) Integrated
probability density of the energy loss of the external particle Pext (solid lines) as well as the longitudinal (dashed lines) and transverse (dotted
lines) contributions to that density for several incident angles. For both panels, the eHD conductivity model for graphene, with the parameters
fixed at n0

π = 38 nm−2, n0
σ = 115 nm−2, ωπr = 4.19 eV, ωσr = 14.15 eV, γπ = 2.04 eV, γσ = 2.178 eV, and ω∗ = 3.54 eV, is used.

contribution is absent for the normal incidence, its density for
oblique incidence resembles that of the longitudinal contribu-
tion, except for a small red-shift in the main peak positions
and a significantly smaller magnitude. While the data for
Pext (ω) in Fig. 8(b) practically refer to the Ohmic energy
loss, we show in Fig. 9 a decomposition of both the Ohmic
[Fig. 9(a)] and the radiative [Fig. 9(b)] energy losses into
their respective longitudinal and transverse contributions for
the incident angle θ0 = 45◦. What is remarkable to observe in
Fig. 9(b) is that the transverse and longitudinal contributions
to the radiative energy loss have similar magnitudes, which is
not the case for such contributions to the Ohmic energy loss
shown in Figs. 8(b) and 9(a). Moreover, unlike the red-shifts
observed among the peak positions in the longitudinal and
transverse contributions to the Ohmic energy loss in Figs. 8(b)
and 9(a), one sees in Fig. 9(b) that the longitudinal and
transverse contributions to the radiative energy loss exhibit
main peaks at approximately equal energies.

Finally, in Fig. 10, we show the joint probability densities
for the longitudinal (left column) and transverse (middle
column) contributions to the Ohmic energy loss, along with
their sum, FOhm(k, φ, ω) (right column), which practically
represents the total energy loss density of the external charged
particle, given the smallness of the radiative energy loss.
Results show the dependence on the wave number k and the
energy loss ω, in the direction of φ = π/4 with respect to the
x axis, i.e., the (projected) direction of motion for an external
particle having the speed β = 0.5 and taking three angles
of incidence relative to the z axis: θ0 = 0 (top row), θ0 =
45◦ (middle row), and θ0 = 75◦ (bottom row). One notices
that, for θ0 = 45◦, there is only a moderate increase in the
longitudinal contribution compared to the normal incidence
θ0 = 0, accompanied by a small transverse contribution near
k = 0 and ω = 0. By increasing the angle of incidence to θ0 =
75◦, there is a substantial increase in the longitudinal contribu-
tion for intermediate wave numbers k ∼ kmax, at the energies
intermediate between the two main peaks corresponding to

the π and σ + π “plasmons,” as well as an increase in that
contribution for large wave numbers k � 2kmax at the energy
close to that of the σ + π “plasmon.”
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FIG. 9. A decomposition of (a) the Ohmic and (b) the radiative
energy losses into their respective longitudinal (dashed lines) and
transverse (dotted lines) contributions for the incident angle θ0 =
45◦. For both panels, the eHD conductivity model for graphene,
with the parameters fixed at n0

π = 38 nm−2, n0
σ = 115 nm−2, ωπr =

4.19 eV, ωσr = 14.15 eV, γπ = 2.04 eV, γσ = 2.178 eV, and ω∗ =
3.54 eV, is used.

195410-15



KAMRAN AKBARI et al. PHYSICAL REVIEW B 98, 195410 (2018)

FIG. 10. Joint probability densities for the longitudinal (left column) and transverse (middle column) contributions to the Ohmic energy
loss, along with their sum FOhm(k, φ, ω) (right column), which practically represents the total energy loss density of the external charged
particle, given the smallness of the radiative energy loss. Results are shown as functions of the wave number k and the energy loss ω, in the
direction of φ = π/4 with respect to the x axis, i.e., the (projected) direction of motion for an external particle having the speed β = 0.5 and
for three angles of incidence relative to the z axis: θ0 = 0 (top row), θ0 = 45◦ (middle row), and θ0 = 75◦ (bottom row). For all panels, the eHD
conductivity model for graphene, with the parameters fixed at n0

π = 38 nm−2, n0
σ = 115 nm−2, ωπr = 4.19 eV, ωσr = 14.15 eV, γπ = 2.04 eV,

γσ = 2.178 eV, and ω∗ = 3.54 eV, is used. Also shown are the nonrelativistic dispersion relations of the π (solid orange line) and π + σ

(dash-dotted purple line) plasmons for single-layer graphene [51], and the light line by the dashed red line. Here, kmax = 0.1 nm−1.

We note that the color coding in Fig. 10 is adopted so
that all the probability density values exceeding the relatively
small value of 1 Å2/eV are shown in dark blue, as indicated
in the color bars. This is done so that subdominant resonant
features can be observable in that figure, in addition to the
dominant peaks.

What is interesting to observe in the middle panel of the
bottom row in Fig. 10 is that the transverse contribution

exhibits a well-defined modelike intensity for the incident
angle θ0 = 75◦, which extends between ω = 0 and the energy
of the π “plasmon,” with a peculiar linear dispersion with k,
lying well below the light line. Noting that the magnitude of
the joint probability densities is shown in Fig. 10 with equal
scaling factors, this observation is even more remarkable,
given that the transverse contribution plays negligible role
in the integrated Ohmic energy loss in Figs. 8(b) and 9(a).
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Like in the case of the angular distribution of the radiation
energy loss in the far-field region at the THz frequencies in
Fig. 5, one may assert from Fig. 10 that the momentum- and
angle-resolved density of the Ohmic energy loss in graphene
at the MIR to UV frequencies also exhibits strong anisotropy
and complementarity in its longitudinal and transverse con-
tributions. This points to the potentially interesting effects of
the in-plane anisotropy in the excitation of the high-energy
interband electronic transitions in graphene by a fast electron
under oblique incidence, which could be possibly observed in
STEM via EELS by using a detector with narrow slit to collect
the transmitted electrons, and by rotating the slit with respect
to the incident plane in order to probe angles φ that would
expose the transverse contribution to the Ohmic energy loss.

IV. CONCLUSIONS

We have studied the interaction of an external charged
particle with single-layer graphene in broad ranges of the
relative particle speed β = v/c and the incidence angle θ0

with respect to an axis normal to the plane of graphene. We
have evaluated and compared decompositions of the Ohmic
and radiative energy losses of the external particle into their
longitudinal and transverse components in order to emphasize
the importance of the oblique incidence for generating electro-
magnetic (EM) fields with different polarizations by two types
of the excitation processes of charge carriers in graphene.
Those processes were described by defining two in-plane
dielectric functions, which incorporate suitable models of
graphene’s longitudinal and transverse electrical conductivity.
Our observations are given below.

In the THz frequency range, we have used the standard
Drude model for conductivity describing the low-energy in-
traband excitations of Dirac’s electrons in graphene, as well
as the model due to Lovat et al., which introduces nonlocal
effects in the conductivity of graphene at those frequencies.
While the Drude model is suitable for describing the longitu-
dinal Dirac plasmon polariton (LDPP) mode in the supra-THz
frequency range, it also reveals the effects of retardation,
which are most prominent at the sub-THz frequencies. By
comparing the results from the Lovat’s and Drude models, we
have assessed the effects of the nonlocality in the integrated
energy loss densities at the THz frequencies. We have found
that this effect is only pronounced around the THz frequency
for the Ohmic energy loss at very low speeds of the incident
particle, i.e., in the nonretarded regime. In that regime, the
radiative energy loss is heavily suppressed and it exhibits no
effect of the nonlocality, which is expected, since the radiative
loss is a purely relativistic phenomenon.

On the other hand, in the retarded regime, i.e., for high
incident speeds, the Ohmic and the radiative energy losses can
attain comparable magnitudes at the sub-THz frequencies and
at the angles of incidence that are not too oblique. Moreover,
in this regime, both the longitudinal and transverse contribu-
tions to the integrated Ohmic energy loss density increase
with increasing angle of incidence. This is true for a full
range of frequencies, from the THz to the UV, and it may be
tentatively explained by the increasing time that the incident

particle spends interacting with the near fields induced by
the graphene’s charge carriers, which scales as ∝sec θ0. The
longitudinal contribution to the Ohmic energy loss dominates
at the supra-THz frequencies, where it exhibits a pronounced
peak related to the LDPP, whereas the transverse contribution
is heavily suppressed at such frequencies. On the other hand,
at the sub-THz frequencies, the transverse contribution to
the Ohmic energy loss may even surpass the longitudinal
contribution for high enough speeds and sufficiently oblique
trajectories of the charged particle. This may be rationalized
by recalling that the transverse contribution is mostly a result
of retardation effects, which are enhanced at lower frequencies
and for larger parallel components of the incident speed.

The longitudinal contribution to the integrated radiation
energy loss density decreases with increasing angle of inci-
dence in a manner that seems to be governed by a decrease in
the normal component of the external particle speed β cos θ0.
This is true for a full range of frequencies, from the THz to the
UV, and it may be explained by recalling that the radiation is
most effectively produced by accelerating the charge carriers
in graphene, so that a reduction in the normal component of
the speed would bring down the “abruptness” of graphene’s
interaction with the external charged particle, and hence it
would reduce the production of the transition radiation (TR)
from graphene. The transverse contribution to the integrated
radiation energy loss density exhibits a symmetric maximum
at the incident angle θ0 = π/4, and is found to be much
smaller than the longitudinal contribution to the integrated
radiation energy loss in the full range of frequencies, for all
incident speeds and all angles of incidence.

However, this relation between these two contributions to
the radiation energy losses is different when considering the
angle-resolved spectra of the emitted TR. Namely, both the
longitudinal and the transverse contributions to the TR exhibit
rather anisotropic angular distributions, with somewhat com-
plementary patterns of the emitted EM field intensity. Specif-
ically, while the longitudinal contribution mostly radiates in
broad patterns skewed towards the plane of graphene, the
transverse contribution radiates preferably in a direction per-
pendicular to graphene, but away from the plane of incidence
of the external particle. Interestingly, unlike the case of the
integrated radiative energy loss density, peaks in the radiation
lobes in the angular distribution that result from the longi-
tudinal and transverse contributions may attain comparable
magnitudes when viewed in different directions. Therefore,
we propose that a CL type of measurements of the emitted
radiation in STEM could be used to explore this anisotropy in
the angular patterns of the emitted radiation from graphene,
where detection of the polarization of the emitted EM waves
as the TM or TE may be used to identify contributions coming
from the longitudinal or transverse excitation processes in
graphene, respectively.

By adding a contribution due to the low-energy interband
electron excitations in graphene to the Drude model, we have
used an optical conductivity model that is valid up to the
MIR range of frequencies in order to explore the possibility
of exciting a transverse collective mode in doped graphene
by means of a fast electron under oblique incidence. We
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have indeed found an evidence that such excitation would
be identifiable in the transverse contribution to the integrated
Ohmic energy loss in an ideal case of doped graphene with
zero damping, but with an impractically low probability. This
confirms that, despite the fact that the Joule energy dissipation
rate in the transverse dielectric function could be substantial
in the sub-THz range, the energy confined in the near field of
graphene due to excitation of the transverse mode is negligible
in comparison with that of the longitudinal mode, as shown in
Ref. [56].

Finally, we have used an extended hydrodynamic model of
graphene’s conductivity in the MIR to UV frequency range to
study EELS for electrons traversing the graphene layer under
oblique incidence in a STEM setting. We have found that the
integrated radiation energy loss density is much smaller than
the integrated Ohmic energy loss density, and that they both
exhibit main peak features with the positions and shapes that
are insensitive to the variation in the incident angle. Moreover,
while the transverse contribution is much smaller than the
longitudinal contribution in the integrated Ohmic energy loss,
the longitudinal and transverse contributions in the integrated
radiative energy loss have comparable magnitudes but, even
when added together, they constitute a negligible fraction
of the total integrated energy loss of the external charged
particle. As for the dependence on the angle of incidence,
observations in the MIR to UV range are analogous to those at
the THz frequencies: the overall magnitude of the integrated

Ohmic energy loss density increases and the integrated radia-
tive energy loss density decreases with increasing angle of
incidence.

Considering the momentum k and the angle φ dependence
of a joint probability density for the Ohmic energy loss in
graphene, we have observed an increase in the longitudinal
contribution in different regions of the (k, φ) plane with in-
creasing angle of incidence θ0 of the external charge particle.
For a sufficiently oblique incident trajectory, we have also
observed a well-defined, modelike feature in the transverse
contribution to the Ohmic energy loss, exhibiting a linear
energy dispersion in the direction φ = π/4 with respect to the
incident plane of the charged particle. We therefore propose
an experiment in STEM using a narrow slit detector to collect
obliquely incident electrons upon graphene, which can be
rotated with respect to the plane of incidence in order to search
for such directional modes as a signature of the transverse
excitation processes in graphene at the MIR to the UV range
of frequencies.
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