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We analytically obtain the dispersion relations for transverse-electric (TE) and transverse-magnetic
(TM) surface plasmon-polaritons in a nonlinear two-dimensional (2D) conducting material with inversion
symmetry lying between two Kerr-type dielectric media. To this end, we use Maxwell’s equations within the
quasielectrostatic, weakly dissipative regime. We show that the wavelength and propagation distance of surface
plasmons decrease due to the nonlinearity of the surrounding dielectric. In contrast, the effect of the nonlinearity
of the 2D material depends on the signs of the real and imaginary parts of the third-order conductivity. Notably,
the dispersion relations obtained by naively replacing the permittivity of the dielectric medium by its nonlinear
counterpart in the respective dispersion relations of the linear regime are not accurate. We apply our analysis to
the case of doped graphene and make predictions for the surface plasmon wavelength and propagation distance.
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I. INTRODUCTION

Surface plasmon-polaritons (SPs) are fine-scale electro-
magnetic waves bound to the interface between a metal or
semimetal and a dielectric [1]. A striking property of SPs
is their possible confinement near atomically thick conduct-
ing materials beyond the classical diffraction limit [2,3].
This property has motivated a plethora of exciting applica-
tions, giving rise to the active field of plasmonics for two-
dimensional (2D) materials [4–7]. The high confinement and
tunability of SPs has been reported in experiments [5,8,9].
This tunability has enabled the fabrication of novel nanopho-
tonic devices [10–12].

Recent experimental developments in using high-power
sources in the mid- and far-infrared frequency range [13]
pave the way to extensions of plasmonics to the nonlinear
regime of the materials involved [8]. A main goal is to
utilize nonlinear optical properties of the dielectric substrate
and the conducting 2D material in order to increase stability
and localization of SPs [14,15]. As a result, new, nonlinear
SP modes may appear along the 2D material [16–18]. Such
modes do not exist in linear media.

In this paper, motivated by the promise of nonlinear plas-
monics, we aim to describe the combined effect of the non-
linearities in both the 2D material and the ambient dielectric
media on the dispersion of the SPs. We separately examine the
cases with transverse-electric (TE) and transverse-magnetic
(TM) polarization of the SPs by the use of analytical methods.

There are a number of comprehensive theoretical studies
that focus on the nonlinear optical response of graphene
[19,20] as well as black phosphorus [21]. Notably, the mag-
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nitude of the nonlinear susceptibility reported for graphene
is at least as large as the one of conventional nonlinear
materials, such as GaAs [19,20,22–24]. Applications of the
nonlinear properties of graphene include, but are not limited
to, enhancement of third-harmonic generation [25], optical
bistability [26], solitons [18,27], and nonlinear graphene plas-
monic waveguides [14–17,28–30].

In this paper, we investigate the compound effect of non-
linearities on the dispersion relation of SPs propagating on
isotropic 2D materials with inversion symmetry. Our approach
recognizes that, in principle, both the 2D conducting material
and the surrounding dielectric media may exhibit a nonlinear
optical response when irradiated by the (sufficiently strong)
electromagnetic field generated by a high-power source. We
invoke time-harmonic Maxwell’s equations by restricting at-
tention to the single-frequency response of materials. Hence
phenomena related to frequency generation lie beyond our
present scope.

In our analysis, we use a nonperturbative technique for the
investigation of the differential equations for the field com-
ponents. This approach yields the SP dispersion relation an-
alytically in the quasielectrostatic regime, revealing the exact
contribution of the dielectric nonlinearity to the SP (complex)
wave number. It should be noted that our result for the SP
dispersion relation in terms of conductivity holds only under
the assumption of a 2D material with inversion symmetry, e.g.,
graphene, even-layered MoS2, black phosphorus. We discuss
in some detail the dispersion of SPs in the particular case
of doped graphene by making use of available conductivity
models [19,20,31,32] for the nonlinear optical response of this
material.

Further, we show that the combined effect of the dielectric
and 2D material nonlinearities depends on the signs of the
real and imaginary parts of the third-order conductivity of
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the 2D material. According to our prediction, the wavelength
and propagation distance of SPs may in principle decrease or
increase in comparison to the corresponding case of linear
media, or even experience no change at all. In particular,
for highly doped graphene in the THz and far-infrared fre-
quency range, the dielectric and graphene nonlinearities cause
an increase of the wavelength and propagation distance of
the TM-polarized SP. At the risk of redundancy, we repeat
that in this paper we choose not to examine high-harmonic
and supercontinuum generation, as well as other nonlinear
phenomena related to frequency conversion.

By comparing our present work to recent literature in
nonlinear plasmonic systems, we believe that, in a nutshell,
other theoretical studies can be separated into two main cate-
gories. These focus on either the dielectric or the 2D material
nonlinearity, but not on both. Specifically, in studies of the
former category, only the dielectric medium surrounding the
graphene sheet is assumed to interact in a nonlinear fashion
with the light source, while the optical response of the 2D ma-
terial (usually graphene) is modeled in the linear regime; see,
e.g., Refs. [14,16,17,28,28–30,33,34]. In studies of the latter
category, only the nonlinearity of the 2D material is examined,
while the ambient media are considered as linear; e.g., in Refs.
[35–37]. In contrast, in our approach, the nonlinearities of all
materials involved are treated simultaneously.

We should add that dispersion relations for SPs in pre-
vious works have been obtained analytically under special
assumptions. One of the most common assumptions for both
TE- and TM-polarized SPs has been that of dissipationless
propagation [16,17,28,30,34]. Another approach involves a
perturbation expansion of Maxwell’s equations and treats the
nonlinearities of the dielectric and 2D material as small [15].
Our present treatment differs from previous investigations in
the following aspects. First, we systematically consider the
case with weak dissipation, thus relaxing the assumptions
in [16,17,28,30,34]. Second, in contrast to [15], we apply a
nonperturbative approach that circumvents the need to treat
the nonlinearities as small.

In contrast to the case of TE-polarized SPs, the analytical
investigation of TM-polarized SPs is deemed as complicated:
this case is described by a system of coupled differential
equations for two electric field components, which have a
nonzero phase difference. The simplest scenario of solution
arises when the electric field components have a phase dif-
ference equal to π/2 [28,34]. In this special case, which we
show corresponds to no dissipation, the SP dispersion relation
has been derived analytically, since the resulting system of
differential equations is integrable [38]. Notably, our analysis
transcends this phase limitation.

In this paper, we analytically derive the dispersion relation
of TE- and TM-polarized SPs from Maxwell’s equations by
using a reduced set of assumptions. First, as we discuss
above, we take into account the nonlinearities of the ambient
dielectric media and the 2D conducting material. Second, we
consider small yet nonzero dissipation of the SP propagation;
and (only for the case with TM-polarization) apply the quasi-
electrostatic approximation, which means that the SP wave
number is considered as much larger in magnitude than the
wave numbers of the ambient media. Furthermore, in our ap-
proach, the effects of the nonlinearities of the dielectric media
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FIG. 1. Geometry of the system under investigation. The flat
material sheet lies at the interface (plane at z = 0) between two
unbounded dielectric media.

are not regarded as small and are treated nonperturbatively in
the dispersion relation. This type of treatment allows us to find
the dispersion relation of SPs excited by a sufficiently strong
electric field.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the geometry along with Maxwell’s
equations for the problem under study. In addition, in Sec. II
we review the linear case for the convenience of the reader,
and for the sake of later comparisons. Section III focuses on
the dispersion of the TE-polarized SP in the nonlinear regime.
In Sec. IV, we address the more demanding problem of the
corresponding dispersion relation for the TM-polarized SP.
Section V contains a discussion of our predictions for the
particular system of doped graphene. Section VI concludes
the paper with a summary of the main results and an outline of
open problems. The appendices provide technical derivations
needed in the main text. Throughout this paper, we assume
that the fields have the temporal dependence e−iωt , where ω

is the radial frequency. We use the centimetre-gram-second
(CGS) system of units.

II. MODEL AND GEOMETRY

In this section, we describe the geometry and governing
equations of the problem under consideration. By focusing
on the single-frequency response of materials, we use the
time-harmonic Maxwell equations along with suitable (trans-
mission) boundary conditions for the electromagnetic field on
the 2D material sheet.

In our setting, the conducting sheet lies on the xy plane,
between two unbounded dielectric media, as shown in Fig. 1.
We choose the positive x axis as the direction of the SP prop-
agation. The ambient medium j has dielectric permittivity
relative to the vacuum equal to εj , where j = 1 for the upper
half space, z > 0, and j = 2 for the lower half space, z < 0.
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In the absence of external current-carrying sources, the
curl laws of Maxwell’s equations in the dielectric media are
given by

∇ × Hj = − iω

c
Dj , (1)

∇ × Ej = iω

c
Hj (j = 1, 2). (2)

In the above, Ej (x, y, z), Hj (x, y, z), and Dj (x, y, z) are the
electric, magnetic, and displacement fields, respectively, and
c is the speed of light in vacuum. Here, we assume that the
ambient media are nonmagnetic.

Equations (1) and (2) should be supplemented with the
suitable (radiation) condition at large distance from the ma-
terial sheet as |z| → ∞. Since we single out the SP as an
evanescent wave, we require that the electromagnetic field
should decay as |z| → ∞. In addition, at the planar interface
(z = 0) we impose (i) the continuity of the tangential com-
ponent of the electric field and (ii) a jump condition in the
tangential component of the magnetic field that accounts for
the surface current, js , induced by the tangential electric field
on the sheet. These conditions explicitly are

(H1 − H2) × n = 4π

c
js , (3)

(E1 − E2) × n = 0, (4)

where n = −ez is the (z-directed) unit vector perpendicu-
lar to the sheet that points downwards. For our purposes,
js is in principle a functional of Ej (x, y, 0) × n, which is
single-valued on the sheet. For details, we refer the reader to
Secs. II A and II B.

A. Revisiting SPs in the linear regime

Next, we review the dispersion relations for TE- and TM-
polarized SPs in the case with a linear conducting sheet and
linear ambient dielectrics. For sufficiently small magnitude of
the electric field, Ej , the relation between the displacement
field, Dj , and Ej can be approximated by [39]

Dj = εj Ej , (5)

where εj is the constant dielectric permittivity of medium j

(j = 1, 2). In this vein, the surface current, js , induced on the
conducting sheet obeys the linear relation

js = σ (1)E‖. (6)

In the above, E‖ = exEx + eyEy is the electric field tangential
to the sheet at z = 0, σ (1) ≡ σ (1)

xx = σ (1)
yy is the first-order

surface conductivity of the 2D material [31,40], and e� de-
notes the �-directed unit Cartesian vector (� = x, y). Here,
we consider an isotropic sheet; thus, σ (1) = σ (1)(ω) is a scalar
function of frequency, ω. To account for energy dissipation in
the 2D material, we need to have Re σ (1)(ω) > 0.

In this framework, the dispersion relation for SPs can be
found via particular solutions of Eqs. (1)–(4) that behave as
eikxx in x by using relation (6). The associated wave number,
kx , is determined as a function of frequency, ω. For a TE-
polarized SP, the only nonzero components of the electromag-

netic field are Hx , Hz, and Ey ; whereas a TM-polarized SP
corresponds to nonzero Ex , Ez, and Hy .

In particular, the dispersion relation for the TE-polarized
SP including retardation is [41]√

k2
x − ω2ε1

c2
+
√

k2
x − ω2ε2

c2
= 4πωiσ (1)

c2
. (7)

This equation is subject to the radiation condition which in
turn implies the constraint Re

√
k2
x − (ω/c)2εj > 0 (j = 1, 2)

[41]. Evidently, for lossless surrounding media, i.e., positive
εj , Eq. (7) has an admissible solution for kx if Im σ (1) < 0.

On the other hand, the dispersion relation for the TM-
polarized SP is given by [41]

ε1√
k2
x − ω2ε1/c2

+ ε2√
k2
x − ω2ε2/c2

= 4π (−iσ (1) )

ω
. (8)

Because we impose Re
√

k2
x − (ω/c)2εj > 0, Eq. (8) has a

solution for kx if Im σ (1) > 0 in regard to lossless dielectrics.
Hence, in view of the mutually incompatible restrictions
on σ (1), one sees that it is impossible to excite at a given
frequency both a TE- and a TM-polarized SP on a linear 2D
material lying between two lossless media.

It is of physical interest to discuss the dispersion relation
for the TM case in the quasielectrostatic regime, when the
wave number of the SP is much larger in magnitude than the
wave number in free space, viz., |kx | � ω/c. This possibility
is afforded by Eq. (8) if |σ (1)| is sufficiently small with
Im σ (1) > 0. Accordingly, under the assumption that c(ε1 +
ε2)/|σ (1)| � 4π , Eq. (8) yields [41]

kx ≈ ω(ε1 + ε2)

4π (−iσ (1) )
. (9)

By this formula, kr
x ≡ Re kx > 0 and ki

x ≡ Im kx > 0; thus
the TM-polarized SP propagates and decays (for a dissipative
sheet) in the positive x direction.

A figure of merit for the TM-polarized SP is the ratio
ki
x/kr

x , which expresses the (relative) damping of this wave
in the direction of propagation [7]. By inspection of Eq. (9),
we find that ki

x/kr
x = σ (1)

r /σ
(1)
i . Thus it is desirable to use

frequencies at which |σ (1)
r /σ

(1)
i | 	 1. This condition defines

the weakly dissipative regime in the linear case.
We now turn our attention to the TE-polarized SP. By

Eq. (7) with Im σ (1) < 0, the related wave number is [41]

kx = ω

c

(
ε1 + ε2

2
− 4π2(σ (1) )2

c2
− c2(ε1 − ε2)2

64π2(σ (1) )2

)1/2

. (10)

By Eq. (10), |kx | may become much larger than ω/c if
2π |σ (1)|/c � 1, assuming that εj is close to unity for each
j . In contrast, one obtains kx ≈ (ω/c)

√
(ε1 + ε2)/2 provided

ε1 + ε2

2
� max

{
4π2

c2
|σ (1)|2, c2(ε1 − ε2)2

64π2|σ (1)|2
}
.

The SP wave numbers from the above dispersion relations
can be manipulated via the tuning of σ (1). For example, in
the case of highly doped graphene, the Fermi energy EF is
much larger than the Boltzmann energy kBT . Accordingly,
the surface conductivity σ (1)(ω) at the THz and far-infrared
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frequency ranges has the Drude form [31,40]

σ (1)(ω) = iσ
(1)
0

� + i�
, (11)

where � = h̄ω/EF and � = h̄γ /EF are nondimensional pa-
rameters, σ

(1)
0 = e2/(h̄π ) has units of surface conductivity, e

is the electron charge, and h̄ is Planck’s constant. In addition,
γ is the phenomenological relaxation rate due to the scattering
of electrons by impurities, phonons, and lattice imperfections
[31]. By changing the doping of graphene, one can control
σ (1). Therefore, by Eqs. (9)–(11), the SP wave number kx can
be manipulated through doping [5,9].

In graphene, energy losses due to the scattering of electrons
by other particles can be considered as relatively low; thus,
� 	 1 [31]. Furthermore, it is possible to have Im σ (1) >

0 at a suitable frequency range, which in turn allows the
propagation of the TM-polarized SP. This SP can exhibit a
weak decay in doped graphene at low enough frequencies,
in a regime where Eq. (11) presumably holds. Recall that
the TM- and TE-polarized SP may not be simultaneously
present in graphene. For higher frequencies, the TE-polarized
SP can exist in a narrow frequency range depending on
the optical contrast, ε1 − ε2, of the surrounding dielectric
media [42].

B. Model in the nonlinear regime

Next, we address the possible appearance of SPs by taking
into account nonlinearities in both the 2D material and the am-
bient dielectrics. We recognize that when a sufficiently strong
electric field, Ej , is present, the response of the corresponding
media may not be described by linear constitutive law (5) and
surface current (6). Instead, one must invoke the nonlinear
constitutive law between Dj and Ej , in combination with a
nonlinear relation js and Ej .

To describe this nonlinear response, we assume that the
dielectric media are isotropic and centrosymmetric. Accord-
ingly, their second-order nonlinear response vanishes; and the
constitutive relation that describes the third-order Kerr-type
nonlinearity is given by [39]

Dj = εj Ej + 4πχ
(3)
j |Ej |2Ej , (12)

where χ
(3)
j is the third-order susceptibility of dielectric j .

Throughout this paper, we assume that χ
(3)
j > 0 (j = 1, 2).

In a similar vein, we consider the nonlinear response of
the 2D material. By considering an isotropic conducting sheet
with inversion symmetry, we invoke the following relation for
the surface current:

js = (σ (1) + σ (3)|E‖|2)E‖, (13)

where σ (3) ≡ σ (3)
xxxx = σ (3)

yyyy is the third-order conductivity of
the conducting sheet [19,31,32]. Recall that E‖ is the electric
field tangential to the sheet at z = 0.

In Eq. (13), the parameters σ (l) (l = 1, 3) are of course
frequency (ω) dependent. In Secs. III and IV, we derive kx

as a function of these parameters, σ (1) and σ (3). This result is
general within a class of 2D materials, i.e., the materials with
inversion symmetry. In more detail, we obtain a dispersion

relation, describing SPs in 2D materials for which the fol-
lowing assumptions hold: (1) the second-order nonlinear con-
ductivity is negligible and (2) the real part of the effective
conductivity, σ (1) + σ (3)|E‖|2, is small compared to the imag-
inary part. Examples of such materials are graphene, black
phosphorus, and even-layered MoS2 [43]. It should be noted
that Eq. (13) does not describe 2D materials with broken
inversion symmetry, such as odd-layered transition metal
dichalcogenides, which can exhibit a strong second-harmonic
generation [43].

In particular, the third-order conductivity σ (3) of doped
graphene in the THz and far-infrared frequency ranges has
been obtained via a quantum-mechanical approach [20,31,32]
and a kinetic treatment based on the Boltzmann equation [19].
This parameter is expressed by the formula

σ (3)(ω) = − iσ
(3)
0

(� + i�)2(� − i�)
, (14)

where σ
(3)
0 = e4h̄v2

F /(8πE4
F ), vF ≈ 108 cm/s is the Fermi

velocity, and � and � are defined in the context of Eq. (11).
Equation (14) describes the nonlinear response of graphene at
the frequency, ω, of the incident wave. In general, σ (3) is a
function of three distinct frequencies, and is responsible for
frequency mixing processes [31], which are beyond the scope
of this work. Similar to the linear case (Sec. II A), in graphene
σ (3) can be controlled via doping [20]. Note that Eq. (14) is
based on the assumption that the carbon atoms are arranged
in a honeycomb lattice [20,31,32] and the energy spectrum of
the 2D electron/hole gas is linear [19].

A remark on possible approximations associated to
Eq. (14) is in order. Define σ (l)

r (σ (l)
i ) as the real (imag-

inary) part of σ (l) for l = 1, 3. In the weakly dissipative
regime considered here, the real part of the total conductivity,
σr = σ (1)

r + σ (3)
r |E‖|2, which expresses the losses in the 2D

material, is small compared to the respective imaginary part,
σi = σ

(1)
i + σ

(3)
i |E‖|2. Hence one may apply the condition

|σr/σi | 	 1 in the appropriate frequency range. For graphene,
this assumption holds when h̄ω < 2EF and the doping is high,
which implies EF � kBT [31].

It is worthwhile to entertain the following naive scenario
of obtaining the dispersion relations for SPs in the nonlin-
ear regime: Suppose that one simply replaces the dielec-
tric permittivity εj by its modified, nonlinear version εj +
4πχ

(3)
j |E|2 in Eqs. (9) and (10); and analogously for σ (1). We

will show that this approach provides incorrect results both
for the TE- and TM-polarized SPs (Secs. III and IV).

III. TE-POLARIZED SURFACE PLASMON

In this section, we derive the dispersion relation of the
TE-polarized SP by using the nonlinear model of Sec. II B.
For this purpose, we apply approximations subject to the
assumption of weak dissipation, according to which the imag-
inary part ki

x and real part kr
x of the SP wave number kx

satisfy 0 < ki
x 	 kr

x . We remind the reader that we use the
convention of wave propagation along the positive x axis, thus
taking kr

x and ki
x to be positive.
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In the present case with TE-polarization, the electric, dis-
placement, and magnetic fields are

Ej (x, z) = (0, Ejy (z), 0)eikxx,

Dj (x, z) = (0,Djy (z), 0)eikxx,

Hj (x, z) = (Hjx (z), 0,Hjz(z))eikxx (j = 1, 2),

where z > 0 for j = 1 and z < 0 for j = 2. Notice that
E‖ = eyE1y = eyE2y at z = 0 in this setting; cf. Eq. (4).
Substituting the above expressions for Ej , Dj , and Hj into
Eqs. (1) and (2), we obtain the following system of equations
for the respective field components:

dHjx

dz
− ikxHjz = − iω

c
Djy, (15a)

−dEjy

dz
= iω

c
Hjx, (15b)

ikxEjy = iω

c
Hjz. (15c)

By making use of constitutive law (12) for Djy and elimi-
nating the magnetic field components, we obtain an ordinary
differential equation for Eyj , viz.,

d2Ejy

dz2
− k2

xEjy = −k2
j Ejy − k2

j εj

∣∣Ejy

∣∣2Ejy, (16)

where k2
j = ω2εj /c

2 and εj = 4πχ
(3)
j /εj . Note that the solu-

tion to Eq. (16) in the nondissipative regime (when ki
x = 0)

is obtained in Ref. [39]; and the resulting dispersion relation,
kx = kx (ω), is discussed in detail in Refs. [16,17,30].

In this work, we aim to extend previous analyses by
deriving the SP dispersion relation in the presence of suf-

ficiently small dissipation. We proceed to simplify Eq. (16)
accordingly. By writing Ejy = |Ejy |eiφj , we obtain the fol-
lowing equations for the magnitude |Ejy | and phase φj of the
electric field in dielectric medium j :

d2|Ejy |
dz2

−|Ejy |
(
dφj

dz

)2

=((
kr
x

)2−k2
j −k2

j εj |Ejy |2
)|Ejy |,

(17a)

2
d|Ejy |

dz

dφj

dz
+ |Ejy |d

2φj

dz2
= 2kr

xk
i
x |Ejy |. (17b)

To make further progress in simplifying the governing
equations, we apply the weak-dissipation expansions

|Ejy | ≈ |Ejy |(0) + (ki
x/kr

x ) |Ejy |(1)

and φj ≈ φ
(0)
j + (ki

x/kr
x ) φ

(1)
j ,

which are expected to be meaningful if |ki
x/kr

x | 	 1. In the
above, the superscripts of |Ejy | and φj denote perturbation
order (not to be confused with the superscripts in σ (1), σ (3),
and χ

(3)
j ). In particular, |Ejy |(0) = |E(0)

jy | and φ
(0)
j are the

zeroth-order variables for the magnitude and phase of the
electric field component, which pertain to the nondissipative
system; while |Ejy |(1) and φ

(1)
j denote the first-order counter-

parts which account for dissipation to leading order in ki
x/kr

x .

Thus we assume that |Ejy |(1) and φ
(1)
j do not depend on ki

x/kr
x

as this parameter approaches zero. By substitution of the
weak-dissipation expansions into Eqs. (17) and application
of dominant balance in the parameter ki

x/kr
x , we obtain two

sets of equations, one set for each perturbation order. Using
this result, we obtain

dE1y

dz

∣∣∣∣
z=0

= −
√(

kr
x

)2 − k2
1 − 1

2
k2

1ε1|E0|2E0 + 4ikr
xk

i
xE0

k2
1ε1|E0|2

(√(
kr
x

)2 − k2
1 − 1

2
k2

1ε1|E0|2 −
√(

kr
x

)2 − k2
1

)
, (18a)

dE2y

dz

∣∣∣∣
z=0

=
√(

kr
x

)2 − k2
2 − 1

2
k2

2ε2|E0|2E0 − 4ikr
xk

i
xE0

k2
2ε2|E0|2

(√(
kr
x

)2 − k2
2 − 1

2
k2

2ε2|E0|2 −
√(

kr
x

)2 − k2
2

)
, (18b)

where E0 = ey · E‖ = E1y (y, 0) = E2y (y, 0) is the value of the electric field on the conducting sheet. Recall that because of the
continuity of the tangential electric field across the sheet, condition (4), this E0 is uniquely defined at z = 0. For details on the
derivation of Eqs. (18), see Appendix A.

By use of boundary conditions (3) and (4) along with constitutive law (13) and Eq. (15b), we obtain(
dE2y

dz
− dE1y

dz

)∣∣∣∣
z=0

= 4πiω

c2
σ (|E0|)E0,

where σ (u) = σ (1) + σ (3)u2. Hence the normal derivative of the tangential electric field on the sheet has a jump proportional to
the magnitude of the surface current. The substitution of the normal derivative of Ejy (j = 1, 2) in the above jump at z = 0 by
the respective formula of Eqs. (18) yields

kr
x ≈ ω

c

(
ε1 + 2πχ

(3)
1 |E0|2 + ε2 + 2πχ

(3)
2 |E0|2

2
+ 4π2σ 2

i

c2
+ c2

(
ε1 + 2πχ

(3)
1 |E0|2 − ε2 − 2πχ

(3)
2 |E0|2

)2

64π2σ 2
i

)1/2

, (19a)

ki
x ≈ 4π2ωσr

c2
(
kr
xc/ω

)
⎡
⎣
√(

kr
xc/ω

)2 − ε1 −
√(

kr
xc/ω

)2 − ε1 − 2πχ
(3)
1 |E0|2

χ
(3)
1 |E0|2

+
√(

kr
xc/ω

)2 − ε2 −
√(

kr
xc/ω

)2 − ε2 − 2πχ
(3)
2 |E0|2

χ
(3)
2 |E0|2

⎤
⎦

−1

,

(19b)
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where σr (σi) is the real (imaginary) part of σ (|E0|). In the
weakly dissipative regime considered here, the real part, kr

x ,
of kx depends only on σi to leading order in σr/σi . In fact,
the next-order term for kr

x is quadratic in σr/σi . On the other
hand, the imaginary part, ki

x , of kx is linear in σr/σi to leading
order in perturbation theory.

For the derivation of formula (19a), we assume that σi <

0. Recall that in the linear regime (in which σ
(3)
i = 0) the

condition for the appearance of the TE-polarized SP is σ
(1)
i <

0 (Sec. II A).
It is worthwhile to compare Eqs. (19) with corresponding

dispersion relations reported in the literature. For example, in
Ref. [16], nondissipative SPs in linear graphene lying between
nonlinear Kerr-type and linear dielectric media are studied. It
was shown that in this regime a new type of nonlinear surface
mode can exist, which does not have a linear counterpart. The
dispersion expressed by Eqs. (19) is in agreement with the
corresponding relation Eq. (10) in Ref. [16]. In fact, Eq. (10)
of Ref. [16] can be obtained from Eq. (19a) by substituting
σi = σ

(1)
i , σr = 0, and χ

(3)
2 = 0.

By comparing Eqs. (19) to their linear counterparts, dis-
persion relation (10), we make the following observation. The
joint effect of the nonlinearities of the materials on the SP
dispersion cannot be accurately captured by simply replacing
the dielectric permittivity εj in (10) by εj + 4πχ

(3)
j |E0|2.

The failure of this naive approach is recognized as follows.
The propagation constant kr

x includes the effect of the third-
order susceptibility, χ

(3)
j , with a coefficient equal to 2π |E0|2

instead of the naively expected 4π |E0|2. Note that for a
higher-order nonlinearity the above numerical factor would be
different [44].

For the sake of simplicity, let us assume that the ambient
media have the same dielectric properties, viz., ε1 = ε2 = ε,
χ

(3)
1 = χ

(3)
2 = χ (3). According to Eqs. (19), the damping of

the TE-polarized SP can be expressed by the ratio

ki
x

kr
x

= πσr

c
√

ε

×
√

2πχ (3)|E0|2/ε + 4π2σ 2
i /(c2ε) + 2π |σi |/(c

√
ε)

1 + 2πχ (3)|E0|2/ε + 4π2σ 2
i /(c2ε)

.

(20)

Notably, two nonlinear parameters of the effective
conductivity of the 2D material, σi = σ

(1)
i + σ

(3)
i |E0|2 and

σr = σ (1)
r + σ (3)

r |E0|2, and the nonlinearity of the ambient
dielectric, χ (3), affect the ratio ki

x/kr
x . In Sec. V, we discuss

the effect of the dielectric and 2D material nonlinearities on
the damping of TE modes in comparison with TM modes for
the particular case of doped graphene.

By Eq. (20), ki
x/kr

x depends on the ratio 4π2σ 2
i /(c2ε). In

the quasielectrostatic regime for the TE mode, 4π2σ 2
i � c2ε,

Eq. (20) can be simplified to

ki
x

kr
x

≈ σr

|σi | . (21)

In Sec. IV, we compare Eq. (21) with the corresponding
relation for TM plasmons.

It is of interest to compare the dispersion relation expressed
by Eqs. (19) to the corresponding relation in the linear regime,
Eq. (10). For weak nonlinearities, if 4πχ (3)|E0|2/ε1 	 1 and
|σ (3)| |E0|2/|σ (1)| 	 1, the real and imaginary parts of the
wave number of the TE-polarized SP are approximated by

kr
x ≈ ω

c

[
ε + 4π2

(
σ

(1)
i

)2

c2
+
(

8π2σ
(1)
i σ

(3)
i

c2
+ 2πχ (3)

)
|E0|2

]1/2

≈ kr,lin
x

[
1 + ω2

2c2
(
k

r,lin
x

)2

(
8π2σ

(1)
i σ

(3)
i

c2
+ 2πχ (3)

)
|E0|2

]
, (22a)

ki
x ≈ 4π2ωσ (1)

r

(−σ
(1)
i

)
c3

√
ε + 4π2

(
σ

(1)
i

)2

c2

⎡
⎢⎣1 +

⎛
⎜⎝ c2χ (3)

8π
(
σ

(1)
i

)2

ε − 4π2
(
σ

(1)
i

)2

c2

ε + 4π2
(
σ

(1)
i

)2

c2

+ σ
(3)
i

σ
(1)
i

+ σ (3)
r

σ
(1)
r

⎞
⎟⎠|E0|2

⎤
⎥⎦

= ki,lin
x

⎡
⎢⎣1 +

⎛
⎜⎝ c2χ (3)

8π
(
σ

(1)
i

)2

ε − 4π2
(
σ

(1)
i

)2

c2

ε + 4π2
(
σ

(1)
i

)2

c2

+ σ
(3)
i

σ
(1)
i

+ σ (3)
r

σ
(1)
r

⎞
⎟⎠|E0|2

⎤
⎥⎦. (22b)

In the above, kr,lin
x and ki,lin

x denote the real and imaginary
parts, respectively, of the SP wave number in the linear case;
cf. Eq. (10).

By inspection of Eqs. (22), we should add the following
remarks. Equation (22a) shows that the presence of the dielec-
tric nonlinearity alone leads to an increase in the real part of
the SP wave number (thus, a decrease of the SP wavelength),
as Kerr media are predominantly focusing, χ (3) > 0. On the
other hand, the effect of the nonlinearity of the 2D material

is more complicated, as indicated by Eqs. (22). Specifically,
the terms σ

(3)
i /σ

(1)
i and σ (3)

r /σ (1)
r can be positive or negative

depending on the type of the conducting material and range of
frequency, ω. In fact, if one takes into account the nonlinear
behavior of the surface conductivity, it can be predicted that
the wavelength and propagation length of a TE-polarized SP
in the nonlinear regime can be larger or smaller than, or
even nearly equal to, its linear counterpart. The outcome of
this comparison of course depends on the combined effect
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of the parameter values for the nonlinearities of the ambient
dielectric and 2D material.

IV. TM-POLARIZED SURFACE PLASMON

In this section, we obtain the dispersion relation of the TM-
polarized SP in the weakly dissipative regime. In this setting,
the electromagnetic field is written as

Hj (x, z) = (0,Hjy (z), 0)eikxx,

Ej (x, z) = (Ejx (z), 0, Ejz(z))eikxx,

Dj (x, z) = (Djx (z), 0,Djz(z))eikxx (j = 1, 2),

where z > 0 for j = 1 and z < 0 for j = 2. Hence E‖ =
exE1x = exE2x at z = 0. The substitution of the above ex-
pressions for Hj , Ej and Dj into Eqs. (1) and (2) yields the
following system of equations for the field components:

dHjy

dz
= iω

c
Djx,

ikxHjy = − iω

c
Djz,

dEjx

dz
− ikxEjz = iω

c
Hjy.

By eliminating the magnetic field, Hjy , from this system, we
find that Ejx and Ejz obey the coupled equations

d2Ejx

dz2
− ikx

dEjz

dz
= −k2

j [1 + εj (|Ejx |2 + |Ejz|2)]Ejx,

(23a)

dEjx

dz
− ikxEjz = −k2

j

kx

[1 + εj (|Ejx |2 + |Ejz|2)]Ejz.

(23b)

Recall that kj = ω
√

εj /c and εj = 4πχ
(3)
j /εj (j = 1, 2).

By using boundary conditions (3) and (4) along with
constitutive law (13), we obtain the relation{

k2
1[1 + ε1(|E1x |2 + |E1z|2)]E1z

− k2
2[1 + ε2(|E2x |2 + |E2z|2)]E2z

}∣∣
z=0 = 4πωkx

c2
σE0,

(24)

where E0 = E1x (0) = E2x (0) is the value of the electric field
on the 2D material sheet and σ = σ (1) + σ (3)|E0|2.

In order to find the SP dispersion relation in view of
Eq. (24), we have to determine an additional relation between
the electric field components, Ejx and Ejz. This relation can
be extracted from Eqs. (23) analytically in terms of the dielec-
tric nonlinearities, εj . For this purpose, we rewrite Eqs. (23)
in terms of the variables Ejz/Ejx and εj |Ejx |2. By analogy
to the procedure in Sec. III, we treat each of these variables
perturbatively: we approximately write each one as a sum of
the (zeroth-order) solution of the dissipation-free nonlinear
system and a relatively small correction that accounts for
dissipation and is linear in ki

x/kr
x . In addition, we apply the

condition |kx | � kj (j = 1, 2). For details of this procedure,

see Appendix B. As a result, we obtain

E1z ≈ E1x

[
iF (ε1|E1x |2) + ki

x

kr
x

G(ε1|E1x |2)

]
, (25a)

E2z ≈ −E2x

[
iF (ε2|E2x |2) + ki

x

kr
x

G(ε2|E2x |2)

]
, (25b)

where the real functions F (a) and G(a) are defined by

F (a) =
√√

4a2 + 8a + 1 − a − 1

3a
, (26a)

G(a) = [1 − 3F (a)2]2

F (a)2 − 1

{
4 + π

16
−

tanh−1
√

3[F (a)−1]
3F (a)−1

4
√

3

− tan−1 F (a)

4

}
+ F (a)[1 − 2F 2(a)]

F (a)2 − 1
, a > 0.

(26b)

Recall that we consider positive (focusing) Kerr nonlin-
earity of each dielectric; thus, a = εj |Ejx |2 is assumed to be
positive. We note in passing that the function tan−1 entering
G(a) is defined to have values in the interval (−π/2, π/2).
As discussed below, by Eq. (26a), F (a) is properly bounded,
consistent with the restrictions implied by the right-hand side
of Eq. (26b).

It is of interest to comment on the significance of Eqs. (25).
The functions F (a) and G(a) with a = εj |Ejx |2 (j = 1, 2)
express the cumulative (nonperturbative) effect of the Kerr
nonlinearity on the requisite electric field components. In
particular, F (a) is the nondissipative contribution to Ejz

while G(a) expresses the respective perturbation due to small
enough dissipation. To our knowledge, Eqs. (25) along with
definitions (26), which combine the effect of small dissipation
with the exact treatment of the Kerr nonlinearity, have not
been reported previously.

For the sake of comparison, note that in the lin-
ear case (if εj = 0) F and G must be replaced by the
limiting values F (0+) = 1 and G(0+) = 0 (as a approaches 0
from positive values); thus, E1z ≈ iE1x and E2z ≈ −iE2x for
weak dissipation. Hence the magnitudes of the electric field
components are approximately equal to each other, |Ejz| ≈
|Ejx |, while their phase difference is �φj = Arg(Ejz) −
Arg(Ejx ) ≈ (−1)j+1π/2 (j = 1, 2). These properties imply
that the SP in the linear regime is circularly polarized in the
xz plane.

By using Eqs. (25), one can show that the dissipationless
limit of the nonlinear problem, by which ki

x = 0, also corre-
sponds to the phase difference �φj ≈ (−1)j+1π/2 between
Ejz and Ejx . The magnitudes of these components are related
to each other through the function F , viz. |Ejz| ≈ F (a)|Ejx |
for a = εj |Ejx |2, which describes the elliptization of the SP
polarization due to the Kerr nonlinearity of the dielectric. For
this particular case, the dispersion relation of the SP is studied
in Refs. [28,34]. Accordingly, for ki

x = 0, formulas (25) of our
analysis reduce to the relation between E1z and E1x found in
Refs. [28,34].

Now let us further discuss the effect of dissipation (ki
x �=

0). By this effect, the SP polarization ellipse rotates. This
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FIG. 2. Plots of quantities F (a), G(a), and |G(a)/F (a)| as a
function of dielectric nonlinearity, a = εj |Ejx |2. These quantities
characterize the elliptization of SP polarization through F (red solid
line); and the rotation of SP polarization through G (blue solid
line) and |G/F | (green solid line). The dashed lines correspond to
horizontal asymptotes of F (red line), G (blue), and |G/F | (green).

rotation is described by the phase difference �φj (defined
above) between the two electric field components, which
depends on the magnitude of the electric field |Ejx |, viz.

�φj ≈ π

2
+ (−1)j

ki
x

kr
x

∣∣∣∣G(εj |Ejx |2)

F (εj |Ejx |2)

∣∣∣∣.
Thus the Kerr nonlinearity of the dielectric leads to both
elliptization and rotation of SP polarization that are described
by the parameters F and G.

Figure 2 illustrates how the parameters F , G, and |G/F |,
which control the SP polarization, depend on the nonlinearity
of the dielectric (parameter εj |Ejx |2) according to Eqs. (26).
Here, we assume that εj is nonnegative. We observe that
F , G and |G/F | are bounded, satisfying 1/

√
3 < F � 1,

−1/(2
√

3) < G � 0 and |G/F | < 1/2. Thus we verify that
the perturbation terms on the right-hand sides of Eq. (25),
which are proportional to (ki

x/kr
x )G and express the dissipa-

tion effect, are indeed relatively small in the weakly dissipa-
tive regime (ki

x/kr
x 	 1).

By inserting Eqs. (25) and (26) into Eq. (24), we obtain the
desired dispersion relation in terms of the real and imaginary
parts of the SP wave number, kx . The formulas are

kr
x ≈ ωσi

8π |σ |2 [ε̃1{F (ε1|E0|2) − G(ε1|E0|2)} + ε̃2{F (ε2|E0|2) − G(ε2|E0|2)}]

×
[

1 +
√

1 + 4
|σ |2
σ 2

i

{ε̃1F (ε1|E0|2) + ε̃2F (ε2|E0|2)}{ε̃1G(ε1|E0|2) + ε̃2G(ε2|E0|2)}
[ε̃1{F (ε1|E0|2) − G(ε1|E0|2)} + ε̃2{F (ε2|E0|2) − G(ε2|E0|2)}]2

]
, (27a)

ki
x ≈ ωσr

4π |σ |2 q[ε̃1F (ε1|E0|2) + ε̃2F (ε2|E0|2)]

[ |σ |2
σ 2

r

− σ 2
i

σ 2
r

ε̃1{F (ε1|E0|2) − G(ε1|E0|2)} + ε̃2{F (ε2|E0|2) − G(ε2|E0|2)}
2{ε̃1F (ε1|E0|2) + ε̃2F (ε2|E0|2)}

×
(

1 +
√

1 + 4
|σ |2
σ 2

i

{ε̃1F (ε1|E0|2) + ε̃2F (ε2|E0|2)}{ε̃1G(ε1|E0|2) + ε̃2G(ε2|E0|2)}
[ε̃1{F (ε1|E0|2) − G(ε1|E0|2)} + ε̃2{F (ε2|E0|2) − G(ε2|E0|2)}]2

)]
. (27b)

In the above, we define ε̃j = εj [1 + εj + εjF
2(εj |E0|2)], where εj = 4πχ

(3)
j /εj and σ = σ (1) + σ (3)|E0|2. For the derivation

of Eqs. (27), we assumed that σi > 0, where σi (σr ) is the imaginary (real) part of σ . Recall that in the linear regime the condition
for the appearance of the TM-polarized SP is σ

(1)
i > 0 (Sec. II A). Equations (27) hold in the quasielectrostatic limit.

By inspection of Eqs. (27), it is evident that the SP wave number is nonlinear in χ
(3)
j . This dispersion relation cannot be

obtained from the respective relation of the linear problem, Eq. (9), by replacement of εj with εj + 4πχ
(3)
j |E0|2. The reason for

this complication is the nonlinear relation between the electric field components according to Eqs. (25). This relation cannot be
approximated by Ejz ≈ (−1)j+1iEjx , which characterizes the linear regime. We note in passing that Eq. (9) is recovered from
Eqs. (27) by setting χ

(3)
j = 0 and σ (3) = 0.

If both media have the same dielectric permittivity, ε = ε1 = ε2, and third-order susceptibility, χ (3) = χ
(3)
1 = χ

(3)
2 , by

Eqs. (27) we find

kr
x ≈ ωε̃(F + |G|)

4π

σi

|σ |2

⎛
⎝1 +

√
1 − |σ |2

σ 2
i

4|G/F |
(1 + |G/F |)2

⎞
⎠, (28a)

ki
x = ωε̃F

2πσr

⎡
⎣1 − F + |G|

2F

σ 2
i

|σ |2

⎛
⎝1 +

√
1 − |σ |2

σ 2
i

4|G/F |
(1 + |G/F |)2

⎞
⎠
⎤
⎦, (28b)
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where F and G are given by Eqs. (26) with a = ε|E0|2, and
ε = 4πχ (3)/ε. In Eqs. (28), the expression under the square
root is nonnegative, which entails the inequality

1 − |σ |2
σ 2

i

4|G/F |
(1 + |G/F |)2 � 0.

As we discussed above, |G/F | < 1/2. Thus, Eqs. (28) hold
for any positive Kerr nonlinearity, ε|E0|2 > 0, provided
|σr/σi | � 1/

√
8. The last condition on σr and σi is satisfied

within our approach since we restrict our analysis to the
weakly dissipative regime, in which |σr/σi | 	 1.

In fact, our assumption of weak dissipation, |σr/σi | 	 1,
allows us to simplify Eqs. (28) even further. By enforcing this
regime explicitly, we obtain

kr
x ≈ ωε[1 + ε|E0|2 + ε|E0|2F 2]F

2πσi

, (29a)

ki
x ≈ ωε[1 + ε|E0|2 + ε|E0|2F 2]F

2π

σr

σ 2
i

, (29b)

where F = F (a) is evaluated at a = ε|E0|2. According to
Eqs. (29), the ratio ki

x/kr
x approximately becomes

ki
x

kr
x

≈ σr

σi

, (30)

and we have |ki
x/kr

x | ≈ |σr/σi | 	 1, which serves as a self-
consistency check of our approximations for any ε|E0|2 > 0.
Notably, the damping of the TM-polarized SP, expressed by
Eq. (30), is independent of the nonlinearity of the dielectric to
this leading order of our weak-dissipation approximation.

By comparison of Eq. (21) with Eq. (30), we observe
that the relations for the damping of TE-polarized and TM-
polarized SPs are similar. Recall that Eqs. (21) and (30)
correspond to different frequency regimes due to the mutually
incompatible restrictions on σ . Hence the ratio ki

x/kr
x can

be essentially different for the two polarizations since these
frequency regimes can correspond to different transport mech-
anisms in the 2D material. Later on, we discuss the effect on
SP of the nonlinearity of the surface conductivity of the 2D
material for the particular case of graphene (see Sec. V).

By using Eqs. (29) and taking into account the property
|σ |2 ≈ σ 2

i and the definition σ = σ (1) + σ (3)|E0|2, we derive
the following expression for the (complex) SP wave number:

kx ≈ ωε[1 + ε|E0|2 + ε|E0|2F 2]F

2π (−i)(σ (1) + σ (3)|E0|2)
. (31)

To our knowledge, dispersion relation (31) has not been
previously reported. It describes the nonperturbative effect of
dielectric and graphene nonlinearities on the SP wave number.
Evidently, this dispersion relation does not depend on G. This
quantity, G, only impacts the higher-order correction terms
which are of the order of (σr/σi )2 in our weak-dissipation
approximation scheme.

According to Eq. (31), the nonlinearity of the dielectric, ex-
pressed by the positive third-order susceptibility χ (3), causes
an increase to both the real and imaginary parts of the SP wave
number in the present case of TM polarization. In contrast, in
regard to the nonlinearity of the surface conductivity, the sign
of σ (3) depends on the particular 2D material and operating

frequency, ω, of the incident electromagnetic field. A more
detailed discussion on this issue for graphene is provided in
Sec. V.

For weak nonlinearities of the dielectric medium, if ε =
4πχ (3)/ε 	 1, we can show that F (ε|E0|2) ≈ 1 − ε|E0|2
with an error of the order of ε2|E0|4, while G(ε|E0|2) is of the
order of ε2|E0|4. Assuming that the 2D material nonlinearity
is also small, i.e., |σ (3)/σ (1)| 	 1, we can write dispersion
relation (31) as

kx ≈ ωε

2π
(−iσ (1)

)(1 +
[

4πχ (3)

ε
− σ (3)

σ (1)

]
|E0|2

)

= klin
x

(
1 +

[
4πχ (3)

ε
− σ (3)

σ (1)

]
|E0|2

)
.

Here, klin
x denotes the wave number of the TM-polarized SP

in the linear regime, and is given by Eq. (9). The above
dispersion relation is in agreement with the corresponding one
obtained using perturbations of Maxwell’s equations for small
nonlinearities in Ref. [15].

V. DISCUSSION

The analytical results obtained thus far aim to describe
generally the dispersion of SPs in a wide family of nonlinear
isotropic materials characterized by inversion symmetry. In
this section, we discuss in more detail the effect of material
nonlinearities on the wavelength and propagation distance of
TM-polarized SPs. We also compare these features to those of
TE-polarized SPs. For definiteness, in our discussion we place
some emphasis on the case when the 2D material is doped
graphene. This is a well-studied 2D material. For example, the
third-order conductivity of this material has been the subject
of extensive investigations [19,20,31,32,45].

First, let us consider the simplified setting with a linear 2D
material lying in a nonlinear dielectric medium, thus setting
σ (3) = 0 (along with ε1 = ε2 = ε). By using dispersion rela-
tion (31) for TM-polarized SPs, we obtain the formula

kx

klin
x

≈ [1 + ε|E0|2 + ε|E0|2F 2(ε|E0|2)]F (ε|E0|2), (32)

where klin
x and F (a) are given by Eqs. (9) and (26a), respec-

tively. Note that the ratio kx/klin
x does not depend on frequency

for a given value of the nonlinear parameter ε|E0|2. We repeat
at the risk of redundancy that the Kerr nonlinearity of the
dielectric is assumed to be focusing, so that ε > 0.

Now consider instead the dispersion relation

kx

klin
x

≈ 1 + ε|E0|2, (33)

which results from naively replacing the dielectric permit-
tivity by its nonlinear version in the dispersion relation of
the linear regime, Eq. (9). Figure 3 displays the comparison
between dispersion relation (32) and its naive yet simpler
counterpart (33). It is evident that Eq. (33) approximates the
wave number, kx , of a TM-polarized SP reasonably well for
ε|E0|2 � 0.2. However, it is evident that the naive prediction
overestimates kx for large enough values of ε|E0|2.

Next, we include in the discussion of TM-polarized SPs the
nonlinearity of the conductivity of the 2D material. To better
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FIG. 3. Wave number kx of TM-polarized SP scaled by its linear
counterpart klin

x vs nonlinearity ε|E0|2 of the ambient dielectric, with
linear 2D material (σ (3) = 0). Two distinct dispersion relations are
used: Eq. (32) from systematic treatment of Maxwell’s equations
(blue solid line) and Eq. (33) from naive replacement of nonlinear
dielectric permittivity in dispersion relation of linear regime (orange
dashed line).

understand the ensuing joint effect of the nonlinearities on the
SP dispersion relation, we scale Eqs. (29a) and (29b) by the
real part klin,r

x and imaginary part klin,i
x of the SP wave number

klin
x in the linear regime, respectively. The resulting equations

read

kr
x

k
lin,r
x

≈ (1 + ε|E0|2 + ε|E0|2F 2)F

1 + σ
(3)
i

σ
(1)
i

|E0|2
, (34a)

ki
x

k
lin,i
x

≈ (1 + ε|E0|2 + ε|E0|2F 2)F(
1 + σ

(3)
i

σ
(1)
i

|E0|2
)2

(
1 + σ (3)

r

σ
(1)
r

|E0|2
)

.

(34b)

Note that the ratio σ
(3)
i |E0|2/σ (1)

i is present in both of the
above formulas. In contrast, σ (3)

r |E0|2/σ (1)
r , which pertains

to dissipation in the 2D material, enters only the formula
for ki

x/klin,i
x . The quantity σ

(3)
i |E0|2/σ (1)

i can, in principle, be
negative or positive (depending on the specific material and
frequency). In doped graphene, σ

(3)
i (ω) has a negative sign in

a suitable (THz) frequency range [20,31,32].
Figure 4 illustrates the dependence of quantities kr

x/klin,r
x

and ki
x/klin,i

x on the scaled nonlinearity σ
(3)
i |E0|2/σ (1)

i , of the
2D material according to Eqs. (34), for different values of the
(positive) Kerr nonlinearity, ε|E0|2. Note that the nonlinear
parameters σ

(3)
i |E0|2/σ (1)

i and σ (3)
r |E0|2/σ (1)

r are material-
specific and, in principle, frequency dependent. However, by
Eqs. (34), the ratio between the SP wave number kx and its
linear counterpart klin

x does not depend on frequency explicitly.
Thus, without specifying the material, we can consider the
ratios kr

x/klin,r
x and ki

x/klin,i
x as functions of σ

(3)
i |E0|2/σ (1)

i

and σ (3)
r |E0|2/σ (1)

r . For doped graphene, we assume that the

FIG. 4. Scaled wave number of TM-polarized SP as a function
of scaled third-order conductivity, σ

(3)
i |E0|2/σ (1)

i , of 2D material
for different values of nonlinearity, ε|E0|2, of ambient dielectric
medium. Top panel [(a)] kr

x/klin,r
x versus σ

(3)
i |E0|2/σ (1)

i by Eq. (34a).
The plots are independent of σ (3)

r |E0|2/σ (1)
r . Bottom panel [(b)]

ki
x/klin,i

x vs σ
(3)
i |E0|2/σ (1)

i by Eq. (34b). The quantity klin
x is the

corresponding SP wave number in linear regime. The dotted black
line corresponds to the relation kx/klin

x = 1 for real parts kr
x and klin,r

x

(a) and imaginary parts ki
x and klin,i

x (b).

parameters σ (1)
r , σ

(1)
i , σ (3)

r , and σ
(3)
i are dependent on fre-

quency according to Eqs. (11) and (14).
As seen in Fig. 4(a), which depicts Eq. (34a); if

σ
(3)
i |E0|2/σ (1)

i < 0, then the real part kr
x of the SP wave num-

ber is larger than the corresponding quantity klin,r
x of the linear

case regardless of the magnitude of ε|E0|2. In fact, we notice
that a negative third-order conductivity of the 2D material
further improves the fine scale of the TM-polarized SP with
increasing ε|E0|2. In contrast, kr

x exhibits a more complicated
behavior if σ

(3)
i |E0|2/σ (1)

i > 0. In this regime of positive
nonlinearity of the 2D material, kr

x can be smaller than its
counterpart of the linear regime if ε|E0|2 is sufficiently weak.
On the other hand, by Eq. (34b), the effect of the conductivity
nonlinearity of the 2D material on ki

x/klin,i
x is determined by
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FIG. 5. Wave number kx of TM-polarized SP in graphene relative
to wave number klin

x of linear regime as a function of scaled frequency
�, according to Eq. (35). The plots correspond to different values of
nonlinearity parameter ε|E0|2 of ambient dielectric. In all graphs, we
use the values � = 0.01 and σ

(3)
0 |E0|2/σ (1)

0 = 0.1.

the value of σ
(3)
i |E0|2/σ (1)

i relative to σ (3)
r |E0|2/σ (1)

r . This
effect is depicted in Fig. 4(b).

Interestingly, in Fig. 4, we notice that there are
values for σ

(3)
i |E0|2/σ (1)

i , σ (3)
r |E0|2/σ (1)

r , and ε|E0|2 such that
the resulting kx becomes nearly equal to the corresponding
quantity, klin

x , of the linear regime. The parameter values
are σ (3)

r |E0|2/σ (1)
r ≈ 0.5, ε|E0|2 ≈ 0.6, and σ

(3)
i |E0|2/σ (1)

i ≈
0.5. Thus the respective dielectric and 2D material nonlin-
earities may possibly balance each other out to cause SP
dispersion similar to that through linear media.

Next, consider the case of graphene with surface conduc-
tivity described by Eqs. (11) and (14). Accordingly, dispersion
relation (31) for TM-polarized SPs is expressed as

kx

klin
x

= (1 + ε|E0|2 + ε|E0|2F 2)F

1 − (
σ

(3)
0 |E0|2/σ (1)

0

)
(�2 + �2)−1

, (35)

where F = F (ε|E0|2). The above formula explicitly shows
the frequency (�) dependence of the SP wave number relative
to the linear case. Equation (35) is valid when the denomi-
nator is positive, 1 − (σ (3)

0 |E0|2/σ (1)
0 )(�2 + �2)−1

> 0. This
condition results from the perturbation model for the graphene
conductivity [31], which implies that |σ (1)| > |σ (3)||E0|2.

In Fig. 5, we plot kx/klin
x as a function of the scaled

frequency � for � = 0.01 and σ
(3)
0 |E0|2|/σ (1)

0 = 0.1, which
corresponds to the values EF ≈ 0.1 eV and E0 ≈ 45 kV/cm.
We observe that the nonlinearities of the graphene conduc-
tivity and ambient dielectric both cause an increase of the
real and imaginary parts of the SP wave number relative to
the corresponding quantities of the linear regime. Notably, the
damping, ki

x/kr
x , of the TM-polarized SP is the same in the

linear and nonlinear regimes at fixed �. Indeed, by Eq. (35),
we obtain

ki
x

kr
x

= klin,i
x

k
lin,r
x

= �

�
. (36)

FIG. 6. Real (solid lines) and imaginary (dashed lines) parts
of the wave number kr

x and ki
x of the TE-polarized SP scaled by

their linear counterparts kr,lin
x and ki,lin

x vs nonlinearity ε|E0|2 of the
ambient dielectric. The 2D material is linear (σ (3) = 0) for different
values of the parameter δ = 4π 2(σ (1)

i )2/(c2ε): δ = 0.2, 1, 10.

It is of interest to compare the TM dispersion relation (32)
with its TE counterpart obtained from Eqs. (19); see Fig. 6.
Note that in the case of a TE-polarized SP, the dispersion
relation is described by two parameters, kr

x/kr,lin
x and ki

x/ki,lin
x .

FIG. 7. Scaled wave number of the TE-polarized SP as a function
of scaled third-order conductivity, σ

(3)
i |E0|2/σ (1)

i , of a 2D mate-
rial for different values of δ = 4π 2(σ (1)

i )2/(c2ε). Top panel [(a)]
kr

x/klin,r
x vs σ

(3)
i |E0|2/σ (1)

i by Eq. (19a). Bottom panel [(b)] ki
x/klin,i

x

vs σ
(3)
i |E0|2/σ (1)

i by Eq. (19b). For both (a) and (b), the values of
ε|E0|2 and σ (3)

r |E0|2/σ (1)
r are 0 and 0.1, respectively.
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FIG. 8. Scaled damping of the TE-polarized SP in doped
graphene as a function of scaled frequency �, according to Eqs. (19).
The plots correspond to different values of the nonlinearity parameter
ε|E0|2 of the ambient dielectric. In all graphs, we use the values
� = 0.1 and σ

(3)
0 |E0|2/σ (1)

0 = 0.01.

By tuning the value of the 2D material conductivity, σ
(1)
i , and,

hence, the ratio δ = 4π2(σ (1)
i )2/(c2ε) one can, in principle,

increase kr
x/kr,lin

x and decrease ki
x/ki,lin

x simultaneously.
Recall that a negative third-order conductivity of the 2D

material further improves the fine scale of the TM-polarized
SP (Fig. 4). In contrast, in the TE case, a positive third-order
conductivity of the 2D material increases the real part of the
SP wave number compared to the linear regime (see Fig. 7).

We have shown that the damping of TM-polarized SPs in
doped graphene in the nonlinear weakly dissipative regime is
the same as in the linear regime [see Eq. (36)]. Notably, for
the TE-polarized SP in graphene, the corresponding damping
is comparable to the damping in the linear regime for a narrow
range of frequencies expressed by the nondimensional param-
eter �; see Fig. 8. Interestingly, the nonlinearity parameter
ε|E0|2 of the ambient dielectric affects the damping of TE
modes in a weakly dissipative regime mostly in the frequency
region � > 3. In contrast, the damping of TM-polarized SPs
does not depend on ε|E0|2 [Eq. (36)]. Note that the frequency
range in Fig. 8 is 1.7 < � < 5, which corresponds to the

negative value of the imaginary part of graphene conductivity,
σi < 0. In Fig. 8, we use the expressions for the linear and
third-order conductivity of graphene, σ (1)(�) and σ (3)(�),
derived in Ref. [31].

VI. CONCLUSION

In this paper, we analytically derived the dispersion rela-
tions for TM- and TE-polarized SPs on nonlinear 2D materials
with inversion symmetry that form boundaries between two
semi-infinite, Kerr dielectric media. In our approach, we
relaxed some of the commonly used assumptions of previous
works. For instance, we took into account the small dissi-
pation in the 2D material. In addition, we determined the
exact contributions of nonlinearities of the dielectric and 2D
material to both the wavelength and propagation distance of
the SP.

We find that the wavelength and propagation distance
of SPs decrease when the nonlinearity of the dielectric is
included. In contrast, the effect of the nonlinearity of the
2D material on the dispersion relations depends on the
signs of both the real and imaginary parts of the third-order
conductivity, σ (3). In the case of doped graphene, the σ (3)

in the THz frequency range causes a decrease of the TM-
polarized SP wavelength and propagation distance.

Our analysis admits several extensions, such as to nonlin-
ear effects related to frequency conversion, the influence of
the spatial and temporal shape of a source field, moderate
dissipation in the 2D material and 2D materials with broken
inversion symmetry. It will be worthwhile for a future effort
to study the properties of SPs in the nonlinear regime in 2D
materials other than graphene, such as black phosphorus and
MoS2, once their nonlinear conductivities as a function of
frequency are calculated.
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APPENDIX A: ON THE ELECTRIC FIELD FOR TE POLARIZATION

In this appendix, we derive Eq. (18). The starting point is to write the electric field component as Ejy = |Ejy |eiφj (j = 1, 2).
In the weakly dissipative regime, the magnitude |Ejy | and phase φj of Ejy can be expanded as

|Ejy | ≈ |Ejy |(0) + γ |Ejy |(1),

φj ≈ φ
(0)
j + γφ

(1)
j ; γ = ki

x/kr
x.

Note that |Ejy |(0), |Ejy |(1), φ
(0)
j , and φ

(1)
j do not depend on γ .
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By using Eq. (17) and separating the real and imaginary parts in the corresponding expressions, we obtain the following
equations for |Ejy |(0), |Ejy |(1), φ

(0)
j , and φ

(1)
j (j = 1, 2):

d2|Ejy |(0)

dz2
− |Ejy |(0)

(
dφ

(0)
j

dz

)2

=
((

kr
x

)2 − k2
j − k2

j εj (|Ejy |(0) )2
)
|Ejy |(0), (A1a)

2
d|Ejy |(0)

dz

dφ
(0)
j

dz
+ |Ejy |(0)

d2φ
(0)
j

dz2
= 0, (A1b)

d2|Ejy |(1)

dz2
− |Ejy |(1)

(
dφ

(0)
j

dz

)2

− 2|Ejy |(0)
dφ

(0)
j

dz

dφ
(1)
j

dz
=
((

kr
x

)2 − k2
j

)
|Ejy |(1) − 3k2

j εj (|Ejy |(0) )2|Ejy |(1),

(A1c)

2
d|Ejy |(1)

dz

dφ
(0)
j

dz
+ 2

d|Ejy |(0)

dz

dφ
(1)
j

dz
+ |Ejy |(0)

d2φ
(1)
j

dz2
+ |Ejy |(1)

d2φ
(0)
j

dz2
= 2

(
kr
x

)2|Ejy |(0). (A1d)

Equations (A1a) and (A1b) describe the lossless system [16,17,30]. Their solution consists of dφ
(0)
j /dz = 0 along with the

formula

|Ejy |(0) =

√√√√2
((

kr
x

)2 − k2
j

)
k2
j εj

sech
(
(−1)j+1

√(
kr
x

)2 − k2
j z + C1

)
, (A2)

where C1 is a constant. The z derivative of Eq. (A2) is

d|Ejy |(0)

dz
= (−1)j

√(
kr
x

)2 − k2
j − 1

2
k2
j εj (|Ejy |(0) )2|Ejy |(0).

Accordingly, the suitable solution of Eq. (A1c) is |Ejy |(1) = 0. Hence, Eq. (A1d) becomes

d2φ
(1)
j

dz2
= 2

(
kr
x

)2 + 2(−1)j+1

√(
kr
x

)2 − k2
j − 1

2
k2
j εj (|Ejy |(0) )2

dφ
(1)
j

dz
. (A3)

By use of Eqs. (A2) and (A3), we obtain the formula

dφ
(1)
j

dz
= 2

(
kr
x

)2

k2
j εj (|Ejy |(0) )2

{
C2 cosh2

(
(−1)j+1

√(
kr
x

)2 − k2
j z + C1

) + sinh
(
(−1)j+1

√(
kr
x

)2 − k2
j z + C1

)

× cosh
(
(−1)j+1

√(
kr
x

)2 − k2
j z + C1

)}
.

Hence the derivative of φ
(1)
j at z = 0 can be expressed in terms of |E0|, the value of |Ejy |(0) at z = 0, as follows:

dφ
(1)
j

dz

∣∣∣∣∣
z=0

= (−1)j+1 4
(
kr
x

)2

k2
j εj |E0|2

(√(
kr
x

)2 − k2
j − 1

2
k2
j εj |E0|2 −

√(
kr
x

)2 − k2
j

)
.

Therefore the z derivative of the electric field is

dEjy

dz

∣∣∣∣
z=0

= (−1)j
√(

kr
x

)2 − k2
j − 1

2
k2
j εj |E0|2E0

⎧⎨
⎩1 − 4ikr

xk
i
x

k2
j εj |E0|2

⎛
⎝1 −

√√√√ (
kr
x

)2 − k2
j(

kr
x

)2 − k2
j − 1

2k2
j εj |E0|2

⎞
⎠
⎫⎬
⎭.

APPENDIX B: ON THE ELECTRIC FIELD FOR TM POLARIZATION

In this appendix, we derive Eqs. (25) and (26). First, we find d2Ejx/dz2 by differentiating Eq. (23b), and substitute the result
into Eq. (23a). Consequently, we obtain the following system of differential equations:

dEjz

dz
= −ikxEjx + i(kx + k∗

x )
ε
(|Ejz|2Ejx − E2

jzE
∗
jx

)
1 + εj (|Ejx |2 + 3|Ejz|2)

+ iεj k
2
j

1 + εj (|Ejx |2 + |Ejz|2)

1 + εj (|Ejx |2 + 3|Ejz|2)

(
E2

jzE
∗
jx

kx

− |Ejz|2Ejx

k∗
x

)
,

dEjx

dz
= ikxEjz − ik2

j

kx

εj

(∣∣Ejx

∣∣2 + ∣∣Ejz

∣∣2)Ejz,

where the asterisk denotes complex conjugation.
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In the quasielectrostatic approximation, we can neglect the
last terms of the above equations. These terms are proportional
to k2

j . Then, after setting Aj = Ejz/Ejx and ε̃j = εj |Ejx |2,
we find the equations

dAj

dz
= −ikx

(
1 + A2

j

) − i(kx + k∗
x )

ε̃j

(
A2

j − |Aj |2
)

1 + ε̃j (1 + 3|Aj |2)
,

(B1)
dε̃j

dz
= iε̃j (kxAj − k∗

xA
∗
j ). (B2)

Next, we decompose Aj and kx into their real and imaginary
parts according to Aj = Rj + iIj and kx = kr

x + iki
x , and then

separate the corresponding equations. Thus we obtain the
system

dRj

dz̃
= 4ε̃jRj Ij

1 + ε̃j

(
1 + 3R2

j + 3I 2
j

) + 2RjIj + γ
(
1 + R2

j − I 2
j

)
,

dIj

dz̃
= 4ε̃j I

2
j

1 + ε̃j

(
1 + 3R2

j + 3I 2
j

) + 2γRjIj − (
1 + R2

j − I 2
j

)
,

dε̃j

dz̃
= −2ε̃j (Ij + γRj ),

where z̃ = zkr
x and γ = ki

x/kr
x . In the weakly dissipative

regime, when |γ | 	 1, we expand Rj and Ij as

Rj ≈ R
(0)
j + γR

(1)
j ,

Ij ≈ I
(0)
j + γ I

(1)
j ,

ε̃j ≈ ε̃
(0)
j + γ ε̃

(1)
j ,

where the coefficients R
(κ )
j , I

(κ )
j and ε̃

(κ )
j do not depend on

γ (κ = 0, 1). The ensuing equations for the zeroth-order vari-
ables R

(0)
j and I

(0)
j describe the energy distribution between

Ejz and Ejx in the dissipationless limit (in which σr ≡ 0, or
alternatively ki

x ≡ 0). Specifically, the zeroth-order equations

read

dR
(0)
j

dz̃
= 4ε̃

(0)
j R

(0)
j I

(0)
j

1 + ε̃
(0)
j

(
1 + 3

(
R

(0)
j

)2 + 3
(
I

(0)
j

)2) + 2R
(0)
j I

(0)
j ,

dI
(0)
j

dz̃
= 4ε̃

(0)
j

(
I

(0)
j

)2

1 + ε̃
(0)
j

(
1 + 3

(
R

(0)
j

)2 + 3
(
I

(0)
j

)2)
− 1 − (

R
(0)
j

)2 + (
I

(0)
j

)2
,

dε̃
(0)
j

dz̃
= −2ε̃

(0)
j I

(0)
j . (B3)

To facilitate the treatment of this system, we view R
(0)
j and

I
(0)
j as a function of ε̃

(0)
j . Accordingly, we solve the following

equations:

dR
(0)
j

dε̃
(0)
j

= − 2R
(0)
j

1 + ε̃
(0)
j

(
1 + 3

(
R

(0)
j

)2 + 3
(
I

(0)
j

)2) − R
(0)
j

ε̃
(0)
j

,

(B4a)

dI
(0)
j

dε̃
(0)
j

= − 2I
(0)
j

1 + ε̃
(0)
j

(
1 + 3

(
R

(0)
j

)2 + 3
(
I

(0)
j

)2)
+
(
R

(0)
j

)2 − (
I

(0)
j

)2 + 1

2ε̃
(0)
j I

(0)
j

. (B4b)

The initial conditions imposed on the variables of Eq. (B4)
read

I
(0)
j

∣∣
ε̃

(0)
j =0 = (−1)j+1, (B5a)

R
(0)
j

∣∣
ε̃

(0)
j =0 = 0. (B5b)

Next, we add Eq. (B4) and multiply the result by the common denominator. This manipulation yields the following expression:

ε̃
(0)
j

(
1 + ε̃

(0)
j + 3ε̃

(0)
j

[(
R

(0)
j

)2 + (
I

(0)
j

)2])d[(R(0)
j

)2 + (
I

(0)
j

)2]
dε̃

(0)
j

+ (
2ε̃

(0)
j + 1

)[(
R

(0)
j

)2 + (
I

(0)
j

)2] + 3ε̃
(0)
j

[(
R

(0)
j

)2 + (
I

(0)
j

)2]2 − 1 − ε̃
(0)
j = 0.

A key point here is to recognize that the last expression can be written in the form

dA(u, v)

dε̃
(0)
j

= 0, (B6)

where

u = (
R

(0)
j

(
ε̃

(0)
j

))2 + (
I

(0)
j

(
ε̃

(0)
j

))2
, v = ε̃

(0)
j ,

and

A(u, v) = −v + uv − 1
2v2 + uv2 + 3

2u2v2.

Integrating Eq. (B6), we obtain

3
2

(
ε̃

(0)
j

)2[(
R

(0)
j

)2 + (
I

(0)
j

)2]2 + (
ε̃

(0)
j + (

ε̃
(0)
j

)2)[(
R

(0)
j

)2 + (
I

(0)
j

)2] − ε̃
(0)
j − 1

2

(
ε̃

(0)
j

)2 = C,

where C is an integration constant.
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Conditions (B5) imply that C = 0 along with(
R

(0)
j

)2 + (
I

(0)
j

)2 = 1

3ε̃
(0)
j

(√
4
(
ε̃

(0)
j

)2 + 8ε̃
(0)
j + 1 − ε̃

(0)
j − 1

)
.

By using the last relation and Eq. (B4a), we find that

R
(0)
j = C1

(
ε̃

(0)
1

)−1(√
4
(
ε̃

(0)
1

)2 + 8ε̃
(0)
1 + 1 + 2ε̃

(0)
1 + 2

)−1
,

where C1 is a constant. Then we apply Eq. (B5b) to obtain R
(0)
j = 0 and

I
(0)
j = (−1)j+1

√√√√√
√

4
(
ε̃

(0)
j

)2 + 8ε̃
(0)
j + 1 − ε̃

(0)
j − 1

3ε̃
(0)
j

. (B7)

This formula concludes our calculation of zeroth-order quantities R
(0)
j and I

(0)
j .

We now turn our attention to R
(1)
j and I

(1)
j which account for the effect of small yet nonzero dissipation in the 2D material,

assuming that σr �= 0 and |σr | 	 |σi |. These R
(1)
j and I

(1)
j together with ε̃

(1)
j satisfy the system of equations

dR
(1)
j

dz̃
= 4ε̃

(0)
j R

(1)
j I

(0)
j

1 + ε̃
(0)
j + 3ε̃

(0)
j

(
I

(0)
j

)2 + 2R
(1)
j I

(0)
j + 1 − (

I
(0)
j

)2
, (B8)

dε̃
(1)
j

dz̃
= −2

(
ε̃

(0)
j I

(1)
j + ε̃

(1)
j I

(0)
j

)
, (B9)

dI
(1)
j

dz̃

(
1 + ε̃

(0)
j + 3ε̃

(0)
j

(
I

(0)
j

)2)2 = 2I
(0)
j I

(1)
j

[
1 + 6ε̃

(0)
j + 5

(
ε̃

(0)
j

)2 + 6ε̃
(0)
j

(
I

(0)
j

)2 + 6
(
ε̃

(0)
j

)2(
I

(0)
j

)2 + 9
(
ε̃

(0)
j

)2(
I

(0)
j

)4]
+ 4ε̃

(1)
j

(
I

(0)
j

)2
. (B10)

The combination of Eqs. (B3), (B7), and (B8) yields

dR̃
(1)
j

dI
(0)
j

= 8R̃
(1)
j I

(0)
j(

1 + (
I

(0)
j

)2)(
3
(
I

(0)
j

)2 − 1
) + 2

((
I

(0)
j

)2 − 1
)(

3
(
I

(0)
j

)4 − 6
(
I

(0)
j

)2 − 1
)

(
1 + (

I
(0)
j

)2)2(
3
(
I

(0)
j

)2 − 1
)2 . (B11)

In the above, we define R̃
(1)
j = ε̃

(0)
j R

(1)
j . Accordingly, from the solution of Eq. (B11), we derive the formula

R
(1)
j = (−1)j+1

(
1 − 3

(
I

(0)
j

)2)2

(
I

(0)
j

)2 − 1

[
4 + π

16
− 1

4
√

3
tanh−1

√
3
(
I

(0)
j − 1

)
3I

(0)
j − 1

− 1

4
tan−1 I

(0)
j

]
+ (−1)j+1

I
(0)
j

(
1 − 2

(
I

(0)
j

)2)
(
I

(0)
j

)2 − 1
.

The solution of Eqs. (B9) and (B10) that reduces to the known solution of the linear problem as εj → 0 is described by
I

(1)
j = 0 and ε̃

(1)
j = 0. Hence the relation between the electric field components is found to be

Ejz = (−1)j+1Ejx

[
iF (εj |Ejx |2) + ki

x

kr
x

G(εj |Ejx |2)

]
,

where F (a) and G(a) are defined by Eqs. (26).
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