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Spin relaxation of a donor electron coupled to interface states
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An electron spin qubit in a silicon donor atom is a promising candidate for quantum information processing
because of its long coherence time. To be sensed with a single-electron transistor, the donor atom is usually
located near an interface, where the donor states can be coupled with interface states. Here we study the
phonon-assisted spin-relaxation mechanisms when a donor is coupled to confined (quantum-dot-like) interface
states. We find that both Zeeman interaction and spin-orbit interaction can hybridize spin and orbital states, each
contributing to phonon-assisted spin relaxation in addition to the spin relaxation for a bulk donor or a quantum
dot. When the applied magnetic field B is weak (compared to orbital spacing), the phonon assisted spin relaxation
shows the B5 dependence. We find that there are peaks (hot spots) in the B-dependent and detuning dependent
spin relaxation due to strong hybridization of orbital states with opposite spin. We also find spin relaxation dips
(cool spots) due to the interference of different relaxation channels. Qubit operations near spin relaxation hot
spots can be useful for the fast spin initialization and near cool spots for the preservation of quantum information
during the transfer of spin qubits.
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I. INTRODUCTION

Electron spin qubits in semiconductor donors or quantum
dots (QDs) are promising candidates for quantum information
processing because of the tunability of electronic states and
compatibility with existing semiconductor fabrication tech-
nologies [1–4]. Silicon as a host material for spin qubits is of
particular interest because of the weak spin-orbit interaction
(SOI) and the development of isotopic enrichment, which
suppress both spin relaxation and pure dephasing [5–7]. Long
coherence time and high fidelity readout have been demon-
strated experimentally for a spin qubit in isotopically enriched
silicon [8]. Furthermore, spin qubits in silicon donor atoms
can be engineered by deterministic doping, where individual
donor atoms can be placed with sub-nm precision by using
scanning tunneling microscopy (STM) lithography [9].

For readout with a single-electron transistor, the donor
atoms of interest are usually located near an interface
[8,10,11]. For example, in recent experiments with ion im-
planted phosphorus, the donors are separated about 10 nm
from the interface [8]. For these short separations, the inter-
face states can couple to the donor state and alter the behavior
of the spin qubit in a donor. The interface states are QD-like
states confined laterally by the nearby donor potential and
vertically by an applied electric field at the interface. The
resulting lateral confinement along the interface can be as
large as 10 meV [12,13]. It has been proposed to use the
interface states to mediate dipole-dipole coupling between
donor electrons [14] or to transfer spin qubit information
between remote donor atoms [15], where electrons are trans-
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ferred between donors and interface states by applying an
electric field. Recently, STM experiment demonstrated the
tunnel coupling between donor and a QD-like state [16].

Spin relaxation describes how spin decays from its
excited state to ground state, which is a type of decoherence
that cannot be substantially suppressed with spin echo
techniques. Spin relaxation is an important quantity for
the characterization of quantum systems, such as donor
systems [5,6,10,17–20], single QD system [21–24], and
double QD (DQD) systems [25–28]. In a single bulk donor,
spin relaxation is dominated by the Zeeman interaction (ZI),
which hybridizes the donor ground orbital and donor excited
orbitals with opposite spin [29–32]. In a single QD, SOI is the
dominant mechanism for spin relaxation and hybridization of
the QD ground state with the QD excited states of opposite
spin [21–23,33–36]. In tunnel coupled donor-interface
system, hybridization of donor ground orbital with QD-like
interface states could give rise to additional electron spin
relaxation. A recent study of electron spin relaxation in a flip-
flop qubit shows that the interface state can induce a strong
spin relaxation peak (hot spot) based on the single valley
approximation [37]. Spin relaxation hot spots are also studied
in GaAs double QD [38] and silicon QD [23]. However, there
is still no comprehensive study of the spin relaxation in a
donor coupled to a QD with the presence of the valley states
in the QD. Furthermore, not much attention has been paid to
the effect of destructive interference on spin relaxation.

In this work, we study the additional spin relaxation
that arises when a donor is coupled to QD-like interface
states. We find that both ZI and SOI can couple the donor
ground state and QD states with opposite spin and result in a
phonon-assisted inter-donor-QD spin relaxation, in addition
to the spin relaxation for a bulk donor or a quantum dot.
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A comprehensive comparison is done between the inter-
donor-QD spin relaxation, the intradonor spin relaxation, and
the intra-QD spin relaxation. When the applied magnetic field
B is small, we find the phonon assisted spin relaxation always
shows the B5 dependence. Multiple spin relaxation hot spots
are found due to the crossing of orbital states with opposite
spin. We find spin relaxation cool spots, where spin relaxation
is suppressed due to the interference between different spin
relaxation channels. The spin relaxation cool spot happens
when the spin-up state of the ground orbital (such as donor
ground orbital) is between the spin-down states of the excited
orbitals (such as the valley states of QD). The qubit operation
near a spin relaxation hot spot could be useful for the fast
spin initialization and near a cool spot for the preservation
of quantum information during the coherent transfer of spin
information between donor atoms via interface states.

The paper is organized as follows. In Sec. II, we set up
the model Hamiltonian. In Sec. III, the effective spin-phonon
interactions are obtained for two different spin hybridization
mechanisms. In Sec. IV, the expressions of spin relaxation
are given. In Sec. V, we show the numerical results of spin
relaxation for various applied magnetic fields and detunings.
In Sec. VI, we compare the result with spin relaxation in
a single bulk donor and discuss possible consequences for
experiments. Finally, we draw conclusions in Sec. VII.

II. SYSTEM HAMILTONIAN

We consider the electron spin of a phosphorus (P) donor
atom in an isotopically enriched 28Si with the P donor electron
tunnel coupled to nearby QD-like interface states. Figure 1
shows a schematic diagram of the electric potential and energy
levels of the system. The system Hamiltonian is given by

H = HO + HZ + HSO + HEP , (1)

where HO is the orbital part of the Hamiltonian (including
the valley and envelope degrees of freedom), HZ is the ZI
term in the presence of an applied magnetic field, HSO is
the SOI in effective mass theory, and HEP is the electron-
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FIG. 1. Schematic diagram of system potential and energy levels
of a donor coupled to a QD-like interface state under an electric field
from metallic gates. The energy levels are shown for a donor and a
QD confinement in the absence of tunnel coupling. ε is the detuning
of QD and donor ground states, EV S is the valley splitting of the
lowest two QD states, t01 and t02 are the tunnel coupling amplitude
between the donor ground state and the two lowest QD states.

phonon interaction. We will describe each term in detail in
the following paragraphs.

The orbital Hamiltonian of a coupled donor-QD system
can be expressed in the basis of donor eigenstates and QD
eigenstates. In silicon, the conduction band has sixfold de-
generacy, known as valley degeneracy. The six valley states
can be labeled as x, x̄, y, ȳ, z, and z̄. In a bulk donor, the
valley degeneracy split due to the donor confinement potential
and the ground state has no valley degeneracy. In a QD,
the potential at the interface splits the four x and y valleys
from the two z valley states, which are slightly split further.
The energy splitting of the z valley states is called valley
splitting. In this work, we are interested in the regime where
the lowest two QD eigenstates are energetically close to the
donor ground state. Since other donor or QD states are at
least 10 meV higher, we will focus on the lowest three states:
the ground state |0〉 of a single donor and the two lowest
states |1〉 and |2〉 of the QD (see Appendix A). Thus, the
effective three-level Hamiltonian (suppressing the spin degree
of freedom) is

HO = ε0|0〉〈0| + ε1|1〉〈1| + ε2|2〉〈2|
+ t01|0〉〈1| + t02|0〉〈2| + H.c., (2)

where εn (n = 0, 1, 2) is the energy of each orbital basis state
|n〉, t01 and t02 are the tunneling matrix elements between
the donor ground state and the two QD states. The energies
εn can be parameterized as ε0 = −ε/2, ε1 = ε/2 and ε2 =
ε/2 + EV S , where ε is the detuning between donor and QD
ground state, and EV S is the valley splitting between two QD
states. The detuning ε is tunable with a metallic gate, and EV S

ranges from tens of μeV to a few meV depending on interface
potential and interface roughness [23,39–44].

In the presence of a magnetic field, the ZI between the
electron spin and the magnetic field is given by

HZ = 1

2
μB

∑
j

Pj �σ · g
↔(j ) · �B, (3)

where Pj is the projection operator that selects the j th valley
state (i.e., j = x, x̄, y, ȳ, z, or z̄), �σ = (σx, σy, σz) is a vector
of the Pauli matrices (z axis is along the [001] direction),
and �B = B(sin θB cos φB, sin θB sin φB, cos θB ) is the applied
magnetic field. The anisotropic g-factor tensor g

↔(j ) is

g
↔(j ) = g⊥ 1

↔ + gani
↔
U (j ), (4)

where g⊥ (g‖) is the g factor perpendicular (parallel) to
the valley ellipsoid, gani = g‖ − g⊥ measures the extent of

g-factor anisotropy, 1
↔

is an identity operator, and
↔
U (j ) is

an operator selecting the |j |th direction. Note that, the g-
factor tensor could in principle be different for donor and QD
valley states. This more general form of ZI is considered in
Appendix B.

The SOI couples the orbital and spin degrees of freedom
and could affect the spin relaxation. The SOI due to the
potential of the donor atom can be omitted since its effect on
spin relaxation is small [30]. For a QD at an interface, we have
the Rashba SOI,

HSO = αso(pxσy − pyσx ), (5)
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where αso is the Rashba SOI constant, and px and py are the
in-plane momentum operators (interface direction is assumed
to be [001]). Due to the bulk inversion symmetry of the
silicon lattice, the Dresselhaus SOI in bulk silicon vanishes.
Note that, for a QD at an interface, Dresselhaus SOI may
arise from the interface potential [45,46]. The presence of
Dresselhaus SOI modifies the dependence of SOI induced
spin relaxation on the orientation of the applied magnetic field
but not the dependence on the magnitude of the magnetic field
[47]. Furthermore, the ZI induced spin relaxation plays a more
important role in most cases as shown below. In this work, we
consider only the Rashba SOI for simplicity.

The spin relaxation requires both a spin flip, which is
mediated by the hybridization, and energy dissipation. The
energy dissipation for relaxation is provided by the electron-
phonon interaction HEP . In silicon, we have (see Appendix C)

HEP =
∑

j

Pj

∑
�qλ

ei �q·�rM (j )
�qλ

(b†−�qλ
+ b�qλ), (6)

M
(j )
�qλ

= i
√

h̄q/2ρcvλ�
(j )
�qλ

, (7)

�
(j )
�qλ

= ê(�qλ) · (�d 1
↔ + �u

↔
U (j ) ) · q̂, (8)

where Pj is the projection operator that selects the j th valley,
b
†
�qλ

(b�qλ) is the creation (annihilation) operator of a phonon
with wave vector �q and branch-index λ, λ = l (longitudinal
mode), t1, or t2 (transverse modes). ρc is the sample density,
vλ is phonon velocity, ê(�qλ) and q̂ are unit vectors of phonon
polarization and wave vector, �d and �u are the dilation
and uniaxial shear deformation potential constants, and the
coefficient �

(j )
�qλ

is calculated and summarized in Appendix C.

III. EFFECTIVE SPIN-PHONON INTERACTION

The electron-phonon interaction can dissipate the energy
of the electron, however, it does not relax spin without a
mechanism that hybridizes the electron spin and orbital state.
To study spin relaxation, in principle, we should first solve
HO + HZ + HSO to find the corresponding eigenstates, where
states with different spins are hybridized. Then, by including
electron-phonon interaction HEP , one can calculate the relax-
ation of these eigenstates. However, because we are interested
in the spin degree of freedom, and because the hybridization
of spin and orbit is small, one can treat this problem by per-
turbation theory without losing accuracy. Suppose the orbital
Hamiltonian is diagonalized as HO = En̄|n̄〉〈n̄|,

|n̄〉 =
∑

n

Cn̄n|n〉, (9)

where En̄ and |n̄〉 are the orbital eigenenergies and eigen-
states, and the orbital basis state |n〉 can be expressed in
terms of envelope and Bloch functions (see Appendix A).
Then, we consider H = H0 + Hh + HEP , where H0 = HO +∑

n̄ 〈n̄|HZ|n̄〉|n̄〉〈n̄| is the unperturbed part, and Hh + HEP

is the perturbation. Hh = ∑
n̄�=n̄′ [〈n̄|HZ|n̄′〉|n̄〉〈n̄′| + H.c.] +

HSOI hybridizes spin and orbital state, and HEP provides en-
ergy dissipation of the system. To second order of Hh + HEP ,

the effective spin-flip Hamiltonian is

(H )↑↓
0̄0̄ = 1

2

∑
n̄�=0̄

{
(Hh)↑↓

0̄n̄
(HEP )↓↓

n̄0̄

E0̄ − En̄ + EZ

+ (HEP )↑↑
0̄n̄

(Hh)↑↓
n̄0̄

E0̄ − En̄ − EZ

}
,

(10)

where (H )ss
′

n̄n̄′ ≡ 〈n̄s|H |n̄′s ′〉 and EZ is the ground orbital
Zeeman splitting determined by 〈0̄|HZ|0̄〉.

In the following subsections, we will obtain the matrix ele-
ments of HZ , HSO , and HEP . We will use a simplified notation
(Hi )n̄n̄′ ≡ 〈n̄|Hi |n̄′〉 for the matrix element in the diagonalized
orbital basis, and Hi,nn′ ≡ 〈n|Hi |n′〉 for the matrix element in
the original orbital basis, where Hi can be HZ , HSO , or HEP .
We also use r̄ to denote the excited orbital states, i.e., r̄ �= 0̄ is
always used.

A. ZI induced hybridization

ZI induced spin relaxation is known to be the dominant
spin relaxation mechanism in a single donor, where g-factor
anisotropy leads to hybridization of spin-valley states [29,30].
In a coupled donor-QD system, ZI will also hybridize spin and
orbital states |0̄〉, |1̄〉, and |2̄〉, and give rise to additional spin
relaxation besides the relaxation in a single donor.

To find the matrix element of ZI in the orbital eigenstates,
we first express ZI in the basis of donor ground state |0〉 and
QD ground states |1〉 and |2〉. Then, ZI is

HZ,nn′ = 1

2
μB �σ · g

↔(nn′ ) · �B, (11)

g
↔(nn′ ) = (g⊥ 1

↔ + gani
↔
D(nn) )δnn′ , (12)

↔
D(nn′ ) =

∑
j

α(j )
n α

(j )
n′

↔
U (j ), (13)

where α
(j )
n is the probability amplitude of state |n〉 in the

j th valley. Then, we can express ZI in the basis of orbital
eigenstates |n̄〉. From Eq. (9), |n̄〉 = ∑

n Cn̄n|n〉, ZI in the basis
of orbital eigenstates is

(HZ )0̄n̄ = 1

2
μB �σ · ↔

G(0̄n̄) · �B, (14)

↔
G(0̄n̄) = g⊥ 1

↔
δ0̄n̄ + gani

∑
n

C ∗̄
0n

Cn̄n

↔
D(nn), (15)

where the off-diagonal elements of
↔
G

(0̄n̄)
ij are zero, and the

diagonal elements are

↔
G(0̄n̄)

xx = ↔
G(0̄n̄)

yy = g⊥δ0̄n̄ + ganiC
∗̄
00Cn̄0

↔
�xx, (16)

↔
G(0̄n̄)

zz = g‖δ0̄n̄ + ganiC
∗̄
00Cn̄0

↔
�zz, (17)

where the orthogonal relations
∑

n C ∗̄
0n

Cn̄n = δ0̄n̄ have been

employed and then tensor
↔
� is

↔
� = ↔

D(00) − ↔
D(11) = 1

3 1
↔ − ↔

U (z). (18)

To find the effective spin-orbit hybridization term, we need
to express ZI in a new (X, Y,Z) coordinate system, where
Z axis is along the spin quantization axis determined by
(HZ )0̄0̄, so that (HZ )0̄0̄ = 1

2EZσZ , where EZ = geffμBB is the
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Zeeman splitting and geff =
√

(
↔
G0̄0̄

xx sin θB )2 + (
↔
G0̄0̄

zz cos θB )2

is the effective g factor [see Appendix B]. The spin quan-
tization axis is different from the direction of B because
of the anisotropy of G0̄0̄

ξξ . However, since g⊥ ≈ g‖ ≈ 2 �
gani, the spin quantization can be taken approximately along
the applied magnetic field. Therefore, in the new (X, Y,Z)
coordinate, the spin-orbit hybridization term due to ZI is

(HZ )↑↓
0̄r̄

≡ 1
2μBBg0̄r̄

X σ
↑↓
X , (19)

g0̄r̄
X ≈ ganiC

∗̄
00Cr̄0

↔
�XZ, (20)

where σ
↑↓
X = 1 and

↔
�XZ = 1

2 sin 2θB .
Equation (20) indicates that the hybridization due to ZI

is proportional to C ∗̄
00Cr̄0, the g-factor anisotropy gani, and

↔
�XZ = 1

2 sin 2θB . The hybridization is maximum when θB =
45◦ and is zero when θB = 0◦ or 90◦. The hybridization be-
comes zero because the spin quantization direction (given by↔
G0̄0̄ · �B) and the direction of spin operator (given by

↔
G0̄r̄ · �B)

in the hybridization term (HZ )0̄r̄ are along the same direction
as �B, when �B is along the main axis of g-factor tensor. In
this case, the transverse coupling of spin to phonon, which
is responsible for spin relaxation, becomes zero. Finally, if
g-factor tensor g

↔(j ) is considered to be different between
donor and QD, one can show that the only difference in the
hybridization term is that gani is replaced by gQD,ani , which is
the g-factor anisotropy in the QD (see Appendix B).

B. SOI induced hybridization

The SOI can also hybridize the spin and orbital states.
Together with the electron-phonon interaction, it will induce
spin relaxation. To evaluate the matrix element (HSO )↑↓

0̄r̄
, i.e.,

(px )0̄r̄ and (py )0̄r̄ , it is convenient to use the commutation
relation [x,HO ] ≈ ih̄px/m∗, where an average effective mass
m∗ = 0.315m0 is chosen because of the presence of multiple
valley states (see Appendix D). From the commutation rela-
tion, we have

(px )0̄r̄ ≈ m∗Er̄ 0̄x0̄r̄ /(ih̄), (21)

where x0̄r̄ = 〈0̄|x|r̄〉 and Er̄ 0̄ = Er̄ − E0̄ is the energy differ-
ence of the eigenstates in the absence of SOI. By using the
single effective mass m∗, the estimated matrix element could
be different from actual values by at most a factor of three.

The matrix element x0̄r̄ can be written as

x0̄r̄ =
∑
nn′

C ∗̄
0n

Cr̄n′xnn′ = x
(1)
0̄r̄

+ x
(2)
0̄r̄

, (22)

where xnn′ = 〈n|x|n′〉 is the matrix element in the original
basis, and x

(1)
0̄r̄

(x (2)
0̄r̄

) contains only the terms with n′ = n

(n′ �= n) in the summation. In x
(2)
0̄r̄

, the terms of x01 and x02 are
small because of the spatial separation of donor and QD states.
The only term that could contribute to x

(2)
0̄r̄

is x12 that couples
two valley states of QD, which can result in an intervalley
spin relaxation. The magnitude of x12 is on the order of 1
nm, as estimated in a recent experiment [23], and it should
be even smaller for a flat interface. The term x

(2)
0̄r̄

will be

omitted because its magnitude is small compared to x
(1)
0̄r̄

as

shown below. (Note that this intervalley spin relaxation is
different from the intra-QD intervalley spin relaxation, which
is discussed later in Sec. V B.)

For the term x
(1)
0̄r̄

, one can show that x
(1)
0̄r̄

= C ∗̄
00Cr̄0dx ,

where dx is the projection of a vector connecting the center
of donor and center of QD on the x axis. Thus,

(px )0̄r̄ ≈ C ∗̄
00Cr̄0(aso/αso)Er̄ 0̄ cos φd, (23)

where aso = αsom
∗d‖/(ih̄), d‖ is the in-plane separation be-

tween donor and QD, φd is introduced so that dx = d‖ cos φd

and dy = d‖ sin φd . Therefore, from Eq. (5),

(HSO )↑↓
0̄r̄

= C ∗̄
00Cr̄0asoEr̄ 0̄σ

↑↓
x ′′ , (24)

where σ
↑↓
x ′′ = (σ ↑↓

y cos φd − σ
↑↓
x sin φd ). Similarly, we have

(HSO )↑↓
r̄ 0̄ = −C∗

r̄0C0̄0asoEr̄ 0̄σ
↑↓
x ′′ , (25)

where the minus sign indicates that there will be cancellation
of two terms in Eq. (10) in the limit of zero magnetic field.
This cancellation, known as Van-Vleck cancellation [48,49],
will result in an extra E2

Z dependence (besides the contribution
of E3

Z from phonon spectral density) for spin relaxation.
The results also indicate that the hybridization due to SOI is
proportional to aso = αsom

∗d‖/(ih̄). Thus, it is proportional
to SOI strength αso and the lateral separation of the donor
and QD. Interestingly, there is no coupling if the donor and
QD are vertically aligned. In that case, (px )0̄r̄ and (px )0̄r̄ are
zero due to the vanishing of x

(1)
0̄r̄

. In this work, we assume a

finite d‖, so that the dominant contribution is from x
(1)
0̄r̄

rather

than x
(2)
0̄r̄

.

C. Electron-phonon matrix elements

The energy dissipation is provided by the electron-phonon
interaction, which couples the ground |0̄〉 and excited orbital
states |r̄〉 (i.e., r̄ �= 0̄) with the same spin orientation. In
this subsection, we calculate the matrix elements 〈0̄|HEP |r̄〉
of the electron-phonon interaction. From Eqs. (6)–(9),
we have

(HEP )↑↑
0̄r̄

=
∑
�qλ

(M�qλ)0̄r̄ (b†−�qλ
+ b�qλ), (26)

(M�qλ)0̄r̄ =
∑
nn′

C ∗̄
0n

Cr̄n′M�qλ,nn′ , (27)

M�qλ,nn′ =
∑

j

α(j )
n α

(j )
n′ f

(j )
nn′ (�q )M (j )

�qλ
, (28)

where (HEP )0̄r̄ ≡ 〈0̄|HEP |r̄〉, and the form factor f
(j )
nn′ (�q ) is

f
(j )
nn′ (�q ) ≡

∫
d�rF ∗

nj (�r )Fn′j (�r )ei �q·�r , (29)

where F ∗
nj (�r ) is the envelope function in the j th valley. For

spin splitting around ωZ ≡ EZ/h̄ = 1 GHz, we have |q| =
ωZ/vj ≈ 1 μm−1. Thus, the wavelength of phonons which
are on resonance with the spin splitting is much larger than
the geometrical size of the donor-QD system (∼10 nm). In
the limit of long wave phonons, we have exp(i �q · �r ) ≈ 1 and
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f
(j )
nn′ (�q ) ≈ δnn′ . Therefore,

M�qλ,nn′ =
∑

j

∣∣α(j )
n

∣∣2
M

(j )
�qλ

, (30)

where M�qλ,22 = M�qλ,11 �= M�qλ,00. Because of the orthogonal
relation

∑
n C ∗̄

0n
Cr̄n = 0, we have

(M�qλ)0̄r̄ = C ∗̄
00Cr̄0M

′
�qλ,00, (31)

M ′
�qλ = i

√
h̄q/2ρcvλ�

′
�qλ, (32)

�′
�qλ = �uê

(�qλ) · ↔
� · q̂, (33)

where M ′
�qλ

= M�qλ,00 − M�qλ,11, �′
�ql

= �u(1/3 − cos2 ϑ ),
�′

�qt1
= �u cos ϑ sin ϑ , and �′

�qt2
= 0 (see Appendix C).

Therefore, in the long wave limit, the electron-phonon
interaction matrix elements between orbital eigenstates is
proportional to the extent of mixing of donor and QD states
C ∗̄

00Cr̄0 and proportional to the uniaxial shear deformation
potential constant �u.

The matrix element M ′
�qλ

∝ q1/2 is similar to the case of an
electron in a bulk donor but different from the case of a single
QD. For an electron in a single QD, the electron-phonon
interaction matrix element scales as q3/2, where the extra
q is because of the dipole interaction needed to couple the
ground and excited states. Thus, for the same hybridization
mechanism of SOI, the phonon-induced spin relaxation in
a QD has an extra B2 dependence compared to the spin
relaxation studied here [33,34].

D. Summary of effective spin-phonon interactions

With the form of electron-phonon interaction matrix ele-
ments, the effective spin-phonon Hamiltonian is

(H ′)↑↓
0̄0̄ = H ′

EP

2

∑
r

−Er̄ 0̄H
+
h + EZH−

h

E2
r̄ 0̄ − E2

Z

, (34)

H ′
EP =

∑
�qλ

M ′
�qλ(b†−�qλ

+ b�qλ), (35)

H+
h = C∗

r̄0C0̄0(Hh)↑↓
0̄r̄

+ C ∗̄
00Cr̄0(Hh)↑↓

r̄ 0̄ , (36)

H−
h = C∗

r̄0C0̄0(Hh)↑↓
0̄r̄

− C ∗̄
00Cr̄0(Hh)↑↓

r̄ 0̄ . (37)

There are two possible hybridization mechanisms, i.e., HZ

and HSO . The interference between different mechanisms can
be neglected since the spin relaxation of these two mech-
anisms are in general of different magnitude. Furthermore,
there can always be a phase difference between the effec-
tive spin-phonon interaction of different mechanisms. In the
following, we will study separately each hybridization mech-
anism and neglect the interference of the two hybridization
mechanisms.

When Hh = HZ , H−
h vanishes due to the same sign

and magnitude of matrix elements of (HZ )↑↓
0̄r̄

and (HZ )↑↓
r̄ 0̄ ,

while

H+
h = |C∗

r̄0C0̄0|2gani
↔
�XZμBB, (38)

where σ
↑↓
X = 1 in the (X, Y,Z) coordinate. Therefore, the

effective spin-flip Hamiltonian due to ZI and electron-phonon
interaction is

(HZ + HEP )↑↓
0̄0̄ = −g′

2

↔
�XZηZEZH ′

EP , (39)

ηZ ≡
∑
r=1,2

Er̄ 0̄|C ∗̄
00Cr̄0|2

E2
r̄ 0̄ − E2

Z

, (40)

where g′ ≡ gani/geff is the rescaled g-factor anisotropy and
the coefficient ηZ accounts for contributions from different
orbitals to the effective spin-phonon interaction.

When Hh = HSO , H+
h vanishes due to the different signs

of matrix elements of (HSO )↑↓
0̄r̄

and (HSO )↑↓
r̄ 0̄ , while

H−
h = 2|C∗

r̄0C0̄0|2asoσ
↑↓
x ′′ Er̄ 0̄. (41)

Therefore, the effective spin flip Hamiltonian due to SOI and
electron-phonon interaction is

(HSO + HEP )↑↓
0̄0̄ = asoσ

↑↓
x ′′ ηSOEZH ′

EP , (42)

where ηSO = ηZ .
HZ and HSO are different and the cancellation of terms is

different, however, the final effective spin-phonon interaction
Hamiltonians are similar. The g-factor anisotropy in ZI is a
result in part of the microscopic SOI, so both mechanisms
originate from SOI, one from microscopic SOI not in the
effective mass theory, the other from the SOI in the effective
mass theory. Both hybridizations show the same dependence
with EZ . They also show the same dependence on the hy-
bridization of orbital states ηSO = ηZ . The only difference
is the angular dependencies with magnetic field due to the
difference between

↔
�XZ and σ

↑↓
x ′′ .

The strength of spin-phonon interaction for both mecha-
nisms is proportional to ηZ , which depends on the energies
of spin-orbital states. ηZ can be strongly enhanced, when
the spin state is in resonant with the orbital states, where a
corresponding spin relaxation hot spot appears. ηZ can also
be zero, when contributions from different orbitals cancel with
each other, where spin relaxation is strongly suppressed (spin
relaxation cool spot).

IV. SPIN RELAXATION

During the setup of the Hamiltonian, we consider only one
state in the donor and two valley states in the QD. In this
case, we implicitly omit the intradonor spin relaxation and
intra-QD spin relaxation, in which the excited donor states and
the excited QD states are involved. Thus, the spin relaxation
based on Hamiltonian (1) will be called inter-donor-QD spin
relaxation. In this section, we first derive the expressions
of inter-donor-QD spin relaxation. Then, we discuss the in-
tradonor and intra-QD spin relaxation mechanisms. The total
spin relaxation will be the summation of contributions of all
the spin relaxation mechanisms.
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A. Inter-donor-QD spin relaxation

In this subsection, we study the inter-donor-QD spin relax-
ation due to the effective spin-phonon interaction Eq. (39) and
Eq. (42). The spin relaxation time is given by 1/T1 = W↑↓ +
W↓↑, where W↓↑ = �[n(ω�qλ) + 1] is the rate for transition
from the higher-energy (spin-up) state to lower energy (spin-
down) state (emitting phonon) and W↑↓ = �1n(ω�qλ) is the
rate for the opposite transition (absorbing phonon), where
�1 = 2π

h̄

∑
�qλ |(H )↑↓

0̄0̄ |2δ(EZ − h̄ω�qλ). Considering the zero
temperature limit, the inter-donor-QD spin relaxation is given
by

1/T1,inter-donor-QD = �Z−ph + �SO−ph, (43)

where �Z−ph is the spin relaxation due to ZI and phonon
noise, and �SO−ph is the spin relaxation due to SOI and
phonon noise. We find that

�Z−ph = 1
4 (g′ηZ

↔
�XZ )2(h̄ωZ )2�ph(ωZ ), (44)

�SO−ph = |asoηSOσ
↑↓
x ′′ |2(h̄ωZ )2�ph(ωZ ), (45)

�ph(ωZ ) = 1

4πρch̄

∑
λ

ω3
Z

v5
λ

∫ π

0
dϑ sin ϑ�′2

�qλ(ϑ ), (46)

where ωZ = EZ/h̄ is the electron Zeeman frequency.
The phonon temperature is essentially zero since the tem-

perature in a dilution refrigerator is around 10 mK, so that
the phonon thermal energy is much less than the electron
Zeeman splitting. With an elevated phonon temperature, the
number of phonon excitation increases, then, an extra factor
coth(h̄ωZ/kBT ) appears in the expression of spin relaxation,
which can play a role when thermal energy kBT is comparable
to the Zeeman energy h̄ωZ . Also, with an elevated phonon
temperature, the phonon coherence length and coherence
time can be shorter, and the destructive interference effect
discussed below can be broadened.

The analytical expressions of the inter-donor-QD spin re-
laxation indicate that both spin relaxation mechanisms show
the same B5 (or ω5

Z) dependence on the magnitude of the
applied magnetic field. They also show the same dependence
on the hybridization of orbital states since ηSO = ηZ . The
two mechanisms show different angular dependencies on the
orientation of the applied magnetic field. They also show
different magnitudes depending on other parameters. Spin
relaxation due to ZI shows g2

ani dependence on the g-factor
anisotropy, while spin relaxation due to ZI shows α2

so depen-
dence on the SOI strength and |d‖|2 dependence on the lateral
separation of the donor and the QD. The spin relaxation due
to ZI shows

↔
�2

XZ = sin2(2θB ) dependence on the orientation
of the applied magnetic field, while the spin relaxation due to
SOI shows |σ ↑↓

x ′′ |2 = 1 − sin2 θB cos2(φB − φd ) dependencies
on the orientation of the applied magnetic field and φd of the
lateral separation with respect to the [100] direction.

B. Intradonor and intra-QD spin relaxation

Besides the inter-donor-QD spin relaxation due to the
hybridization of donor ground and QD states, there are also
intradonor and intra-QD spin relaxation mechanisms. Since

spin relaxation 1/T1,donor in a single donor, and spin relax-
ation 1/T1,QD in a single QD in silicon, have been studied
intensively in the literature [29–36], we discuss the intradonor
and intra-QD spin relaxation without deriving 1/T1,donor and
1/T1,QD .

Suppose the effective Hamiltonian that causes spin flip
due to intradonor and intra-QD mechanisms are denoted as
H1,donor and H1,QD; the spin relaxation in a single donor due to
the finite matrix element 〈↑ |H1,donor| ↓〉 is 1/T1,donor, and the
spin relaxation in a single QD due to the finite matrix element
〈↑ |H1,QD| ↓〉 is 1/T1,QD , then, the spin relaxation in a hybrid
donor-QD system due to intradonor and intra-QD mechanisms
can be estimated accordingly.

Take the intra-QD mechanisms as an example, for the
hybridized donor-QD state |n̄〉, the spin flip matrix elements
due to the intra-QD mechanism is given by

〈0̄ ↑ |H1,QD|0̄ ↓〉 =
∑
i,j �=0

C ∗̄
0i
C0̄j 〈i ↑|H1,QD|j ↓〉. (47)

If t01, t02 � EV S , then, at least one of C0̄1 and C0̄2 will be
much less than 1. Note that, for a QD in silicon, the intra-QD
mechanisms include the intervalley spin relaxation and the
intravalley spin relaxation [23,35,36]. For both mechanisms,
we have that 〈1 ↑ |H1,QD|1 ↓〉 = 〈2 ↑ |H1,QD|2 ↓〉. There-
fore, we have

〈0̄ ↑ |H1,QD|0̄ ↓〉 = (1 − |C0̄0|2)〈1 ↑|H1,QD|1 ↓〉. (48)

1/T1,intra−QD = (1 − |C0̄0|2)21/T1,QD. (49)

In this work, both the intervalley and the intravalley mecha-
nisms are included for the intra-QD spin relaxation [23,36].

For intradonor mechanism, one can show that the spin
relaxation is given by

1/T1,intradonor = |C0̄0|41/T1,donor. (50)

Therefore, the spin relaxation of a hybridized donor-QD state
due to intra-QD (intradonor) mechanisms is proportional to
the spin relaxation in a single QD (donor) and proportional to
the population of electron wave function in the QD (donor). In
this work, we study only the phonon assisted spin relaxation
for the intradonor and intra-QD mechanisms.

V. RESULTS FOR INTER-DONOR-QD SPIN RELAXATION

In the following, we report the numerical results of spin
relaxation as a function of the magnitude of the applied
magnetic field and detuning of the donor and QD ground
states. The dependence of spin relaxation with orientation of
magnetic field is discussed in the Appendix. Unless indicated,
we choose the following parameters: t01 = t02 = 0.1 meV,
EV S = 0.3 meV, gani = 0.001, αso = 45 m/s, and |d‖| = 2
nm. For acoustic phonons in silicon, we choose v1 = 5900
m/s and v2 = v3 = 3750 m/s for the speed of the different
acoustic phonon branches, ρc = 2200 kg/m3 for the mass
density, �d = 5.0 eV and �u = 8.77 eV for the dilation and
shear deformation potential constants. We choose θB = π/4
and φB = 0 for the polar and azimuthal angles of the applied
magnetic field. We choose φd = 0 for the angle of the in-plane
QD shift �d‖ relative to [100]. For the intra-QD spin relaxation,

195307-6



SPIN RELAXATION OF A DONOR ELECTRON COUPLED … PHYSICAL REVIEW B 98, 195307 (2018)

1 meVintra QD

intra Donor

ZI

SOI

1.0 10.05.02.0 20.03.01.5 15.07.0
10 6

0.001

1

1000

106

109

B T

1
T 1
s
1

FIG. 2. Spin relaxation as a function of magnetic field when
detuning ε = −1 meV. We show spin relaxation due to intra-QD
mechanism (black solid line), intradonor mechanism (red dashed
line), and inter-donor-QD mechanisms due to ZI (blue dotted line)
and SOI (purple dot-dashed line).

we choose the orbital level splitting (confinement energy)
Ed = 8 meV and r−+ = 1 nm for the intra-QD relaxation
[23]. For the intradonor spin relaxation, a bulk value �E1 =
12 meV is assumed for the energy separation between the A
state and E states of a phosphorus donor in silicon [50].

A. |B| dependence

Figure 2 shows the spin relaxation rate 1/T1 due to each
mechanism as a function of the magnitude of the applied
magnetic field when detuning ε = −1 meV, although the
donor ground state is lower than the QD states. The spin
relaxation mechanisms include the intra-QD spin relaxation
(black solid), intradonor spin relaxation (red dashed), and
inter-donor-QD spin relaxation due to ZI (blue dotted) and
SOI (purple dot-dashed). Because of the negative detuning,
the ground state is mostly the donor ground state. At low
B field, the spin relaxation is dominated by the intradonor
mechanism and shows a B5 dependence with B field. As
B field increases, there are three spin relaxation peaks (hot
spots). One hot spot is due to the intra-QD mechanism, where
strong spin-valley hybridization occurs when the first excited
orbital state |1̄〉 crosses with the second excited orbital states
|2̄〉 with opposite spin orientation. The two additional peaks
are due to inter-donor-QD mechanisms (including ZI and SOI
mechanisms), where strong hybridization occurs when the
ground orbital state |0̄〉 crosses with one of the two excited
orbital states |r̄〉 with opposite spin orientation. At higher
B field, the spin relaxation due to intra-QD mechanism be-
comes dominant, because of the stronger B7 dependence with
magnetic field. For the inter-donor-QD mechanisms, there is
also a spin relaxation dip (cool spot) between the two peaks
due to destructive interference, whereas it is masked by the
intradonor and intra-QD spin relaxation in this case.

Figure 3 shows the energy diagram as a function of
magnetic field when detuning ε = −1 meV. The Zeeman
splitting for each orbital state increases with magnetic field.
The spin-up state of the first excited orbital crosses once with
the spin-down state of the second excited orbital, which is
responsible for the intra-QD spin relaxation hot spots in Fig. 2.
The ground orbital spin-up state crosses twice (marked as

FIG. 3. Energy diagram as a function of magnetic field when
detuning ε = −1 meV. The ground orbital spin-up state crosses twice
(marked as filled black dots) with two excited orbital spin-down
states, which is responsible for the hot spots of the inter-donor-QD
spin relaxation in Fig. 2. At the spin relaxation cool spot (empty
circle), a schematic diagram shows the two possible spin relaxation
channels.

filled black dots) with two excited orbital spin-down states,
which is responsible for the other two spin relaxation hot
spots in Fig. 2. At the magnetic field marked by an empty
circle, there is a spin relaxation cool spot for the inter-donor-
QD mechanisms, where a schematic diagram is shown for
the energy levels and the spin relaxation channels. Figure 4
shows a blowup of the energy diagram to highlight the two
possible spin relaxation channels (dashed and dotted lines)
that interfere to produce the spin relaxation cool spot for the
inter-donor-QD spin relaxation.

Figure 5 shows the spin relaxation rate 1/T1 due to each
mechanism as a function of the applied magnetic field for de-
tuning ε = 1 meV, where the QD states are lower than donor
ground state. For most B, the spin relaxation is dominated
by the intra-QD mechanism. The intra-QD mechanism results
in a spin relaxation hot spot due to spin-valley relaxation.
The inter-donor-QD spin relaxation (include ZI and SOI
mechanisms) results in two spin relaxation hot spots, where
one of the hot spot coincides with the hot spot of intra-QD
mechanism and the other hot spot happens at higher B field.
Therefore, two spin relaxation hot spots should be observable.

The two hot spots happen when the ground orbital (mostly
QD state |1〉) spin-up state crosses with spin-down states of

FIG. 4. A general schematic energy diagram at the spin relax-
ation cool spot. There are two possible spin relaxation channels
(dashed and dotted lines) indicated by lines with arrows, whose
interference leads to the suppression of spin relaxation.
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FIG. 5. Spin relaxation as a function of magnetic field when
detuning ε = 1 meV.

the excited orbitals. The spin relaxation cool spot of the inter-
donor-QD mechanism is again due to destructive interference
of relaxation channels. However, the cool spot is still masked
by the intra-QD spin relaxation.

In Fig. 5, there is a dip very close to the first peak for the
inter-donor-QD spin relaxation mechanisms. To understand
the dip position, we study the condition of destructive interfer-
ence. According to Eq. (40), an interference dip appears when
E1̄0̄|C ∗̄

00C1̄0|2
E2

1̄0̄−E2
Z

+ E2̄0̄|C ∗̄
00C2̄0|2

E2
2̄0̄−E2

Z

= 0. For ε = 1 meV, we have E1̄0̄ ≈
EV S = 0.3 meV, E2̄0̄ ≈ ε = 1 meV, |C0̄0| ≈ t01

ε
, |C1̄0| ≈ t02

ε
,

and |C2̄0| ≈ 1. Therefore, the condition for destructive inter-

ference is EZ ≈
√

E2
V S + εEV S

|C1̄0|2
C2̄0|2 ≈ EV S + t2

02/(2ε), and

the distance between the peak and dip is t2
02/(2ε) ∼ 5 μeV (or

43 mT), which explains the tiny separation of the peak and dip
in this case.

Figure 6 shows the same plot as Fig. 5 when the detuning
ε = 0 meV, where the donor state is in resonance with the
lower QD state and the hybridized orbital states are split
by the tunneling coupling. Due to the stronger orbital hy-
bridization, the spin relaxation due to inter-donor-QD mech-
anisms dominate at low B field, where the spin relaxation
shows the B5 dependence. Two spin relaxation peaks and
one spin relaxation dip of the inter-donor-QD mechanisms
appear similarly as before, but at lower B fields. The hot-spot
peak of the intra-QD relaxation shows up between the two
peaks of the inter-donor-QD mechanisms. The magnitude of
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FIG. 6. Spin relaxation as a function of magnetic field when
detuning ε = 0 meV.
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FIG. 7. Spin relaxation as a function of magnetic field when
detuning ε = −0.1 meV and EV S = 0.1 meV.

spin relaxation due to each mechanism indicates that three
hot spots will be observable, however, the cool spot is again
masked by the inter-QD mechanism.

The previous discussion indicates that the cool spot can
be masked by the intra-QD mechanism, which makes it hard
to observe in experiments. Moreover, there is in general no
interference between the inter-donor-QD mechanisms and the
intra-QD mechanism because of the phase difference of the
effective spin-phonon interaction. For the cool spot to be
observed, one needs to suppress the intra-QD mechanism
relative to the inter-donor-QD mechanism. In Fig. 7, we
choose a small valley splitting EV S = 0.1 meV and small
negative detuning ε = −0.1 meV. Then, the spin relaxation
hot spot happens at lower magnetic field with smaller spin
relaxation rate because of the reduced spin-valley relaxation
[36]. The small negative detuning is chosen so that the two
peaks of the inter-donor-QD mechanism happens right after
the hot spot of the intra-QD mechanism. In this case, the
cool spot of inter-donor-QD mechanism is no longer masked
by the intra-QD mechanism, which makes it possible to be
observed.

The spin relaxation cool spot may also be masked by
mechanisms other than spin relaxation due to intradonor spin
relaxation or intra-QD spin relaxation. For example, there
is spin relaxation due to change of the effective mass and
dielectric constants, spin relaxation due to phonon emission
and Dresselhaus SOI, and the inter-donor-QD spin relaxation
due to the coupling of valley states in the QD [second term
on r.h.s. of Eq. (22)]. The electron spin relaxation rate due
to change of the effective mass and dielectric constant was
estimated to be around 500 minutes for phosphorus donors in
silicon (1 T field), which is much less than the spin relaxation
rate in our study [51]. The spin relaxation due to phonon
emission and Dresselhaus SOI will show a coinciding cool
spot and hot spot at the same magnitude of B. For the coupling
of the valley states in QDs [second term on r.h.s. of Eq. (22)],
it can in principle be much smaller than the ones we consid-
ered: (1) if the surface roughness is small, the inter-donor-QD
spin relaxation due to the coupling of valley states should be
smaller; (2) if the horizontal separation between donor and
QD is increased, the spin relaxation we considered will be
increased, without increasing the spin relaxation due to the
coupling of valley states. We believe that, with proper system
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FIG. 8. Spin relaxation as a function of detuning when B = 0.5 T.

parameters, the spin relaxation cool spot should in principle
not be masked by other spin relaxation mechanisms.

One should note that the spin relaxation cool spot of inter-
donor-QD mechanism is due to the destructive interference of
spin relaxation channels that have opposite sign of effective
spin-phonon interaction, which happens when the ground
orbital spin up state |0̄ ↑〉 is between the two excited orbital
spin-down states |1̄ ↓〉 and |2̄ ↓〉. In the following, we discuss
the effect of phonon coherence on the destructive interference.

For the destructive interference in this study, the phase
coherence time of the channels is not essential because
of the virtual nature of process of the interference. From
Eq. (39) and Eq. (42), one can see that the effect of the
electron-phonon interaction is independent with the factor ηZ ,
which characterizes the feature of interference. Destructive
interference is due to the presence of multiple orbitals and
happens between the spin and orbital states. The interference
is virtual. Thus, the time scale of an actual orbital flip is
not important for an interference, because the virtual process
does not require a real orbital excitation and orbital relaxation.
However, the finite linewidth of phonon does play a role. The
finite lifetime of phonon will break the energy conservation
of the spin Zeeman energy and the energy of the emitted
phonon, where the emitted phonon will not be exactly the
spin Zeeman energy. Thus, the finite phonon linewidth will
broaden the feature of spin relaxation hot spot and cool
spot.

Optical frequency measurement indicates that the phonon
decays on the time scale of subnanoseconds at room tem-
perature. However, for 10 GHz frequency phonon, which is
emitted during the spin relaxation, the phonon coherence time
is relatively long; it can be more than 10 ns [52]. For a
10 ns coherence time of phonon at 10 GHz frequency, the
broadening of phonon spectrum would correspond to a 0.05
Tesla difference in magnetic field, which will not destroy
features of spin relaxation hot spot and cool spot in this study.
Since the interference involves multiple orbital states in both
the donor and the QD, one would also require the phonon
coherence length to be long enough to support the interference
effect. Suppose that the phonon coherence length and the
coherence time are limited by the same decoherence mech-
anism. Then, a phonon coherence time τph = 10 ns would
correspond to coherence length lph = vλτph ≈ 10 μs, which
is much longer than the length scale of the coupled donor-QD
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FIG. 9. Spin relaxation as a function of detuning when B = 5 T.

system. Furthermore, the wave length of the emitted phonon
is on the order of 2πvλ/ωZ ≈ 0.1 μm, which is also much
larger than the length scale of the coupled donor-QD system.
In summary, the phonon coherence time and coherence length
should be long enough to support the destructive interference
of spin relaxation in a coupled donor-QD system at dilution
refrigerator temperature.

B. Detuning dependence

In this subsection, we study the detuning dependence of
spin relaxation due to various mechanisms at different mag-
netic fields. Figure 8 shows the spin relaxation rate 1/T1 as a
function of detuning between donor and interface states when
the applied magnetic field B = 0.5 T (θB = π/4 and φB = 0).
There is a broad transition of spin relaxation from negative to
positive detuning for both spin relaxation mechanisms. There
is no sharp peak because the orbital splitting is always larger
than the spin Zeeman splitting, where the ground orbital spin
up state does not cross with any excited orbital spin down
state. Thus, hot spot cannot happen in this case.

Figure 9 shows the spin relaxation rate 1/T1 as a function
of the detuning when B = 5 T. There are multiple peaks as the
detuning goes from negative to positive values, which result
from the multiple crossings of ground orbital spin up state
and the excited orbital spin down states. There is also a cool
spot due to the interference of spin relaxation channels for the
inter-donor-QD spin relaxation. However, the cool-spot dip is
masked by the intradonor and intra-QD spin relaxation.

Figure 10 shows the corresponding energy diagram as
a function of detuning when magnetic field B = 5 T. The
ground orbital spin-up state crosses three times with excited
orbital spin-down states, which is responsible for the spin
relaxation hot spots in Fig. 9. At the spin relaxation cool
spot, a schematic diagram shows two possible spin relaxation
channels (dashed and dotted lines), whose interference leads
to the cancellation of the inter-donor-QD spin relaxation.

For the cool spot to be observed, the intra-QD mech-
anism must be suppressed relative to the inter-donor-QD
mechanism. In Fig. 11, we choose a smaller valley splitting
EV S = 0.1 meV. Then, the separation between two hot spots is
smaller, and the cool spot of inter-donor-QD mechanism is no
longer masked by the intra-QD or intradonor spin relaxation.
Note that the magnitude of intra-QD spin relaxation at B = 5 T
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FIG. 10. Energy diagram as a function of detuning when B =
5 T. The ground orbital spin-up state crosses three times with excited
orbital spin-down states, which is responsible for the spin relaxation
hot spots in Fig. 9. A schematic diagram shows two possible spin
relaxation channels (dashed and dotted lines) that can interfere
destructively.

is dominated by the intravalley spin relaxation, which is
independent of the valley splitting EV S .

Since detuning ε can be controlled electrically the spin
relaxation hot spots can be used to initialize spin states quickly
and reduce the spin initialization error. The multiple hot spots
can also be used to study valley physics, such as valley
splitting in QDs. The qubit operation near a spin relaxation
cool spot could be used as a way to suppress the loss of
quantum information (quantum coherence can still be limited
by pure dephasing processes) during coherent transfer of spin
information between donor atoms via interface states.

VI. COMPARISON WITH SPIN RELAXATION
IN A BULK DONOR IN SILICON

Spin relaxation in a bulk P donor in silicon is domi-
nated by ZI, which hybridizes the donor ground orbital spin-
up state with the excited orbital spin down states [29,30].
The spin relaxation shows the B5 dependence without peak
or dip structures since the excited states of a bulk donor
are at least 10 meV higher than the donor ground state,
and the energy scale is much larger than the range of
magnetic fields in experiment. The angular dependence of

B 5 T
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SOI

2 1 0 1 2
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FIG. 11. Spin relaxation as a function of detuning when B = 5 T
and EV S = 0.1 meV.

spin relaxation on the orientation of the applied magnetic
field is given by |↔�(15)

XZ |2 + |↔�(16)
XZ |2 + |↔�(15)

YZ |2 + |↔�(16)
YZ |2 ∝

sin2 θB (4 cos2 θB + sin2 θB sin2 2φB ) (see Appendices E and
F and Ref. [30]). The magnitude of the spin relaxation is on
the order of 10−2 s−1 for 1 T magnetic field along the [111]
direction [30].

In comparison, the spin relaxation in a P donor coupled
to interface states in silicon can be a result of ZI or SOI.
Typically, the spin relaxation due to ZI is more important
although it can be dominated by SOI in certain circum-
stances (with different B-field orientation and d‖). The spin
relaxation at low B field shows the same B5 dependence.
When the detuning becomes small, there are peaks and dips
in B-dependent spin relaxation due to the crossing of spin-
orbit states and interference of spin relaxation channels. The
angular dependence of spin relaxation on the orientation of
the applied magnetic field is given by |↔�XZ|2 ∝ sin2(2θB ).

Finally, we should mention that if the donor system is
close to the metallic gates, where electrical noise such as
Johnson noise could have a significant effect, then the spin
relaxation rate could show B3 dependence with magnetic field
because of the linear ω dependence of spectral density for
Johnson noise [20,47,53–55]. Most of our analysis in this
paper is also applicable when the donor is laterally coupled
to a gate-defined QD, although the relative magnitude of spin
relaxation rates due to ZI and SOI could be modified.

VII. CONCLUSION

In conclusion, we have studied the spin relaxation of a
donor coupled to QD-like interface states, we find both ZI
with g-factor anisotropy and SOI can couple the donor ground
state and QD states with opposite spin and together with
phonon emission will lead to inter-donor-QD spin relaxation.
We find that spin relaxation shows B5 dependence at weak
applied B field. Multiple spin relaxation hot spots are found
due to crossings of orbital states with opposite spin. We find
spin relaxation cool spots due to the destructive interference of
spin relaxation channels for the inter-donor-QD mechanism.
While the cool spot can be masked by the intradonor and intra-
QD spin relaxation, by fine tuning the system parameters, one
can suppress the intradonor and intra-QD spin relaxation, so
that the spin relaxation cool spot can be observable. The qubit
operations near spin relaxation hot spots and cool spots can
be useful for the fast spin initialization and the preservation of
quantum information during the transfer of spin qubit. Finally,
the orientation of the donor/QD geometry can be further used
to suppress or enhance spin relaxation.
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APPENDIX A: EFFECTIVE MASS APPROXIMATION
AND ORBITAL BASIS

In this appendix, we review the effective mass theory for
silicon and give explicitly the orbital eigenstates in terms of
envelope function and Bloch function. We study cases when
an electric potential is from a donor atom or a gate-defined
QD. We also give the connection of the basis states used in
the main text and the eigenstates of a single donor and the
eigenstates of a QD.

In the absence of the spin degree of freedom, the
Schrödinger equation is given by (HSi + Ve )�n(�r ) =
En�n(�r ), where HSi is the unperturbed Hamiltonian of an
electron near the conduction band minimum in a silicon
crystal, Ve(�r ) is the electrical potential from donor atom,
interface and metallic gates, and �n(�r ) is an eigenstate of
the Hamiltonian. In a pure silicon crystal, the conduction
band minima occur near the X symmetry points with sixfold
degeneracy, normally referred to as valley degeneracy. In the
presence of the potential Ve(�r ), the valley degeneracy is lifted.
The wave function can be written as

�n(�r ) =
6∑

j=1

a(j )
n F (j )

n (�r )ψj (�r ), (A1)

where j is the valley index, ψj (�r ) = ei�kj ·�ruj (�r ) is a Bloch
function, �kj is one of the six minima ±k0x̂, ±k0ŷ or ±k0ẑ

(k0 = 0.85 · 2π/a0 and a0 is the lattice constant), and uj (�r )
is the periodic function (Bloch’s theorem). F

(j )
n (�r ) is the

slowly varying envelope function, and a
(j )
n is the probability

amplitude of j th valley state due to valley coupling in the
presence of a sharp potential.

Within the effective mass approximation, F
(j )
n (�r ) satisfies

a Schrödinger-like equation for the j th valley. For example,
F (±z)

n (�r ) satisfies[
− h̄2

2ml

∂2

∂z2
− h̄2

2mt

(
∂2

∂x2
+ ∂2

∂y2

)
+ Ve(�r )

]
F (±z)

n (�r )

= (
E(±z)

n − E
(�)
k0

)
F (±z)

n (�r ),

where ml and mt are the longitudinal and transverse mass,
E

(�)
k0

is the energy of band minimum at �k = ±k0ẑ, and E(±z)
n is

the eigenenergy. Similar equations can be given for the enve-
lope functions F (±x)

n (�r ) and F
(±y)
n (�r ) at �k = ±k0x̂ and ±k0ŷ

minima. A sharp potential can further couple different valley
states of F

(j )
n (�r )ψj (�r ). By solving the coupled multivalley

Schrödinger equation, the eigenstates �n(�r ) in Eq. (A1) can
be obtained, and valley degeneracy can be lifted due to the
broken symmetry in the presence of potential Ve(�r ).

According to the symmetry, when Ve(�r ) is the potential of
a single P donor in silicon, the coefficients of the six lowest
eigenstates as given by Kohn and Luttinger, and modified to
be orthogonal, are [50,56]

aP,1 = 1/
√

6[1, 1, 1, 1, 1, 1],

aP,2 = 1/
√

2[1,−1, 0, 0, 0, 0],

aP,3 = 1/
√

2[0, 0, 1,−1, 0, 0],

aP,4 = 1/
√

2[0, 0, 0, 0, 1,−1],

aP,5 = 1/
√

12[−1,−1,−1,−1, 2, 2],

aP,6 = 1/2[1, 1,−1,−1, 0, 0],

where the basis used is [F (x)
P ψx , F

(x̄)
P ψx̄ , F

(y)
P ψy , F

(ȳ )
P ψȳ ,

F
(z)
P ψz, F

(z̄)
P ψz̄] and F

(j )
P (�r − �RP ) is the ground state enve-

lope function that satisfies the single-valley Schrödinger-like
equation with Ve(�r ) a single donor potential.

When Ve(�r ) is the potential of a single QD at a z interface,
the coefficients of the two lowest eigenstates are

aQD,1 = 1/
√

2[0, 0, 0, 0, eiφv , e−iφv ],

aQD,2 = 1/
√

2[0, 0, 0, 0, eiφv ,−e−iφv ],

where the basis is [Fx
QDψ(x), F

(x̄)
QDψx̄ , F

(y)
QDψy , F

(ȳ )
QDψȳ ,

F
(z)
QDψz, F

(z̄)
QDψz̄] and F

(j )
QD (�r − �RQD ) is the ground state enve-

lope function that satisfies the single-valley Schrödinger-like
equation with Ve(�r ) the QD potential; φv is the valley phase
difference between +z and −z valleys [57].

In the main text, we use basis state |n〉 of a donor ground
state and two lowest QD states, which can be expressed in
terms of envelope and Bloch functions

〈r|n〉 =
6∑

j=1

α(j )
n F (j )

n (�r )ψj (�r ), (A2)

where the coefficients αn is related to aP and aQD: α0 = aP,1,
α1 = aQD,1, α2 = aQD,2. The envelope functions F

(j )
0 and

F
(j )
1 = F

(j )
2 are the orthornormalized states of F

(j )
P and F

(j )
QD .

APPENDIX B: ZI WHEN g↔( j ) IS DIFFERENT
FOR DONOR AND QD

In this appendix, a general form of the ZI is studied when
the g factor is different for donor and QD. Based on the
general form of ZI, we study the spin-orbit hybridization due
to the ZI. We find that the hybridization exhibits a similar
form as in the main text. The only difference is that the
hybridization is proportional to the g-factor anisotropy gQD,ani

in a QD instead of gani.
In the presence of an external magnetic field, the ZI is given

by

HZ = 1

2
μB

∑
nj

∣∣F (j )
n ψj

〉〈
F (j )

n ψj

∣∣�σ · g
↔(n,j ) · �B, (B1)

where g
↔(n,j ) are the g-factor tensor when an electron is in the

j th valley with envelope function F
(j )
n . g-factor tensor g

↔(n,j )

is anisotropic (which is also a result of SOI that hybridizes
spin and electronic bands),

g
↔(n,j ) = gn,‖

↔
U (j ) + gn,⊥(1

↔ − ↔
U (j ) ), (B2)

where j is the index for six valley states in silicon, gn,‖
(gn,⊥) are the g factors along (perpendicular to) the valley

ellipsoid for an electron in the nth orbital state.
↔
U (j ) is the

projection operator in the three-dimensional coordinate space,
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for example, when j = z, we have

↔
U (z) =

⎡
⎢⎣

0 0 0

0 0 0

0 0 1

⎤
⎥⎦, 1

↔ =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦. (B3)

Alternatively, the g-factor tensor can be written as

g
↔(n,j ) = gn,⊥ 1

↔ + gn,ani
↔
U (j ), (B4)

where gn,⊥ = gn,avg − 1/3gn,ani, gn,avg = (gn,‖ + 2gn,⊥)/3,
and gn,ani = gn,‖ − gn,⊥. Thus, one can see that the g-factor
anisotropy gn,ani causes the hybridization of spin and valley
states within the donor eigenstates. This is known for an
electron binding to a donor atom, where g-factor anisotropy
will couple the ground state and excited donor orbital states
with opposite spin orientation.

We express the ZI in the basis of donor ground state |0〉 and
QD ground states |1〉 and |2〉:

HZ,nn′ = 1
2μB �σ · g

↔(nn′ ) · �B, (B5)

where

g
↔(nn′ ) = (g⊥ 1

↔ + gani
↔
D(nn′ ) )

〈
F (j )

n

∣∣F (j )
n′

〉
, (B6)

↔
D(nn′ ) =

∑
j

αnjαn′j
↔
U (j ). (B7)

If n �= n′, one can find that HZ,nn′ = 0. Therefore, we have

g
↔(nn′ ) = (gn,⊥ 1

↔ + gn,ani
↔
D(nn) )δnn′ . (B8)

If n = n′ = 0, then,
↔
D(00) = 1

6

∑
j

↔
U (j ) = 1

3 1
↔

. Thus,

g
↔(00) = gp,⊥ 1

↔ + 1
3gP,ani 1

↔ = gavg 1
↔

, (B9)

HZ,00 = 1
2gP,avgμB �σ · �B, (B10)

where gP,avg = gP,⊥ + gP,ani/3. If n = n′ = 1 or 2, then,
↔
D(11) = ↔

D(22) = ↔
U (z). Thus,

g
↔(11) = g

↔(22) = gQD,⊥ 1
↔ + gQD,ani

↔
U (z), (B11)

HZ,11 = 1
2μB (gQD,⊥�σ · �B + gQD,aniσzBz). (B12)

Then, we can express ZI in the basis of orbital eigenstates |n̄〉.
Since

|n̄〉 =
∑

n

Cn̄n|n〉 =
∑
nj

Cn̄nαnj

∣∣F (j )
n ψj

〉
, (B13)

we have

(HZ )0̄n̄ =
∑

n

C ∗̄
0n

Cn̄nHZ,nn′ , (B14)

Therefore, the ZI in the basis of orbital eigenstates is

(HZ )0̄n̄ = 1
2μB �σ · ↔

G(0̄n̄) · �B, (B15)

↔
G(0̄n̄) = |C0̄0|2g↔(00)δ0̄n̄ + C ∗̄

00Cn̄0(g↔(00) − g
↔(11)), (B16)

g
↔(00) − g

↔(11) = (gP,avg − gQD,⊥)1
↔ − gQD,ani

↔
U (z), (B17)

where the orthogonal relations
∑

n C ∗̄
0n

Cn̄n = δ0̄n̄ have been
employed. Therefore,

↔
G0̄n̄ =

⎡
⎢⎢⎣

↔
G0̄n̄

xx
↔
G0̄n̄

xx
↔
G0̄n̄

zz

⎤
⎥⎥⎦, (B18)

↔
G0̄n̄

xx = gQD,⊥δ0̄n̄ + C ∗̄
00Cn̄0(gP,avg − gQD,⊥), (B19)

↔
G0̄n̄

zz = gQD,‖δ0̄n̄ + C ∗̄
00Cn̄0(gP,avg − gQD,‖), (B20)

which is consistent with the results in the main text when the
g-factor tensor is the same for donor and QD. Therefore, the
ZI can be expressed as

(HZ )0̄n̄ = 1

2
μBB

∑
ξ=x,y,z

g0̄n̄
ξ σξ , (B21)

where g0̄n̄
ξ = G0̄n̄

ξξ b̂ξ , and b̂ = [b̂x , b̂y , b̂z] = [sin θB cos φB ,
sin θB sin φB , cos θB] is a unit vector along the applied mag-
netic field.

In order to find the effective spin flip matrix element, we
need to express the interaction terms in a new (X, Y,Z) coor-
dinate system, where the Z axis is along the spin quantization
axis determined by (HZ )0̄0̄. When the Z axis is along the spin
quantization axis, (HZ )0̄0̄ is diagonalized. Note that, because
of the anisotropy of G0̄0̄

ξξ , the spin quantization axis given

by (g0̄0̄
x , g0̄0̄

y , g0̄0̄
z ) is slightly different from the direction of

B field. A Euler rotation can be done to rotate (x, y, z) to
(X, Y,Z) coordinate system. In the new coordinate system,
(HZ )0̄r̄ is in general expressed as

(HZ )0̄r̄ ≡ 1

2
μBB

∑
ξ=X,Y,Z

g0̄r̄
ξ σξ , (B22)

where g0̄r̄
X and g0̄r̄

Y are relevant to spin-orbit hybridization.
In general, Euler rotation angles can be obtained to

transform from (x, y, z) to (X, Y,Z) coordinate system.
However, since g0̄0̄

x /g0̄0̄
y = g0̄r̄

x /g0̄r̄
y = b̂x/b̂y , the calculation

can be simplified. We first rotate (x, y, z) to (x ′, y ′, z),
where x ′ is along the projection of �B on the (x, y)
plane. Consequently, [Bx ′ , By ′ , Bz] = B[sin θB, 0, cos θB],

[g0n
x ′ , g

0n
y ′ , g0n

z ] = [
↔
G0̄n̄

xx sin θB, 0,
↔
G0̄n̄

zz cos θB], and (HZ )0̄0̄ =
EZ/2[sin θs, 0, cos θs] · �σ , where EZ = geffμBB, geff =√

(
↔
G0̄0̄

xx sin θB )2 + (
↔
G0̄0̄

zz cos θB )2, and tan θs = (
↔
G0̄0̄

xx/
↔
G0̄0̄

zz )
tan θB . Then, a rotation Ry (−θs ) in the (x ′, z) plane from
(x ′, z) to (X,Z) will diagonalize (HZ )0̄0̄,

(HZ )0̄0̄ = 1
2EZσZ. (B23)

Correspondingly, the spin-orbit hybridization term due
to ZI is

(HZ )0̄r̄ ≡ 1
2μBB

(
g0̄r̄

X σX + g0̄r̄
Z σZ

)
, (B24)

where

g0̄r̄
X = ↔

G0̄r̄
xx sin θB cos θs − ↔

G0̄r̄
zz cos θB sin θs, (B25)

g0̄r̄
Z = ↔

G0̄r̄
xx sin θB sin θs + ↔

G0̄r̄
zz cos θB cos θs. (B26)
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Note that, for the spin flip process, only the term 1
2μBBg0̄r̄

X σX

is relevant, where

g0̄r̄
X = 1

2

(↔
G0̄r̄

xx − ↔
G0̄r̄

zz

)
sin(θB + θs )

+ 1
2

(↔
G0̄r̄

xx + ↔
G0̄r̄

zz

)
sin(θB − θs )

≈ 1
2

(↔
G0̄r̄

xx − ↔
G0̄r̄

zz

)
sin(2θB )

≡ 1
2gQD,aniC

∗̄
00Cr̄0 sin(2θB ). (B27)

Thus, the only difference in comparison with the results in the
main text is that the hybridization is proportional to gQD,ani

instead of gani.

APPENDIX C: ELECTRON-PHONON INTERACTION

In this appendix, we derive the Hamiltonian HEP and
obtain the explicit coefficients of �

(j )
�qλ

for the electron-phonon
interaction in silicon. An electron in a semiconductor conduc-
tion band interacts with phonons (lattice vibration) when the
band energy shifts under elastic strain. This electron-phonon
interaction is

HEP =
∑
αβ

↔
�αβ ε

↔
αβ, (C1)

where
↔
�αβ is the deformation potential tensor and ε

↔
αβ is the

strain tensor (α, β = x, y, z).
In silicon, there are six valley states, and the electron-

phonon deformation potential (without Umklapp processes)
can be expressed as

↔
� =

∑
j

Pj

↔
�(j ), (C2)

↔
�(j ) = �d 1

↔ + �u

↔
U (j ), (C3)

where Pj = |ψj 〉〈ψj | is the projection operator that selects
the j th valley, and �d and �u are the dilation and uniaxial
shear deformation potential constants. The strain tensor ε

↔
αβ

is (α, β = x, y, z)

ε
↔

αβ = 1

2

(
∂uα

∂rβ

+ ∂uβ

∂rα

)
, (C4)

where rα , rβ are the coordinates and uα , uβ are the lattice
displacement under strain. The only phonons involved are
acoustic phonons, one longitudinal (l) and two transverse (t1,
t2). The phonon displacement is given by

�u�qλ(�r ) = √
h̄/2ρcωqλê

(�qλ)ei �q·�r (b†−�qλ
+ b�qλ), (C5)

where b
†
�qλ

(b�qλ) is the creation (annihilate) operator of a
phonon with wave vector �q and branch index λ, ê�qλ is the
polarization unit vector (see Table I), ρc is the sample density
(volume is set to unity here). Therefore, the strain tensor is

ε
↔

αβ =
∑
�qλ

i

2

√
h̄q

2ρcvqλ

(
ê(�qλ)
α q̂β + ê

(�qλ)
β q̂α

)
ei �q·�r (b†−�qλ

+ b�qλ),

where q̂ = �q/|q| is the unit vector along �q and vqλ is the
velocity of the corresponding phonon mode.

TABLE I. Polarization unit vector components for different
phonon branches (including LA, TA1, and TA2).

ê(�qλ)
α λ = l λ = t1 λ = t2

α = x sin ϑ cos ϕ cos ϑ cos ϕ − sin ϕ

α = y sin ϑ sin ϕ cos ϑ sin ϕ cos ϕ

α = z cos ϑ − sin ϑ 0

Therefore, electron-phonon interaction in silicon is

HEP =
∑

j

Pj

∑
�qλ

ei �q·�rM (j )
�qλ

(b†−�qλ
+ b�qλ), (C6)

M
(j )
�qλ

= i
√

h̄q/2ρcvλ�
(j )
�qλ

, (C7)

�
(j )
�qλ

= ê(�qλ) · ↔
�(j ) · q̂, (C8)

where the coefficient �
(j )
�qλ

determines the strength of electron-
phonon interaction.

When the electron is in (0, 0,±k0) valleys, we have

�
(z)
�qλ

= �d ê
(�qλ)
x q̂x + �d ê

(�qλ)
y q̂y + (�d + �u)ê(�qλ)

z q̂z. (C9)

Note that q̂ = ê(�ql) = [sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ]. Thus,
for an electron in the ±z valleys, we have �

(z)
�q,l

= �d +
�u cos2 ϑ , �

(z)
�q,t1

= −�u sin ϑ cos ϑ , and �
(z)
�q,t2

= 0. For an

electron in an arbitrary valley state, the coefficient �
(j )
�qλ

can
be obtained as summarized in Table II.

Based on the coefficients in Table II , the averaged value
for donor ground and QD ground states

��qλ,nn = 〈n|
∑

j

Pj�
(j )
�qλ

|n〉 =
∑

j

α(j )
n α(j )

n �
(j )
�qλ

(C10)

can be obtained as shown in Table III. Then,

�′
�qλ = ��qλ,00 − ��qλ,11 = �uê

(�qλ) · ↔
� · q̂, (C11)

is also obtained (see Table III).

APPENDIX D: COMMUTATION RELATION

In this appendix we study the commutation property of
[x,HO ] in silicon for the evaluation of (px )0̄r̄ within the
multivalley effective mass approximation. To evaluate the
matrix element (px )0̄r̄ , it is convenient if we have [x,HO ] =
ih̄px/m∗, which is valid in the case of single valley physics.
Since the effective mass is different for different valleys, we
need to re-derive a new commutation relation.

We consider the orbital Hamiltonian

HO = HK + V =
∑

j

∑
i

(
p

(j )
i

)2

2m
(j )
i

|j 〉〈j | + V (�r )

=
∑

j

[∑
i

(
p

(j )
i

)2

2m
(j )
i

+ Vjj

]
|j 〉〈j | +

∑
jj ′

Vjj ′ |j 〉〈j ′|,

where i = x, y, z, and j is the valley index. In the kinetic term
HK , we have m(±z) = (m(±z)

x ,m(±z)
y ,m(±z)

z ) = (mt,mt ,ml ),
where mt and ml are the transverse and longitudinal effective
mass in silicon; similarly, we have m(±x) = (ml,mt ,mt ), and
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TABLE II. Coefficients �
(j )
�qλ for an electron in the j th valley interacting with the λth branch of phonons.

�
(j )
�qλ λ = l λ = t1 λ = t2

j = ±x−valley �d + �u sin2 ϑ cos2 ϕ �u sin ϑ cos ϑ cos2 ϕ −�u sin ϑ cos ϕ sin ϕ

j = ±y−valley �d + �u sin2 ϑ sin2 ϕ �u sin ϑ cos ϑ sin2 ϕ �u sin ϑ cos ϕ sin ϕ

j = ±z−valley �d + �u cos2 ϑ −�u sin ϑ cos ϑ 0

m(±y) = (mt,ml,mt ). We have assumed that the kinetic term
HK does not mix different valley states. However, the poten-
tial term can couple different valley states, when the electrical
potential varies abruptly, for example, when an electron is in
a donor potential or an electron is near a rough interface. We
can separate the contribution from donor potential into two
terms Vjj and Vjj ′ , where Vjj does not couple and Vjj ′ couples
different valley states.

With the knowledge of the orbital Hamiltonian HO , we
can evaluate the commutation relation [r,HO]; we will take
[x,HO ] as an example. Consider x ≈ ∑

j x (j )|j 〉〈j |, where
x (j ) = 〈j |x|j 〉 is a coordinate operator that does not couple
different valley states, and it satisfies commutation relation
[x (j ), p(j )] = ih̄. Then,

[x,HO ] =
⎡
⎣x,

∑
i

∑
j

(
p

(j )
i

)2

2m
(j )
i

|j 〉〈j |
⎤
⎦

= ih̄
∑

j

(
p

(j )
x

)2

m
(j )
x

|j 〉〈j |. (D1)

Therefore,

〈0̄|[x,HO]|r̄〉 = 〈0̄|xHO |r̄〉 − 〈0̄|HOx|r̄〉

= (Er̄ − E0̄ )〈0̄|x|r̄〉 = ih̄
∑

j

〈0̄|
(
p

(j )
x

)2

m
(j )
x

|j 〉〈j |r̄〉

= ih̄
∑

n

C ∗̄
0n

Cr̄n′ 〈n|
∑

j

p
(j )
x

m
(j )
x

|j 〉〈j |n′〉

= ih̄
∑
nn′

∑
j

C ∗̄
0n

Cr̄n′α(j )
n α

(j )
n′ 〈Fnj | p

(j )
x

m
(j )
x

|Fn′j 〉,

while what we need is

〈0̄|px |r̄〉 = 〈0̄|
∑

j

p(j )
x |j 〉〈j ||r̄〉

= ih̄
∑
nn′

∑
j

C ∗̄
0n

Cr̄n′α(j )
n α

(j )
n′ 〈Fnj |p(j )

x |Fn′j 〉.

TABLE III. Averaged coefficients ��qλ,nn for donor ground and
QD ground states as well as the coefficient �′

�qλ
= ��qλ,00 − ��qλ,11

for the λth branch of phonons.

��qλ,nn λ = l λ = t1 λ = t2

n = 0 (P) �d + �u/3 0 0
n = 1, 2 (QD) �d + �u cos2 ϑ −�u sin ϑ cos ϑ 0
�′

�qλ
�u(1/3 − cos2 ϑ ) �u sin ϑ cos ϑ 0

Thus, there is no direct connection between (px )0̄r̄ ≡ 〈0̄|px |r̄〉
and x0̄r̄ ≡ 〈0̄|x|r̄〉. However, we can estimate a value by using

(px )0̄r̄ ≈ m∗Er̄ 0̄x0̄r̄ /(ih̄), (D2)

where Er̄ 0̄ = Er̄ − E0̄ is the energy difference of the orbital
eigenstates, and the effective mass m∗ can be chosen as m∗ =
2mt+ml

3 ≈ 0.43m0 or m∗ = 3( 2
mt

+ 1
ml

)−1 ≈ 0.26m0, or m∗ =
2( 1

mt
+ 1

ml
)−1 ≈ 0.315m0. We can also find out the upper and

lower bound values of 〈0|px |r〉 by using m∗ = ml = 0.92m0

and m∗ = mt = 0.19m0. In our calculation, we choose m∗ =
0.315m0. By using the single effective mass m∗, the estimated
matrix element can be different from actual values by at most
a factor of three.

APPENDIX E: COMPARISON WITH BULK DONOR: ZI

In this appendix, we compare the ZI of an electron in a bulk
P donor and the ZI in a coupled donor-QD system. In the case
of a bulk P donor in silicon, we consider the lowest six valley
states, i.e., ground state |A〉 (n = 1), threefold degenerate
states |T 〉 (n = 2, 3, 4), and twofold degenerate states |E〉
(n = 5, 6). The electron ZI in a bulk P donor is given by
(r �= 0)

H
(P )
Z,1r = 1

2μB �σ · g
↔(P 1,P r ) · �B, (E1)

g
↔(P 1,P r ) = gani

↔
�(P 1,P r ), (E2)

↔
�(Pn,Pn′ ) =

∑
j

a
(j )
P,na

(j )
P,n′

↔
U (j ). (E3)

For an electron in the ground state |A〉, the ZI only couples to
states |E〉 with opposite spin,

↔
�(P 1,P 5) =

∑
j

a
(j )
P,1a

(j )
P,5

↔
U (j )

= 1

3
√

2
[−↔

U (x) − ↔
U (y) + 2

↔
U (z)], (E4)

↔
�(P 1,P 6) =

∑
j

a
(j )
P,1a

(j )
P,6

↔
U (j ) = 1√

6
[
↔
U (x) − ↔

U (y)], (E5)

whose matrix form is given explicitly in Table IV. In com-
parison, for a coupled donor-QD system, we have (we choose
g
↔(P,j ) = g

↔(QD,j ) for simplicity)

(HZ )0̄n̄ = 1
2μB �σ · ↔

G(0̄n̄) · �B, (E6)

↔
G(0̄r̄ ) = ganiC

∗̄
00Cr̄0

↔
�, (E7)

where
↔
� = ↔

D(00) − ↔
D(11) = 1

↔
/3 − U (z) (matrix form is

shown in Table IV).
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TABLE IV. Expressions for tensors
↔
� in the Cartesian coordinate

system. The constants a(j )
n entering

↔
�

(Pn,Pn′ )
defined by Eq. (E3) are

given in Appendix A.

bulk-P:
↔
�

(P 1,P 5) = 1
3
√

2

[
−1 0 0

0 −1 0
0 0 2

]

↔
�

(P 1,P 6) = 1√
6

[
1 0 0
0 −1 0
0 0 0

]

P-QD:
↔
� = ↔

D
(00) − ↔

D(11) = 1
3

[
1 0 0
0 1 0
0 0 −2

]

The angular dependence of spin-orbit hybridization due
to ZI is determined by the

↔
�XZ and

↔
�YZ components of

tensors
↔
� in the (X, Y,Z) coordinate system, where the Z

axis is along the applied magnetic field (it is also the spin
quantization axis in the lowest order approximation). The cor-
responding expressions can be obtained as shown in Table V.

APPENDIX F: COMPARISON WITH BULK DONOR:
ELECTRON-PHONON INTERACTION

In this appendix, we compare the electron-phonon inter-
action of an electron in a bulk P donor and electron-phonon
interaction in a coupled donor-QD system. In the case of a
bulk donor in silicon, we consider again the lowest six valley
states, i.e., |A〉 (n = 1), |T 〉 (n = 2, 3, 4), |E〉 (n = 5, 6).
Suppose there is an electron in the donor ground state |A〉,
then, the electron-phonon interaction HEP could couple the
ground orbital state |A〉 to states |E〉, and the electron-phonon
interaction of an electron in a bulk donor in silicon is given by
(r �= 0)

(
H

(P )
EP

)↑↑
1r

=
∑
�qλ

M
(P )
�qλ,1r

(b†−�qλ
+ b�qλ), (F1)

M
(P )
�qλ,1r

=
∑

j

a
(j )
1 a(j )

r f
(j )

1r (�q )M (j )
�qλ

, (F2)

where in the limit of long wave phonons, we have f
(j )

1r (�q ) ≈
〈F (j )

1 |1|F (j )
1 〉 ≈ 1. Therefore,

M
(P )
�qλ,1r

=
∑

j

a
(j )
1 a(j )

r M
(j )
�qλ

= i

√
h̄q

2ρcvλ

�
(P )
�qλ,1r

, (F3)

�
(P )
�qλ,1r

= �uê
(�qλ) · ↔

�(P 1,P r ) · q̂, (F4)

where the expressions for the tensors
↔
�(P 1,P r ) are listed in

Table IV. In comparison, for an electron in the coupled donor-
QD system, the electron-phonon interaction is

(HEP )↑↑
0̄r̄

=
∑
�qλ

(M�qλ)0̄r̄ (b†−�qλ
+ b�qλ), (F5)

(M�qλ)0̄r̄ = iC ∗̄
00Cr̄0

√
h̄q/2ρcvλ�

′
�qλ, (F6)

�′
�qλ = ��qλ,00 − ��qλ,11 = �uê

(�qλ) · ↔
� · q̂, (F7)

TABLE V. Expressions for the components of tensors
↔
� in the

Cartesian coordinate system, where the Z axis is along the applied
magnetic field (it is also the spin quantization axis in the lowest order
approximation). Here, simplified symbols θ = θB and φ = φB are
used for the polar and azimuthal angles of the applied magnetic field.

↔
�

↔
�ZZ

↔
�XZ

↔
�YZ

bulk-P:
√

2
↔
�(P 1,P 5) −1/3 + cos2 θ − 1

2 sin 2θ 0

bulk-P:
√

6
↔
�(P 1,P 6) sin2 θ cos 2φ 1

2 sin 2θ cos 2φ − sin θ sin 2φ

P-QD:
↔
� 1/3 − cos2 θ 1

2 sin 2θ 0

where �′
�ql

= �u(1/3 − cos2 ϑ ), �′
�qt1

= �u cos ϑ sin ϑ , and
�′

�qt2
= 0.

The difference of electron-phonon interaction will mod-
ify the angular distribution of phonon emissions. Thus, it
will modify the magnitude of spin relaxation after averaging
phonon modes in all three dimensions.

APPENDIX G: θB , φB DEPENDENCIES

Besides the dependence on the magnitude of the applied
magnetic field, we can also study the dependence on the
orientation of the applied magnetic field. We only report the
angular dependence for the inter-donor-QD spin relaxation
here.

Figure 12 shows the spin relaxation rate 1/T1 due to each
mechanism as a function of the polar angle θB of the applied
magnetic field when detuning ε = 0 meV and B = 0.5 T.
We show spin relaxation due to ZI when gani = 0.001 (black
solid line) and spin relaxation due to SOI when d‖ = 2 nm
(red dashed line). We choose the azimuthal angle φB = 0 for
spin relaxation due to ZI (black solid line), and φB − φd = 0,
φB − φd = π/4 and φB − φd = π/2 for spin relaxation due
to SOI. The spin relaxation due to ZI goes to zero when the
polar angle θB = 0 or π/2, i.e., when the magnetic field is
in-plane or out-of-plane, and it is maximum when θB = π/4.

ZI

SOI Φd 0

SOI Φd 4

SOI Φd 2

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

ΘB Π

1
T 1
s
1

FIG. 12. Spin relaxation as a function of the polar angle θB of
the applied magnetic field when detuning ε = 0 meV and B = 0.5 T.
We show spin relaxation due to ZI (black solid line) with θB = π/4
and φB = 0, and spin relaxation due to SOI when d‖ = 2 nm with
φB − φd = 0 (red dashed line), φB − φd = π/4 (blue dotted line),
and φB − φd = π/2 (purple dot-dashed line).
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ΘB 4ZI

SOI Φd 0

SOI Φd 4

SOI Φd 2
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0.00

0.02

0.04

0.06

0.08

ΦB Π

1
T 1
s
1

FIG. 13. Spin relaxation as a function of the azimuthal angle φB

of the applied magnetic field when detuning ε = 0 meV, B = 0.5 T,
and θB = π/4. We show spin relaxation due to ZI (black solid line)
and spin relaxation due to SOI when d‖ = 2 nm with φd = 0 (red
dashed line), φd = π/4 (blue dotted line), and φd = π/2 (purple dot-
dashed line).

The spin relaxation due to ZI vanishes at certain orientations
of magnetic field due to the vanishing of hybridization as
discussed above. However, spin relaxation due to SOI be-
comes maximum when θB = 0 (in plane) and minimum when
θB = π/2 (out of plane).

Figure 13 shows the spin relaxation rate 1/T1 due to each
mechanism as a function of the azimuthal angle φB when de-
tuning ε = 0 meV, B = 0.5 T, and θB = π/4. We use the same
gani for ZI mechanism and the same d‖ for the SOI mechanism
as in Fig. 12. We choose φd = 0, φd = π/4, and φd = π/2
for spin relaxation due to SOI. Since the spin relaxation due
to ZI is maximized when θB = π/4, it dominates over the
spin relaxation due to SOI. As shown in the figure, the spin
relaxation due to ZI shows no dependence with φB .

ΘB 2ZI

SOI Φd 0

SOI Φd 4

SOI Φd 2

0.0 0.5 1.0 1.5 2.0

0.000
0.005
0.010
0.015
0.020
0.025
0.030

ΦB Π

1
T 1
s
1

FIG. 14. Spin relaxation as a function of the azimuthal angle φB

of the applied magnetic field when detuining ε = 0 meV, B = 0.5 T
and θB = π/2. We show spin relaxation due to ZI (black solid line),
and spin relaxation due to SOI when d‖ = 2 nm with φd = 0 (red
dashed line), φd = π/4 (blue dotted line), and φd = π/2 (purple dot-
dashed line).

Figure 14 shows the spin relaxation rate 1/T1 due to each
mechanism as a function of the azimuthal angle φB when
detuning ε = 0 meV, B = 0.5 T, and θB = π/2. We use the
same gani and d‖ as in Figs. 12 and 13. The spin relaxation due
to ZI is suppressed when θB = π/2, and the spin relaxation
due to SOI dominates. We choose φd = 0, φd = π/4, and
φd = π/2 for spin relaxation due to SOI. Spin relaxation due
to SOI depends on φB − φd , as previously indicated. The rate
is minimum when φB = φd and maximum when �B and �d are
orthogonal. For in-plane B, the relaxation can be completely
suppressed when φB = φd . By changing the angle of the QD
shift relative to the donor with an electric field, we can modify
the dependence of spin relaxation with azimuthal angle φB of
the applied magnetic field. Thus, the electric field (in-plane)
dependence of spin relaxation can be applied to tell whether
the relaxation is dominated by ZI or SOI.
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