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Near-field heat radiation and transfer are rich in various exciting effects, in particular, regarding the
amplification due to the geometrical configuration of the system. In this paper, we study heat exchange in
situations where the objects are confined by additional objects so that the dimensionality of heat flow is reduced.
In particular, we compute the heat transfer for spherical point particles placed between two parallel plates. The
presence of the plates can enhance or reduce the transfer compared to the free case and provides a slower
power-law decay for large distance. We also compute the heat radiation of a sphere placed inside a spherical
cavity, finding that it can be larger or smaller compared to the radiation of a free sphere. This radiation shows
strong resonances as a function of the cavity’s size. For example, the cooling rate of a nanosphere placed in a
cavity varies by a factor of 105 between cavity radii 2 μm and 5 μm.
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I. INTRODUCTION

Development of fluctuational electrodynamics [1,2] and
improvement of theoretical and numerical techniques for
electromagnetic scattering theory allowed to explore a vast
amount of effects for heat radiation (HR) and radiative heat
transfer (HT) for complex objects [3–9]. Moreover, a sig-
nificant effort has been made to generalize the theory and
develop formalisms, which can be used to compute HR,
HT, and nonequilibrium Casimir forces in arbitrary many-
body systems [10–17]. It is, however, challenging to study
complex geometrical configurations as they require solutions
to nontrivial boundary conditions problems and may also
require long computational times despite the existence of
sophisticated numerical methods [6–9].

Typically, to investigate many-body effects, one applies
certain simplifications for the system allowing us to pre-
dict realistic results without significant loss of generality.
One of the most popular simplifications is the point particle
limit where HR and HT are computed for pointlike particles
[18–22]. In this case, it has been shown that the presence of an
additional object can have a large effect on the heat exchange
between the particles, including strong enhancements of the
HT compared to the vacuum case [18–22]. Also, in this case,
the boundary conditions can be described by the Green’s
function of the objects surrounding the particles [18,20].

Up to now, mostly open systems have been considered,
such that heat can flow in all directions. In this work, we
study HR and HT in closed systems, based on the formalisms
developed in Refs. [15,16,20]. Specifically, we discuss two
paradigmatic closed systems, namely the HT between two
point particles confined by two parallel plates and the HR
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of a sphere of arbitrary size enclosed by a spherical cav-
ity. We observe that confinement has a large effect on HR
and HT and can increase or decrease these quantities by
several orders of magnitude compared to isolated objects.
Moreover, in the case of HR inside a spherical cavity, we
observe a strongly nonmonotonic behavior of a sphere’s heat
emission indicating that the cavity acts as a resonator. The
cavity can thus be used as an insulated bag as well as a
cooler or heater for nanoparticles, with orders of magni-
tude faster cooling or heating rates compared to the vacuum
case.

The paper is structured as follows. In Sec. II, we study
the HT between two nanoparticles placed inside a two-plates
cavity. Section III investigates the HR of a sphere enclosed by
a spherical cavity. The paper is closed with a summary and
discussion in Sec. IV.

II. REMOVING ONE DIMENSION: A CAVITY BETWEEN
TWO PARALLEL PLATES

In this section, we discuss the HT in a cavity made by
two parallel plates. The discussion is based on fluctuational
electrodynamics and scattering theory. For details on the
formalism employed, we refer the reader to Refs. [15,16,20].

The simplest system that effectively removes one dimen-
sion for heat flow is a two-plates cavity as depicted in Fig. 1.
Our goal is to compute the HT from point particle 1 (PP 1) to
point particle 2 (PP 2) in this system. We note that the point
particle limit is valid if the radius of each particle is small
compared to any other length scale in the system related to the
particles [20], including thermal wavelength, skin penetration
depth of each particle, the distance between the particles r ,
and the distance from each particle to a plate d

2 . In this limit,
the multiple scatterings from the particles can be neglected
and the particles can be modeled by the electrical dipole
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FIG. 1. Two identical semi-infinite parallel plates exemplifying
systems that remove one dimension. We aim to compute the heat
transfer from point particle 1 (PP 1) to point particle 2 (PP 2) in this
system. T1, T2, and TP are temperatures of the particles and the plates,
respectively. For the quantity we compute, only T1 is relevant.

polarizability [20]. The HT reads as (quoted from Ref. [20])

H
(2pp)
1pp = 32πh̄

c4

∫ ∞

0
dω

ω5

e
h̄ω

kBT1 − 1
Im(α1)

× Im(α2)
∑
ij

|Gij (r2, r1)|2. (1)

Here, Gij (r2, r1) is a matrix element of the Green’s function
(GF) of the plates G, where r1 and r2 are the coordinates
of the particles. For the configuration depicted in Fig. 1, the
GF is given by Eq. (A14) in Appendix A. αi is a particle’s
polarizability given by

αi = εi − 1

εi + 2
R3

i , (2)

where εi is the dielectric function and Ri is the radius of ith
particle, respectively. T1 is the temperature of the first particle,
c is the speed of light in vacuum, h̄ and kB are Planck’s and
Boltzmann’s constants, respectively. To achieve maximum
symmetry of the configuration, we place the particles in a
plane parallel to the plates and located exactly in the center
between them as shown in Fig. 1.

We emphasize that the quantity we compute, H
(2pp)
1pp , is

the HT from PP 1 to PP 2, i.e., the rate of heat emitted by
PP 1 and absorbed by PP 2. However, there are, in general,
other heat flow contributions, e.g., the heat transfer from PP 1
to the plates or from PP 2 to PP 1. For example, the net
heat radiated by PP 2, H (2pp), which is an experimentally
accessible quantity, includes the heat radiation of PP 2 (the
heat transfer from PP 2 to itself) as well as heat transfers from
PP 1 to PP 2 and from the plates to PP 2 [15]. In the case
where T2 = TP = 0, H

(2pp)
1pp = −H (2pp). Since heat transfer

contributions are independent, the HT from PP 1 to PP 2 is not
affected by the presence of other heat flows [15]. Therefore,
H

(2pp)
1pp depends only on the temperature T1 of PP 1, and other

temperatures in the system, e.g., that of plates, are hence irrel-
evant for our computations. Similar discussions apply for the
system in Fig. 4. For detailed discussions regarding different
heat flow contributions, we refer the reader to Ref. [15].

Figure 2 shows specific results for two SiC particles with
d = 2 × 10−1 μm, such that each particle is at the distance
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FIG. 2. Normalized (by the volumes of the particles) HT from
SiC PP 1 at temperature T1 = 300 K to SiC PP 2 inside a two-plates
cavity (see Fig. 1) as a function of the distance r between the parti-
cles. The distance d between the plates is fixed at d = 2 × 10−1 μm.
The result is compared to the HT in vacuum and in the presence of a
single plate. Thermal wavelength λT1 ≈ 7.63 μm.

h = d
2 = 10−1 μm from each plate, as a function of the

distance r between the particles. The temperature of PP 1 is
T1 = 300 K. We consider the plates to be made of SiC or gold.
For SiC, we use the following dielectric function [23]:

εSiC(ω) = ε∞
ω2 − ω2

LO + iωγ

ω2 − ω2
TO + iωγ

, (3)

where ε∞ = 6.7, ωLO = 1.82 × 1014 rad s−1, ωTO = 1.48 ×
1014 rad s−1, γ = 8.93 × 1011 rad s−1. For gold, the Drude
model was used,

εAu(ω) = 1 − ω2
p

ω(ω + iωτ )
, (4)

with ωp = 1.37 × 1016 rad s−1 and ωτ = 4.06 × 1013 rad s−1.
Since in the point particle limit the HT is proportional to the
volumes V1 and V2 of the particles [see Eqs. (1) and (2)], we
do not give the particles’ sizes explicitly and normalize the
curves by their volumes. For our configuration, the PP limit
applies for Ri � 10 nm. The results are compared to the HT
in the presence of a single plate (where all parameters are
the same, i.e., we remove one plate from the system without
changing other parameters) and the HT for the particles in free
space. See, e.g., Ref. [22] for the GF of a single plate.

For two SiC plates, the HT is larger than the vacuum
HT up to r ≈ 30 μm. The enhancement is very large and
exceeds a factor of four orders of magnitude (at around
r = 2 μm). For r � 30 μm, the HT is smaller than that for
isolated particles and decays as ∼r−6. The ultimate behavior
for r → ∞ remains unknown. In contrast to the two-plates
case, the HT in the presence of a single plate, as studied in
Refs. [21,22], shows a lower, but a longer (in distance r)
enhancement. The presence of plates is thus very nonadditive,
i.e., the transfer with two plates can be remarkably different
compared to a single plate, demonstrating the presence of
confined modes (distinct from the surface modes present for
a single plate [21,22]).

This statement is even more true for the case where the
plates are made of gold. Here, a single plate has almost no
effect, as no surface modes are excited. However, the HT is
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FIG. 3. The heat transfer between two point particles inside a
two-plates cavity made by metallic plates with different damping
rates ω̃τ . The case ω̃τ = ωτ corresponds to gold plates. Other pa-
rameters are as in Fig. 2.

largely enhanced by two plates for r � 1 μm. For larger r ,
we observe a decay with ∼r−1, which we attribute to energy
conservation. In free space, the energy emitted by the first
particle distributes over a spherical surface, so that the HT in
free space decays as r−2. In the confined situation, the cavity
acts as a wave guide, and energy distributes over a circle,
leading to the decay with r−1. At r ≈ 102 μm, this power law
is cut off by the mechanism of absorption of waves by the gold
surfaces (the wave guide is imperfect). We expect this power
law of r−1 to extend to infinity for the case of perfect mirror
plates (whose numerical evaluation is, however, nontrivial).
To underpin this expectation, we varied the damping rate ωτ

in Eq. (4), replacing it by ω̃τ . The resulting HT is shown in
Fig. 3. The figure shows that the quality of the two-plates wave
guide increases with decrease of ω̃τ , i.e., the r−1 power law
lasts longer with decrease of the damping.

Lastly, we note that the HT decreases monotonically for
all the considered cases. This is in contrast to the HT in the
presence of a sphere [20]. The results of Fig. 2 for a single
plate are in agreement with Refs. [21,22].

III. REMOVING THREE DIMENSIONS:
A SPHERICAL CAVITY

Energy confinement in all directions can be achieved by
placing an object inside a cavity. The most symmetric config-
uration for such scenario is a sphere placed in the center of a
spherical cavity (see Fig. 4). The wall of the cavity is assumed
to be infinitely extended. The formula for the HR in this
geometry is derived in Appendix B. Due to the symmetry of
the system, this formula takes a particularly simple form (rem-
iniscent of the result for two parallel surfaces) and reads as

H
(1)
1 = −2h̄

π

∫ ∞

0
dω

ω

e
h̄ω

kB T1 − 1

∑
P=M,N

×
∞∑
l=1

(2l + 1)

(
Re T̃ P

l + 1
)(

Re T P
l + ∣∣T P

l

∣∣2)∣∣1 − T̃ P
l T P

l

∣∣2 ,

(5)

FIG. 4. A spherical cavity exemplifying a system closed in all
three dimensions. We aim to compute the heat radiation of a sphere
placed in the center of the cavity. T1 and TC are temperatures of the
sphere and the cavity, respectively. For the quantity we compute, only
T1 is relevant.

where T P
l are the scattering matrix elements of a sphere of

order l and polarization P given by Eqs. (B8) and (B9) in
Ref. [20], T̃ P

l are the scattering matrix elements of a cavity
given in Ref. [24], and T1 is the temperature of a sphere.
For consistency with Refs. [15,16,20], the subscript and the
superscript 1 on the left-hand side of Eq. (5) state the label of
a sphere, i.e., a sphere is object 1.

We emphasize that the quantity we compute, H
(1)
1 , is the

HR of the sphere, i.e., the rate of heat emitted by the sphere
and absorbed by it. Therefore, only T1 is relevant for our
computations. To find the net heat radiation (which is minus
the net absorption) of the sphere, H (1), one should also include
the heat transfer from the cavity to the sphere, H

(1)
C , such that

the resulting HR is H (1) = H
(1)
1 − H

(1)
C . Due to the symmetry

of the system, H
(1)
C = H

(1)
1 with T1 replaced by TC in Eq. (5).

As a consistency check, we trivially observe that the result
of Eq. (5) vanishes if T P

l → 0 (the sphere becomes transpar-
ent), as required. In the opposite limit of a perfectly reflecting
sphere, one has [15]

lim
|ε|→∞

Re T P
l = − lim

|ε|→∞
∣∣T P

l

∣∣2
, (6)

and therefore

lim
|ε|→∞

H
(1)
1 = 0, (7)

as expected as well (a perfectly reflecting sphere does not
radiate energy). Equally expected, if there is no cavity, T̃ P

l =
0, and Eq. (5) equals the HR of a sphere in isolation (see,
e.g., Eq. (124) in Ref. [15]). On the other hand, in the perfect
mirror limit for the wall of the cavity, Re lim|̃ε|→∞ T̃ P

l = −1
(see Appendix B in Ref. [20]), and hence

lim
|̃ε|→∞

H
(1)
1 = 0. (8)

In that limit, all energy emitted by the sphere comes back to it
with the opposite sign of the energy flow, i.e., the net energy
flow is zero. Finally, we note that, since the system is com-
pletely closed, the HR of the sphere can also be interpreted as
the HT from the sphere to the cavity.
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FIG. 5. Heat radiation of a gold sphere with radius R = 10−1 μm
and temperature T1 = 300 K placed in the center of a spherical
cavity with radius R̃ as a function of the distance R̃ − R between the
sphere’s surface and the cavity wall (made of SiC or gold), see Fig. 4.
The result is compared to the heat transfer between two parallel
plates at distance R̃ − R, evaluated for the sphere’s surface area. The
dashed line corresponds to the HR of the sphere in isolation.

Figure 5 demonstrates the case of a gold sphere of radius
R = 10−1 μm and temperature T1 = 300 K inside a cavity
(SiC or gold) of radius R̃, shown as a function of the distance
R̃ − R between the sphere’s surface and the surface of the
cavity. When evaluating Eq. (5), the sum over l is truncated
at sufficient order (see Fig. 7 below). For small R̃ − R, we
observe a large enhancement for both gold and SiC cavity,
which can be understood from the HT between two parallel
surfaces. If the distance between surfaces of sphere and cavity
is small compared to their radii, we may expect that the
HR can be expressed via the result for two parallel plates
(so-called proximity approximation [11,25–29]). Indeed, the
result for two parallel plates, evaluated for the surface area of
the sphere, fits well to Eq. (5), as shown in the graph. In the
opposite limit, for R̃ − R � λT1 , we observe the approach of
the result for an isolated sphere. In this limit, the radiation
reflected back from the cavity to the sphere scatters many
times from the cavity wall, so that the cavity has the same
effect as a (black-body) environment. This is different for two
parallel plates, where the HT between the plates separated
by a large distance is still distinct from the emission of a
single surface. For a SiC cavity, the curve monotonically
interpolates between these two limits, and the estimate from
two parallel plates is always within 50% error. However, for
gold, we observe a pronounced minimum in between, where
the HT is suppressed by roughly one order of magnitude.
This can be understood from the insights around Eq. (8): the
reflectivity (|̃ε|) of a gold cavity is quite high, so that the HR
is suppressed.

The situation is rather different for a SiC sphere, as pre-
sented in Fig. 6, with all other parameters as in Fig. 5.
The curves show pronounced peaks for distances around
and beyond the thermal wavelength λT1 . While a SiC sphere
placed in a gold cavity of R ≈ 2 μm emits roughly 5 × 10−3

times the value of a free sphere, this factor is about 102 in a
cavity of R ≈ 5 μm. The cavity may thus be used to insulate

FIG. 6. Heat radiation of a SiC sphere inside a spherical cavity,
with all parameters as in Fig. 5.

the sphere or to speed up cooling. We attribute these peaks
to resonances of the cavity, so that they occur if multiply
reflected waves add constructively. The emissivity of a SiC
sphere is strongly peaked at a wavelength of λ0 ≈ 10.75 μm,
and the HR indeed roughly peaks at half-multiples of this
value. In contrast to that, a gold sphere has a very broad
emissivity at room temperature, so that these resonances are
not visible in Fig. 5. These resonances also strongly delay the
approach of the free sphere for large R̃ − R. While for a gold
sphere in Fig. 5, the radiation equals that of the free sphere for
R � 10 μm, it takes values of R in the range of 103 μm for a
SiC sphere to approach that limit. We thus observe nontrivial
HR effects for distances of millimeters. The result in Fig. 6
is an example of an electromagnetic resonator in the context
of heat radiation. It shows that such a closed system can
provide strongly nonmonotonic behavior for HR and HT such
that resulting quantities are very sensitive to small changes of
the system’s parameters. Since, in reality, most systems are
closed, such results may be important for a large variety of
applications.

Figure 7 finally shows the convergence of exemplary points
presented in Fig. 5 with multipole order l. As expected from
previous studies [11,26–29], the convergence slows down
with decrease of R̃ − R. For a SiC cavity, lmax = 300 is
necessary for R̃ − R = 1 nm, while lmax = 10 suffices for
R̃ − R = 100 nm. It is also remarkable that the convergence
for a gold cavity is faster than for a SiC cavity. Lastly, we note
that the results converge monotonically, which is in contrast
to a nonmonotonic convergence of the HT between PPs in the
presence of a sphere discussed in Ref. [20].

We finish by providing simplified expressions for Eq. (5),
based on previous literature [11,26–29] as well as Fig. 7. In
the limit R � λT1 and R � R̃, we expect that the multiple re-
flections between sphere and cavity [the numerator in Eq. (5)]
can be neglected, and the sum in Eq. (5) reduces to the term
with l = 1. Thus, in that limit,

H
(1)
1 =−2h̄

π

∫ ∞

0
dω

ω

e
h̄ω

kB T1 − 1

∑
P=M,N

× 3
(

Re T̃ P
1 + 1

)(
Re T P

1 + ∣∣T P
1

∣∣2)
. (9)
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FIG. 7. Convergence of the heat radiation of a gold sphere with
radius R = 10−1 μm and temperature T1 = 300 K placed in the
center of a spherical cavity with radius R̃ (see Fig. 5) as a function of
the maximum multipole order used in the sum in Eq. (5), normalized
by the exact value. For comparison, the corresponding curve for the
radiation of the sphere in isolation is shown (labeled as “Vacuum”).

If additionally the sphere is small compared to its skin depth
(the point particle limit introduced above), we may further
simplify, by using the sphere’s polarizability in Eq. (2), to
obtain

H
(1pp)
1pp = 4h̄

πc3

∫ ∞

0
dω

ω4

e
h̄ω

kB T1 − 1
Im(α1)

[
1 + Re T̃ N

1

]
.

(10)
Indeed, as regards Fig. 6, the results of Eqs. (10) and (5) agree
perfectly for R̃ − R > 1 μm. It is worth noting that the strong
resonances seen in Fig. 6 can thus be computed by using the
point particle approximation [Eq. (10)] of Eq. (5), which, a
posteriori, also justifies use of this approximation in Eq. (1)
to study the case depicted in Fig. 1.

IV. CONCLUSION

In this paper, we studied heat radiation and transfer in
confinement. In particular, we considered the heat transfer
between two point particles placed between two parallel plates
and the heat radiation of a sphere placed in the center of
a spherical cavity. For both cases, we derived closed form
expressions for the HT and HR and applied them to investigate
several examples.

For the case of particles between parallel plates, the pres-
ence of the plates is found to enhance the HT dramatically
(up to four orders of magnitude for SiC plates) and act as
a wave guide for electromagnetic waves. While SiC plates
show a strong, but a short (in distance between the particles)
enhancement, gold plates provide a weaker, but a longer
enhancement, showing a r−1 dependence for a large range of
interparticle distance. The presence of plates is not additive in
the sense that the results for two plates are distinct from the
ones for a single plate studied in previous literature [21,22].

The emissivity of a gold sphere in a cavity can largely be
understood in terms of the HT between two parallel surfaces,
with the additional feature of a pronounced minimum if the

cavity wall is made of gold as well. For a SiC sphere placed
in a cavity, we observe strong resonance behavior.

Future work may study confinement in two dimensions.
The simplest system that effectively removes two dimen-
sions is a cavity made by an (infinitely long) cylinder. Fur-
ther investigations can concern the HT between particles
placed inside a spherical cavity. Also, other shapes, such
as confinement by cubes or cones, may reveal interesting
effects.

In summary, confined systems may open up new avenues
for applications of heat radiation and transfer, in particular,
with regard to the observed nonmonotonic effects.
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APPENDIX A: GREEN’S FUNCTION OF
TWO PARALLEL PLATES

We consider two identical semi-infinite parallel plates as
depicted in Fig. 1 and aim to find the GF in the region between
the plates. We work in Cartesian coordinate system with z axis
perpendicular to the plates and place the plates such that the
region between them is −d < z < 0. For this case, the initial
expression for the GF, valid if both r and r′ are in the region
between the plates, reads as (note that there is an additional
restriction, z > z′, which we discuss later) [30,31]

G(r, r′) = i

8π2

∑
P

∫
d2k⊥

1

kz

1

1 − (FP )2e2ikzd

× [eik+·rP+ + FP eik−·rP−]

⊗ [e−ik+·r′
P+ + FP e2ikzde−ik−·r′

P−], (A1)

where P denotes polarization (magnetic M and electric N ), r
is the radius vector, d is the distance between the plates, k± =
(k⊥,±kz)T is the wave vector in vacuum (k ≡ |k±| = ω

c
), and

kz =
√

k2 − k2
⊥. Symbol ⊗ denotes the tensor product. Plane

waves P± are defined as

M+ = M− = 1

k⊥
(−x̂ky + ŷkx ), (A2)

N± = 1

k⊥k
(±x̂kxkz ± ŷkykz − ẑk2

⊥), (A3)

where x̂, ŷ, and ẑ are spatial unit vectors in the
respective directions. FP are conventional Fresnel
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coefficients [15,16,20,32]:

FM =
√

k2 − k2
⊥ −

√
εk2 − k2

⊥√
k2 − k2

⊥ +
√

εk2 − k2
⊥

, (A4)

FN =
ε

√
k2 − k2

⊥ −
√

εk2 − k2
⊥

ε

√
k2 − k2

⊥ +
√

εk2 − k2
⊥

. (A5)

Green’s function (A1) is valid for the case z > z′ only,
which is a restriction for the free GF written in plane waves
and hidden in expression (A1). To avoid this restriction, we
can separate GF (A1) into two parts, revealing the free GF
G0(r, r′) and the part due to the presence of the plates:

G(r, r′) = G0(r, r′) + i

8π2

∑
P

∫
d2k⊥

1

kz

1

1 − (FP )2e2ikzd

× [FP e2ikzdeik+·re−ik−·r′
P+ ⊗ P−

+ FP eik−·re−ik+·r′
P− ⊗ P+

+ (FP )2e2ikzdeik−·re−ik−·r′
P− ⊗ P−

+ (FP )2e2ikzdeik+·re−ik+·r′
P+ ⊗ P+]. (A6)

Since the free GF in Eq. (A6) can be written in a closed form
with no restrictions on r and r′ (see Eq. (B1) in Ref. [20]),
GF (A6) is valid for any r and r′ in the region between the
plates.

Due to the fact that the system depicted in Fig. 1 is
invariant under rotation around z axis, we can set, without loss
of generality, the particles’ positions to be r1 = (0, 0,− d

2 )T

and r2 = (r, 0,− d
2 )T , where r is the distance between the

particles. Using these positions in GF (A6) and performing

the tensor products of plane waves (A2) and (A3), we find

G(r2, r1) = G0(r2, r1) + i

4π2

∫
d2k⊥

1

kz

×
{

FMeikzd

1 − FMeikzd
eikxrMθ

+ FNeikzd

1 − (FN )2e2ikzd
eikxr [N′

θ + FNeikzdNθ ]

}
,

(A7)

where

Mθ = 1

k2
⊥

⎛
⎜⎝

k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎞
⎟⎠, (A8)

N′
θ = 1

k2k2
⊥

⎛
⎜⎝

−k2
xk

2
z −kxkyk

2
z 0

−kxkyk
2
z −k2

yk
2
z 0

0 0 k4
⊥

⎞
⎟⎠, (A9)

Nθ = 1

k2k2
⊥

⎛
⎜⎝

k2
xk

2
z kxkyk

2
z 0

kxkyk
2
z k2

yk
2
z 0

0 0 k4
⊥

⎞
⎟⎠, (A10)

and subscript θ denotes that the matrices depend on the polar
angle θ (in k⊥ plane).

We now go to polar coordinates k⊥ and θ in k⊥ plane.
First, we note that in Eq. (A7) the angular dependence is only
acquired by terms eikxr and matrices Mθ , N′

θ , Nθ . Second,
the terms with an odd number of ky in matrices Mθ , N′

θ ,
Nθ give zero after angular integration, because they produce
odd functions in ky in the total expression (A7). Therefore,
the GF is diagonal, which is a consequence of the specific
symmetry of the configuration chosen in Fig. 1. Performing
angular integration, we find

M ≡
∫ 2π

0
dθeikxrMθ = 2π

k⊥r

⎛
⎝J1(k⊥r ) 0 0

0 J1(k⊥r ) − k⊥rJ2(k⊥r ) 0
0 0 0

⎞
⎠, (A11)

N′ ≡
∫ 2π

0
dθeikxrN′

θ = 2π

k2k⊥r

⎛
⎝−k2

z [J1(k⊥r ) − k⊥rJ2(k⊥r )] 0 0
0 −k2

z J1(k⊥r ) 0
0 0 k3

⊥rJ0(k⊥r )

⎞
⎠, (A12)

N ≡
∫ 2π

0
dθeikxrNθ = 2π

k2k⊥r

⎛
⎝k2

z [J1(k⊥r ) − k⊥rJ2(k⊥r )] 0 0
0 k2

z J1(k⊥r ) 0
0 0 k3

⊥rJ0(k⊥r )

⎞
⎠, (A13)

where Ji are Bessel functions of order i. Substituting
Eqs. (A11), (A12), and (A13) into Eq. (A7), we finally obtain
for the GF

G(r2, r1)

= G0(r2, r1) + i

4π2

∫ ∞

0
dk⊥

k⊥
kz

×
{

FMeikzd

1−FMeikzd
M+ FNeikzd

1−(FN )2e2ikzd
[N′+FNeikzdN]

}
.

(A14)

Note that the r dependence is in matrices M, N′, and N.
Expression (A14) is used in formula (1) to compute HT
in Sec. II. Integrals over k⊥ in GF (A14) and over ω in
formula (1) are evaluated numerically.

APPENDIX B: DERIVATION OF THE FORMULA FOR THE
HEAT RADIATION OF A SPHERE

INSIDE A SPHERICAL CAVITY

We derive formula (5) from Eq. (44) in Ref. [16]. For
definitions and expressions of scattering and translation
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matrices we refer the reader to Refs. [10,15,16,20]. Natu-
rally, we choose spherical basis for scattering and translation
matrices. There are two important features of the derivation.
First, since a sphere and a spherical cavity have the same
origin, translation matrices are equal to the identity matrix.
Second, the scattering matrices of both a sphere and a cavity
are diagonal.

Starting from Eq. (44) in Ref. [16] (note that we use
minus of that equation, because we compute the heat emis-
sion, but not the heat absorption as done in Ref. [16]),
we get

H
(1)
1 = −2h̄

π

∫ ∞

0
dω

ω

e
h̄ω

kB T1 − 1
Re Tr

×
{

[T̃ +I]
1

I−T T̃

[T † + T
2

+T T †
]

1

I − T †T̃ †

}
,

(B1)

where T and T̃ are scattering matrices of a sphere and a
cavity, respectively, and I is the identity matrix. Since all the
matrices are diagonal, we have

T † + T
2

= T ∗ + T
2

= Re T , (B2)

T T † = T T ∗ = |T |2, (B3)

T †T̃ † = T ∗T̃ ∗. (B4)

Moreover, the inverse matrices in Eq. (B1) are diagonal as
well and can be thus rearranged with others. Equation (B1)

hence becomes

H
(1)
1 = − 2h̄

π

∫ ∞

0
dω

ω

e
h̄ω

kB T1 − 1

× Tr

{
[Re T̃ + I][Re T + |T |2]

1

|I − T̃ T |2
}
.

(B5)

Next, we write the trace using matrix indexing:

Tr

{
[Re T̃ + I][Re T + |T |2]

1

|I − T̃ T |2
}

=
∑

μ

[Re T̃ + I]μμ[Re T + |T |2]μμ

(
1

|I − T̃ T |2
)

μμ

=
∑

μ

[Re T̃μμ + Iμμ][Re Tμμ + |Tμμ|2]

× 1

|Iμμ − T̃μμTμμ|2 , (B6)

where again we used diagonality of all the matrices.
Since μ = {P, l,m}, where m = −l,−(l − 1), . . . , 0, . . . ,

(l − 1), l, Iμμ′ ≡ δμμ′ = δPP ′δll′δmm′ , and Tμμ′ =
T P

l δPP ′δll′δmm′ , T̃μμ′ = T̃ P
l δPP ′δll′δmm′ , we have

Tr

{
[Re T̃ + I][Re T + |T |2]

1

|I − T̃ T |2
}

=
∑

P=M,N

∞∑
l=1

(2l + 1)
[

Re T̃ P
l + 1

]Re T P
l + ∣∣T P

l

∣∣2∣∣1 − T̃ P
l T P

l

∣∣2 .

(B7)
Substituting Eq. (B7) into Eq. (B5), we finally obtain for-
mula (5).
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