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Unconventional transport in low-density two-dimensional Rashba systems
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Rashba spin-orbit coupling appears in 2D systems lacking inversion symmetry, and causes the spin-splitting
of otherwise degenerate energy bands into an upper and lower helicity band. In this paper, we explore how
impurity scattering affects transport in the ultralow density regime where electrons are confined to the lower
helicity band. A previous study has investigated the conductivity in this regime using a treatment in the first Born
approximation. In this work, we use the full T matrix to uncover features of the conductivity. We first compute
the conductivity within a semiclassical Boltzmann framework and show that it exhibits an unconventional density
dependence due to the unusual features of the group velocity in the single-particle dispersion, as well as quantized
plateaus as a function of the logarithm of the electron density. We support this with a calculation using the Kubo
formula and find that these plateaus persist in the full quantum theory. We suggest that this quantization may be
seen in a pump-probe experiment.
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I. INTRODUCTION

The generic consequence of broken inversion symmetry in
quadratically dispersing bands with rotation and time-reversal
symmetries is the development of Rashba spin-orbit coupling
(SOC) [1,2]. For a long time, the study of Rashba SOC was re-
stricted to noncentrosymmetric crystals and two-dimensional
(2D) quantum wells in heterostructures. It has since grown
to ubiquity through advances in surface state measurement
and manipulation [3–6], synthetic SOC in ultracold atoms [7],
and the recognition that local asymmetry can produce Rashba
SOC even in centrosymmetric crystals [8].

In any case, the effect of Rashba SOC is to cause the
dispersion to spin-split into two helicity bands as shown in
Fig. 1. This splitting is bound to have profound effects on
electron transport. Indeed, much of the spintronics industry,
including the famous Datta-Das spin transistor [9], relies on
the spin coherence of an electric current, and much theoretical
effort has been focused on understanding whether scattering
causes significant interband transitions [10–12]. Only recently
has attention been paid to the low-density regime, where elas-
tic scattering causes intraband transitions within an annular
Fermi sea [13]. Many-body phases in this regime are particu-
larly interesting due to the highly degenerate ring of momen-
tum states at the band bottom [14–18], and its corresponding
singular density of states [19]. In this paper, we focus on
the effects of this low-density ring on impurity scattering
and thereby transport in 2D Rashba materials. It has been
recognized that the dc conductivity is a nonlinear function
of the density in this regime [20–22]. This paper extends the
work of these references to include nonperturbative scattering
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effects that arise at ultralow densities. The dynamics of single-
electron scattering in this regime was explored in Ref. [23]
by examining the S matrix for specific impurity potentials. In
Ref. [24], it was shown that the corresponding T matrix takes
on a universal and unconventional form for any circularly
symmetric, spin-independent potential. This form leads to
plateaus in the scattering cross-section as a function of the
logarithm of the energy.

In this paper, we demonstrate that Rashba transport at
low densities exhibits unusual features, including quantized
conductivity. The outline of the paper is as follows. Af-
ter some brief preliminaries to establish notation with re-
gard to the free-electron spectrum, we begin with Sec. II,
a Boltzmann calculation of the conductivity within linear
response. The key difference between this and a standard
Boltzmann treatment is the use of the full T matrix derived
in Ref. [24]. This is qualitatively different from previous
treatments done in the first Born approximation, where the
conductivity is found to smoothly decay to zero as the density
is decreased [20–22]. We first focus on the zero-temperature
dc and ac conductivities (Sec. II A) before generalizing to
finite temperature (Sec. II B), where we allow the chem-
ical potential to vary through and below the conduction
band. Such a treatment describes Rashba semiconductors
and allows us to outline a possible experimental realiza-
tion of the unique conductivity features we uncover in this
section. Section III goes beyond the Boltzmann approach
to include quantum corrections within a self-consistent full
Born approximation (SCFBA). Again, the difference between
this and previous work is that the self-energy is computed
self-consistently from the full T matrix. We first focus on
the single-particle Green’s function, self-energy, and den-
sity of states (Sec. III A) before employing this approach
in a calculation of the conductivity using the Kubo formula
(Sec. III B).
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FIG. 1. Lower helicity dispersion ξ−
k + μ (in blue). The plane

beneath it shows the corresponding group velocity vector field,
which changes from pointing inward to pointing outward at the
band minimum (shown in red). At a generic energy below the Dirac
point (dashed line), there are two available rings of states with wave
numbers k< and k>.

A. Preliminaries

The single-particle 2D Rashba Hamiltonian in the contin-
uum limit is given by

H (k) = k2

2m
+ λ ẑ · (σ × k), (1)

where k = (kx, ky, kz) is the momentum, σ = (σx, σ y, σ z) is
a vector of Pauli matrices, m is the electron mass, and λ is the
Rashba coupling. This Hamiltonian admits a spectrum with
two helicity bands that meet at a Dirac point as shown in
Fig. 1. This spectrum, measured with respect to the chemical
potential μ is

ξ±
k = k2

2m
± λk − μ + E0. (2)

Throughout this paper we focus exclusively on Fermi energies
EF below the Dirac point, where only one helicity band is
present. The energy difference between the Dirac point and
the band bottom is E0 ≡ 1

2mλ2. The band bottom is a ring at
finite momentum k0 ≡ mλ. We work with a shifted spectrum
where Ef = 0 occurs at the band bottom. It is convenient to
use the dimensionless energy parameter δ ≡ √

E/E0. At any
Fermi energy 0 < Ef < E0, the Fermi sea is defined by an
annulus with two wave numbers designated k≷ ≡ k0(1 ± δ).
The two states differ in the value sμ ≡ sgn(kμ − k0) = ±1.
Equivalently, we can note that their group velocities are
oppositely oriented: sμ = sgn(vμ · kμ).

II. SEMICLASSICAL BOLTZMANN TRANSPORT

A. Zero temperature

1. dc conductivity

In the Boltzmann approach, we look for the deviation,
nμ(φk, E), from the equilibrium distribution that satisfies
the translation invariant Boltzmann equation. In the linear
response regime, with an impurity density ni and an electric

field E oscillating at frequency ω, this equation reads

iωnkμ
= −eE · ∇kμ

n0
kμ

+ ni

∑
ν

∫ 2π

0
dφ′

k W
φkφ

′
k

μν

× [nμ(φk, E) − nν (φ′
k, E)]. (3)

We will set ω = 0 for now. Here, μ and ν indicate the >,<

states described in Sec. I A, and φk is the in-plane angle
of the corresponding wave vector kμ [25]. The equilibrium
distribution n0

kμ
is given by the Fermi function f (E − μ):

∇kμ
n0

kμ
= ∂f

∂E
∇kμ

ξk = k0δ

m

∂f

∂E
sμk̂, (4)

where k̂ = k/|k|. The matrix niW
φkφ

′
k

μν is the elastic scatter-
ing rate between state |E, ν, φ′

k〉 and |E,μ, φk〉 determined
from Fermi’s golden rule. For circularly symmetric impurity
potentials, it depends only on the difference φ̃k ≡ φk − φ′

k,
and the corresponding T -matrix T kμkν admits an expansion in
circular harmonics, which at low energies is independent of
the magnitude of the wave vectors [24]:

W
φkφ

′
k

μν = |T kμkν |2gν (E) (5)

= m

2πδ

∣∣∣∣∣
∞∑

l=−∞
T l (E)eilφ̃k

∣∣∣∣∣
2

(1 + sνδ), (6)

where we have used the density of states in the ν channel,

gν (E) =
∫

d2k
(2π )2

δ(E − ξkν
) = m

2πδ
(1 + sνδ). (7)

In Appendix A, we show that the scattering rate above satisfies
detailed balance. Using our nonperturbative solution for the
low-energy T matrix [24] will allow us to go well beyond the
usual perturbative treatments in the Born approximation.

Next, we choose the following ansatz for the distribution
function,

nμ(φk, E) =
∑

ν

�−1
μν eE · ∇kν

n0
kν

, (8)

where � is a 2 × 2 matrix to be determined. Substituting this
into Eq. (3) and integrating over φk gives a matrix equation in
the >, < basis,[(

1

τ
�−1 − I

)
− (1/τ − 1/τ tr )

2

(
1 + δ 1 − δ

1 + δ 1 − δ

)
�−1

]

×
(

1

−1

)
= 0. (9)

In analogy with the conventional spin-degenerate system, we
define the energy-dependent lifetime τ and transport time
τ tr as

1

τ
≡ nim

πδ

∫ 2π

0
dφ̃k

∣∣∣∣∣
∞∑

l=−∞
T l (E)eilφ̃k

∣∣∣∣∣
2

, (10)

1

τ tr
≡ nim

πδ

∫ 2π

0
dφ̃k (1 − cos φ̃k )

∣∣∣∣∣
∞∑

l=−∞
T l (E)eilφ̃k

∣∣∣∣∣
2

. (11)

In Sec. III A, we will see that these definitions are consistent
with the lifetime derived from the self-energy.
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Equation (9) is readily solved by the matrix

�−1 =
(

τ tr (1 − δ)(τ tr − τ )

(1 + δ)(τ tr − τ ) τ tr

)
, (12)

from which we get the distribution function,

nμ(φk, E) = k0δ

m

∂f

∂E
eE · k̂sμ(τ + sμδ(τ tr − τ )). (13)

From this, we calculate the current,

J = −e
∑

μ

∫
dE

∫
dφk

2π
gμ(E)nμ(φk, E)∇kμ

ξ−
k (14)

= − e2k2
0

2πm

∫
dEδ

∂f

∂E
(τ + δ2(τ tr − τ ))E . (15)

Taking the zero-temperature limit, we get the dc conductivity

σdc = e2

2π

k2
0δ

m
(τ + δ2(τ tr − τ )), (16)

where it is understood that the energies in this expression are
evaluated at the Fermi level. We may write this in terms of the
electron density using

n = k2
0

π
δ, (17)

which follows from Eq. (7). Thus,

σdc = e2

2

n

m

[
τ +

(
n

n0

)2

(τ tr − τ )

]
, (18)

where n0 ≡ k2
0/π is the density at the Dirac point.

There are several important features to note about Eq. (18).
First, recall that τ and τ tr both depend on the density through
δ and T l (EF ) in Eqs. (10) and (11), so the conductivity is a
highly nonlinear function of the density. Second, it reproduces
the Drude conductivity

σ Drude = e2

2

n

m
τ tr, (19)

only at the Dirac point where n → n0, though our low-energy
expression for the transport time Eq. (11) is not accurate in this
regime. What is special for transport about the Dirac point is
that there is only one channel (k>) with a nonvanishing density
of states, and a group velocity parallel to k, just as in a typical
parabolic dispersion for a single fermion species (giving the
1/2 in the Drude conductivity). In the opposite limit, n → 0,
we see that it is the lifetime, not the transport time that governs
the conductivity

σdc(n → 0) = e2

2

n

m
τ. (20)

This is because in this limit, one has k> ≈ k<, so that these
two channels have approximately the same phase space for
scattering. But since they have oppositely directed group
velocities, scattering through an angle φ̃k = π is just as likely
to result in forward scattering as scattering through an angle
φ̃k = 0 [23,26].

We will see shortly that the unusual density dependence
of the full T matrix results in features in the conductivity.
However, we first consider the first Born approximation as

� � � �

FIG. 2. dc conductivity divided by �σ0 ≡ e2

8h̄

n0
ni

vs electron den-
sity on a linear (top) and log (bottom) scale. The solid lines indicate
the Boltzmann result using the full Born T matrix. The dashed lines
show the corresponding first Born approximation for the conduc-
tivity. A delta-shell impurity potential is used with the parameters
mv0R

2 = 1 and R = 0.1/k0.

was done in Ref. [20], for which the T matrix is given
by a spin-independent constant potential transformed to the
helicity basis:∣∣∣∣∣

∞∑
l=−∞

T l (E)eilφ̃k

∣∣∣∣∣
2

= |v0η
†
−(φk )η−(φk′ )|2 (21)

= v2
0

2
(1 + cos φ̃k ), (22)

where η−(φk ) = 1√
2
( 1
ieiφk ) is the negative-helicity eigenspinor

of the Hamiltonian Eq. (1). In this case, the lifetime and
transport time become

1

τ
= nimv2

0
n0

n
= 2

τ tr
, (23)

and the conductivity is

σ 1BA
dc = e2

2nim2v2
0

n2

n0

[
1 +

(
n

n0

)2]
, (24)

in agreement with Ref. [20].
In Fig. 2, we plot the density dependence of the dc con-

ductivity for the case where the impurity potentials are mod-
eled by δ-function shells V (r ) = v0Rδ(r − R). The single-
impurity Rashba T matrix was computed nonperturbatively in
Ref. [24] in the low-energy limit, for any circularly symmetric
impurity potential. It has the form

T l (E) ≈ 1

m

δ∗
l

1 + iδ∗
l /δ

, (25)
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where δ∗
l parameterizes the lth circular harmonic of the matrix

element of the impurity potential between two states at the
band bottom:

δ∗
l ≡ m

2
(V l (k0, k0) + V l+1(k0, k0)). (26)

The specific choice of impurity potential makes no qualitative
difference, as long as rotational symmetry is maintained. The
δ-shell potential contains two independent parameters, the
impurity strength v0 and radius R. Varying these parameters
simply changes the scales in Fig. 2. Increasing the impurity
strength decreases the conductivity everywhere, and increas-
ing its radius shifts the plateaus of the bottom panel to higher
densities. Indeed, one can find a quantitative estimate of the
effect of these parameters for a given potential. In the long-
wavelength limit k0R 
 1, we have

δ∗
l ≈ mv0R

2

2(|l|!)2

(
(k0R)2

4

)|l|
(δ-shell), (27)

δ∗
l ≈ mv0R

2

4|l|!|l + 1|!
(

(k0R)2

4

)|l|
(hard disk). (28)

With this in mind, we will maintain the same parameter values
throughout the paper.

Figure 2 constitutes the main result of this paper, so we
pause to flesh out the salient observations contained within.
First, as seen in the top panel, the conductivity does not
decay smoothly to zero with decreasing density, unlike the
prediction from the first Born approximation. In fact, mea-
surements at low densities might lead one to believe there is a
finite residual conductivity as n → 0. This is not physical, and
indeed is not the case as shown in the lower panel, where we
see that the conductivity goes through a series of steps (on a
logarithmic scale) to reach zero at n = 0. On such a scale, the
conductivity is quantized, with plateaus given by the values

σdc =
(

n0

ni

)
e2

8h̄l
, l = 1, 2, 3, . . . , (29)

and transitions between plateaus occurring at n/n0 = δ∗
l . Al-

though the conductivity plateaus depend on material parame-
ters such as the impurity concentration and the SOC strength,
the ratio of any two conductivity plateaus is a pure rational
number, independent of all such parameters. The origin of
these plateaus is the energy-scale separation of the different
circular harmonic contributions to the T matrix, discussed in
detail in Refs. [23,24]. Briefly, let us give a physical explana-
tion of this origin. We consider here finite impurity potentials
which require an infinite number of angular components to
describe them (as opposed to a delta-function impurity which
only has an s-wave component). Each of these components
are well separated in magnitude because they are controlled
by Bessel functions of different orders (i.e., Jl (k0R)). Due
to interference between the k< and k> scattering states, the
scattered wave function becomes more and more quasi-one-
dimensional as the energy is lowered, resembling a plane wave
at the band bottom. This plane wave is composed of equal
contributions of all angular components which are turned on at
successively lower scattering energies, essentially when δ ≈
δ∗
l . Each time this happens, a new angular channel contributes

FIG. 3. Real (top) and imaginary (bottom) parts of the semi-
classical Boltzmann ac conductivity vs frequency for various values
of the electron density with impurity density set to ni = 0.06n0.
The dashed line shows the corresponding (n = 0.6n0) first Born
approximation result for the conductivity, found by inserting Eq. (23)
into Eq. (32).

to the scattering and the conductivity drops by a quantized
amount.

2. ac conductivity

Retaining the frequency dependence in Eq. (3) allows us to
compute the ac conductivity as well. One can readily check
that the ac Boltzmann equation is solved by

nμ(φk, E) = k0δ

m

∂f

∂E
eE · k̂sμ

(
τ (1 − iωτ tr )+sμδ(τ tr − τ )

(1 − iωτ tr )(1 − iωτ )

)
,

(30)

from which we get the current

J = − e2k2
0

2πm

∫
dEδ

∂f

∂E

(
τ (1 − iωτ tr ) + δ2(τ tr − τ )

(1 − iωτ tr )(1 − iωτ )

)
E,

(31)

and the zero-temperature conductivity

σ (ω) = e2

2

n

m

(
τ (1 − iωτ tr ) + (n/n0)2(τ tr − τ )

(1 − iωτ tr )(1 − iωτ )

)
, (32)

shown in Fig. 3.
As we saw in the dc case, the conductivity takes the Drude

form in the two limits n → n0 and n → 0, dependent on τ tr

and τ respectively. As n → n0,

σ (ω) → e2

2

n

m

τ tr

1 − iωτ tr
= σ Drude(ω), (33)
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� � � �

FIG. 4. Imaginary part of the semiclassical Boltzmann ac con-
ductivity vs frequency for various values of the electron density on
a log scale with impurity density set to ni = 0.06n0. The dashed
lines show the quantization of the peaks given by n0/ni ( 1

16l
) for

l = 1, 2, 3, 4.

while in the opposite limit n → 0,

σ (ω) → e2

2

n

m

τ

1 − iωτ
. (34)

Thus, as the density is lowered, the width of the Drude peak
decreases from 1/τ tr to 1/τ . At low densities, the height of the
peak in the imaginary part of the ac conductivity at ω = 1/τ

becomes quantized since

Im σ (1/τ ) ≈ e2

2

n

m

τ

2
= σdc

2
, (35)

where σdc has the plateaus in Eq. (29), shown in Fig. 4.

B. Finite temperature

We now consider the effect of finite temperature on trans-
port in a Rashba semiconductor. Several materials exist with
large Rashba splitting of order E0 ∼ 0.1eV, including BiTeI
and CH3NH3PbI3 [27–31]. For example, BiTeI possesses 2D
surface conduction and valence bands with a large Rashba
splitting; the Fermi level can be adjusted between these two
bands by changing the termination layer [32]. In the follow-
ing, however, we ignore material-specific details and consider
a simplified model of a semiconductor with a Fermi level close
to the bottom of a 2D Rashba-split conduction band.

Returning to Eq. (15), we retain the temperature depen-
dence via

∂f

∂E
= − βeβ(E−μ)

(eβ(E−μ) + 1)2
. (36)

Furthermore, we assume that |E0 − μ| � kBT , so that the
upper helicity band does not contribute to the integrand. The
dc conductivity,

σdc ≈ e2k2
0β

2πm

∫ E0

0
dE δ

e(E−μ)β

(eβ(E−μ) + 1)2
(τ + δ2(τ tr − τ )),

(37)

is then computed numerically as a function of the chemical
potential. The result is shown in the top panel of Fig. 5,
where we see that the sharp zero-temperature drop that occurs
at the band bottom (μ = 0) maintains some weight at finite
temperatures. The magnitude of this drop is determined by

� �

� �

FIG. 5. Semiclassical Boltzmann dc conductivity vs chemical
potential for various temperatures, with impurity density set to ni =
0.03n0. The top panel shows the results computed from the full T

matrix, while the bottom panel shows the first Born approximation.

the impurity density

�σ (μ = 0) = �σ0 ≡ e2

8h̄

n0

ni

. (38)

This is in contrast to the prediction from the first Born
approximation shown in the bottom panel of Fig. 5, which
produces a conductivity that smoothly goes to zero as the
chemical potential is lowered.

The conductivity plateaus seen in the zero-temperature
case are hidden in the sharp drop near μ = 0. In a real
material, doping offers crude control over the chemical po-
tential, and one might be skeptical that the quantization seen
as a function of the logarithmic changes in the density (or
alternatively, the logarithmic changes in the chemical po-
tential) could ever be observed. As one potential means of
overcoming this we propose the use of pump-probe mea-
surements. This technique has been used to study transport
properties of systems with large Rashba splitting before [33].
In such an experiment, a (typically THz) pump laser pulse
is used to excite carriers from the valence to conduction
band. These carriers quickly establish a quasiequilibrium and
a corresponding chemical potential μ > 0, on a timescale
(∼ 10−15 s) much smaller than the typical recombination time
τn ∼ 10−9 s [34]. The pump pulse is then followed by a
probe pulse that can be used to measure the ac conductivity
of the new quasiequilibrium system. To illustrate the potential
usefulness of this technique for our purposes, consider a
simple model where the recombination time τn is a constant.
After a time dt , the number of carriers remaining in the
conduction band will be nc(t + dt ) = (1 − dt

τn
)nc(t ), [35] so
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FIG. 6. Semiclassical Boltzmann dc conductivity vs delay time
in a pump-probe measurement at various temperatures, with impu-
rity density set to ni = 0.03n0, and recombination time τn = 1 ns.
The dashed line shows the (T = 0) prediction from the first Born
approximation.

that

nc(t ) = nc(0)e−t/τn . (39)

Thus, the delay time t ∼ ln(nc/nc(0)) provides an ideal con-
trol parameter for observing the quantized behavior of the
conductivity. We may compute the conductivity as a function
of delay time using Eq. (37), where the quasiequilibrium
chemical potential μ(t ) is determined by the number equation

nc(T ) = m

2π

∫ E0

0
dE

√
E0

E

1

eβ(E−μ) + 1
= nc(0)e−t/τn .

(40)

The result is shown in Fig. 6, where the first plateau, now as a
function of delay time, is easily visible at sufficiently low tem-
peratures. This plot is for a fixed impurity density. For cleaner
systems, one would see more plateaus at a given temperature.
This is again in contrast to the first Born approximation result
which smoothly decays to zero.

III. SELF-CONSISTENT FULL BORN APPROXIMATION

Until now, we have looked exclusively at the semiclassical
transport features of low-density Rashba systems. Given the
delicate nature of the dependence of these features on the
density, one might be skeptical that they survive a fully quan-
tum treatment. The purpose of this section is to address this
question. We will focus exclusively on the zero-temperature
limit throughout this section.

A. Single-particle properties

We will utilize a SCFBA. Note that this is different from
the conventional self-consistent Born approximation (SCBA)
used in Refs. [20,21], in that the self-energy is determined
self-consistently from the full T matrix, and not simply the
T matrix in the first Born approximation. The distinction
is illustrated in the diagrams in Fig. 7. In the conventional
SCBA, no diagrams in the self-energy have more than two
impurity lines attached to a single vertex. In the SCFBA,
one includes all noncrossed diagrams. We proceed with stan-
dard impurity averaging [36]. We start with Ni uncorrelated

(a) = + Σ

Σ =
×

+
×

+
×

+
×

+ . . .

SCBA

SCFBA

(b)

G G0 G0 G

FIG. 7. (a) Dyson equation for the full Green’s function G, where
G0 is the bare Green’s function and � is the irreducible self-energy.
(b) Diagrammatic expansion of the irreducible self-energy � for
impurity scattering, showing the truncation made in SCBA.

impurities located at random positions Rj , described by the
random potential

U (r ) =
Ni∑

j=1

V (|r − Rj |). (41)

The Green’s function and self-energy are averaged over im-
purity positions. Since these positions only enter through
phase factors eiq·Rj in the Fourier transform of Eq. (41), the
averaging induces a factor ni and a momentum-conserving
delta function at each vertex. The series shown in Fig. 7(b)
is precisely the Born series for the T matrix with the addition
of these self-averaging factors. Thus, we take the irreducible
retarded self-energy in the helicity basis to be

�αβ (k, E) = niT
k,k
αβ (E). (42)

The T matrix satisfies the Born series,

T
k,k′
αβ (E) = Vαβ (k, k′) +

∑
λγ

∫
d2q

(2π )2

∫
d2q ′

(2π )2

×Vαλ(k, q )Gq,q ′
λγ (E)T q ′,k′

γβ (E), (43)

where Vαβ (k, k′) is the matrix element of V (r ) in the
momentum-helicity basis. G is the full retarded Green’s func-
tion in this basis, which obeys the Dyson equation,

Gαβ (k, E) = G0
αα (k, E)δαβ +

∑
γ

G0
αα (k, E)

×�αγ (k, E)Gγβ (k, E). (44)

Note that the impurity averaging procedure restores transla-
tion invariance, so that the Green’s function is diagonal in
momentum. For circularly symmetric potentials, which have
angular components

V l (k, k′) =
∫ 2π

0

dθ

2π

∫ ∞

0
dr rV (r )J0(|k − k′|r )eilθ , (45)

the low-energy T matrix in the negative-helicity sector is
independent of the magnitude of the momenta:

T kk′
−− =

∞∑
l=−∞

T l (E)eil(θk−θk′ ). (46)
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This follows from the arguments made in Ref. [24], which
also hold for the SCFBA Green’s function. This guarantees
that the self-energy is independent of momentum in the same
limit: �−−(k, E) ≡ �(E). By Eq. (44), this also means that
the Green’s function is independent of θk . The full Born series
Eq. (43) is then solved by

T l (E) = 1

2

(
V l (k0, k0)(1 − J l

+ + J l
−)

1 − I l− − J l+ + I l−J l+ − I l+J l−

)

+ 1

2

(
V l+1(k0, k0)(1 − J l

+ − J l
−)

1 − I l− − J l+ + I l−J l+ − I l+J l−

)
, (47)

where I l
± and J l

± are the integral contributions of the lower
and upper helicity Green’s functions, respectively,

I l
± =

∫ ∞

0

dq q

4π
[V l (k0, q ) ∓ V l+1(k0, q )]G−−(q,E),

J l
± =

∫ ∞

0

dq q

4π
[V l (k0, q ) ± V l+1(k0, q )]G++(q,E).

(48)

In the low-energy regime of interest to us, the integrand
of J l

± is far from its poles in q and we expect J l
± to be

negligible. More precisely, let us impose a momentum cutoff
k0� around the ring of degenerate states such that � 
 1,
and then integrate from k0(1 − �) to k0(1 + �). In this range,
|J l

±| ∼ � 
 1. The T matrix is then determined entirely by
the integral I l

−:

T l (E) ≈ δ∗
l /m

1 − I l−
. (49)

The integral I l
− depends on the Green’s function component

that satisfies the Dyson equation

G−−(k,E) =
(

G0
−−(k,E)−1 − �−−(E)

− �−+(E)G0
++(k,E)�+−(E)

1 − G0++(k,E)�++(E)

)−1

. (50)

The last term, containing the off-diagonal parts, is second
order in the impurity density and will be ignored from now
on. I l

− is derived in Appendix B 1 to be

I l
− ≈ −i

δ∗
l

z
− 2δ∗

l

π�
, (51)

where

z ≡
√

(E + μ)/E0 − �(E)/E0. (52)

We thus have the following self-consistency condition for the
self-energy:

�(E) = ni

m

∞∑
l=−∞

δ∗
l

1 + iδ∗
l /z − 2δ∗

l

π�

. (53)

Note that by expanding to lowest order in ni , we get the
self-energy corresponding to the full Born approximation as
expected,

�(E) ≈ ni

m

∞∑
l=−∞

δ∗
l

1 + iδ∗
l [(E + μ)/E0]−1/2 − 2δ∗

l

π�

. (54)

� � �

FIG. 8. Real and imaginary parts of the self-energy for the
SCFBA (solid lines) and the full Born approximation (dashed lines).
The two coincide in the clean limit. Here, the impurity density was
chosen to be ni/n0 = 0.016. A cutoff of � = 0.5 was used, although
the self-energy in this regime is largely independent of this choice.

It is conventional to absorb the lowest order self-energy term
into the chemical potential. This amounts to redefining

�̃(E) ≡ �(E) − niV−−(k0, k0), (55)

μ̃ ≡ μ + niV−−(k0, k0). (56)

The resulting self-energy is shown in Fig. 8.
From Eq. (50), we may compute the spectral function

A(k, E) = −2 Im G−−(k, E). It is a Lorentzian with an
energy-dependent width given by

1/τ (E) = −2 Im �(E) = ni

∑
l

Im T l (E). (57)

This is equivalent to the definition of the lifetime used in the
Boltzmann description Eq. (10) due to the optical theorem for
the low-energy T matrix [24]:

Im T kk′
−− (θ = 0) = − m

2π

∫ 2π

0
dθ |T kk′

−− |2, (58)

where θ is the angle between k and k′.
From the spectral function, we obtain the density of states

g(E) = − Im �

2π2

∫ k0(1+�)

k0(1−�)

dk k

(E − ξ−
k − Re �)2 + (Im �)2

,

(59)

applying the same cutoff as before. This integral is similar to
I l
− and is derived in Appendix B 2. The result is

g(E) = m

π
Re

(√
E0

E + μ̃ − �̃(E)

)
. (60)

Note that in the clean limit, �̃(E) → 0, μ̃ → μ, and we
recover the noninteracting density of states Eq. (7). Integrating
this up to the Fermi level gives the density, which we invert to
obtain g(n) as shown in Fig. 9. As expected, disorder rounds
the van Hove singularity in the density of states.

A similar rounding of the density of states was found in
the study of a 2D Rashba electron gas with delta-function
impurities, for which an asymptotically exact solution is avail-
able in the low-energy limit [37]. Here we are considering a
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FIG. 9. Density of states as a function of electron density com-
puted from the SCFBA for an impurity density of ni/n0 = 0.016,
compared to the clean limit.

more general situation, making use of the universal behavior
of the T matrix for arbitrary circularly symmetric, finite-range
potentials Eq. (49).

B. Kubo conductivity

Using the Green’s function and T matrix derived in the pre-
vious section, we now look at the conductivity within linear
response theory. In the Kubo formalism, the conductivity is
given by

σ dc = −e2 lim
ω→0

(
Im �ret (ω)

ω

)
, (61)

where �ret (ω) is the retarded current-current correlator shown
diagrammatically in Fig. 10(a). This reduces to the standard
expression

σ dc = e2

2π

∫ ∞

−∞
dE

(
− ∂f

∂E

)
[P AR(E) − Re P RR(E)],

(62)

(b) = +

= +× × + × + × + . . .

Γ

Γ Γ

(a)

(c)

FIG. 10. (a) Conductivity bubble. (b) Integral equation for the
vertex part �XR. Here, the upper double line corresponds the Green’s
function GX, and the lower one corresponds to GR. (c) Born series
for the T -matrix product. Double lines represent the SCFBA Green’s
function.

where we have defined the advanced (P AR(E)) and retarded
(P RR(E)) response functions via

P XR(E) ≡
∫

d2 p
(2π )2

Tr GX(p,E)�0( p)GR(p,E)�XR( p, E),

(63)

with X ∈ {R,A}. Here, GR, and GA are the retarded and ad-
vanced Green’s functions. �RR( p, E), and �AR( p, E) are the
retarded-retarded and advanced-retarded vertex parts, which
satisfy the integral equation shown in Fig. 10(b). Lastly,
�0( p) ≡ ∂H

∂px
is the bare vertex. In the helicity basis, it is

given by

�0( p) = px

m
I − λ cos θ pσz − λ sin θ pσy. (64)

Isotropy of the system allows us to just consider the x com-
ponent of the vertex part, corresponding to the longitudinal
conductivity σ dc

xx . The integral equation for the vertex part in
this basis is, in matrix notation,

�XR( p, E) = �0( p) +
∫

d2k
(2π )2

T pk(E)GX(k,E)�XR(k, E)

×GR(k,E)T k p(E). (65)

Since we are only interested in energies near the band bottom,
we may neglect the contribution from the upper-helicity com-
ponent of the Green’s functions as they do not have any poles
near those energies. We may then regard Eq. (65) as a scalar
equation in the lower-helicity sector. In this sector, �0( p) =
px

m
− λ cos θ p, which motivates us to use the following ansatz

for the renormalized vertex,

�XR( p, E) = px

m
− λ̃XR(E) cos θ p. (66)

We have anticipated a renormalized Rashba coupling λ̃XR(E)
independent of momentum. The mass cannot be renormalized
because the only term on the right-hand side of Eq. (65) that
depends on the magnitude of p is the bare vertex. Expanding
the T matrix in circular harmonics again, Eq. (65) reads

λ̃XR(E) = λ − ni

2π

∑
ll′

T l (E − iδ)T l′ (E + iδ)

×
∫ 2π

0

dφ

2π
ei(l−l′ )φ (cos φ − sin φ tan θ p)

×
∫ k0(1+�)

k0(1−�)
dk k

(
k

m
− λ̃XR(E)

)

×GX(k,E)GR(k,E). (67)

Our ansatz for the vertex part works because the mirror
symmetry of the T matrix [see Eq. (A11)] guarantees that

∑
ll′

T l (E − iδ)T l′ (E + iδ)
∫ 2π

0

dφ

2π
ei(l−l′ )φ sin φ = 0, (68)

so that the θ p dependence in Eq. (67) disappears. Using the
lifetimes defined in Eqs. (10) and (11), the renormalized
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�

�

�

FIG. 11. Renormalized Rashba couplings λ̃AR (solid) and λ̃RR

(dashed) relative to the bare coupling for two different impurity
densities. The advanced-retarded coupling is slightly smaller than
the bare coupling. The cusp seen in the retarded-retarded coupling
occurs at n ≈ ni and corresponds to a change in sign of λ̃RR − λ. This
coupling is slightly smaller than the bare value at electron densities
below the impurity density, but becomes larger than the bare coupling
above the impurity density.

coupling is

λ̃XR(E)

λ
= 1 + δ

4πk0

(
1
τ tr − 1

τ

)
P XR

2

1 + δ
4πm

(
1
τ tr − 1

τ

)
P XR

1

, (69)

where

P XR
1 ≡

∫ k0(1+�)

k0(1−�)
dp pGX(p,E)GR(p,E), (70)

P XR
2 ≡

∫ k0(1+�)

k0(1−�)
dp

p2

m
GX(p,E)GR(p,E). (71)

The integrals for the advanced-retarded part may be com-
puted analytically as shown in Appendix B 3 [Eqs. (B17)
and (B21)]. The result is shown as a function of density in
Fig. 11. At low density, the Rashba coupling renormalization
is minimal.

Having obtained the renormalized coupling, we may eval-
uate the response function,

P XR(E) = 1

4π

(∫
dp

p3

m2
GX(p,E)GR(p,E)

− (λ + λ̃(E))
∫

dp
p2

m
GX(p,E)GR(p,E)

+ λλ̃(E)
∫

dp pGX(p,E)GR(p,E)

)
. (72)

Once again, the advanced-retarded integrals are evaluated
analytically in Appendix B 3; we obtain

P AR(E) = 1

π
(λ̃AR/λ − 2)

×
(

2

�
+ π

Im�̃
Re

√
E0[E + μ̃ − �̃(E)]

)
.

(73)

It should be noted that the retarded-retarded part P RR(E) only
becomes important for electron densities below the impurity
density. Above this density, the zero-temperature conductivity

� � �

FIG. 12. Zero-temperature dc conductivity as a function of elec-
tron density computed numerically from the SCFBA for different
impurity densities. We have normalized each curve by the impurity-
density-dependent factor �σ0 ≡ e2

8h̄

n0
ni

[Eq. (38)]. For comparison,
the Boltzmann result is shown with a dashed line. As shown in
the text, the neglected crossing diagrams may become important for
n < ni . Thus the range of validity of these curves is: n/n0 > 10−2 for
the blue curve, n/n0 > 10−4 for the orange curve, and n/n0 > 10−6

for the green curve. In these ranges, we see agreement with the
Boltzmann result.

is well-approximated by

σ dc ≈ e2

2π
P AR(E). (74)

Using Eq. (73), one can show that this reduces to the Boltz-
mann result. This is also clearly seen numerically in Fig. 12,
where the conductivity is computed from the full expression
Eq. (62) at zero temperature. We see that the prominent fea-
tures of the dc conductivity found in the Boltzmann calcula-
tion (the drop near zero density, and the quantization on a log
scale) survive in the fully quantum Kubo formula calculation
as long as ni < n. Note that this regime is consistent with
the implicit assumption in the impurity-averaging process,
namely that there is enough electron-electron interaction to
cause decoherence between impurity-scattering events.

One might be skeptical about trusting the SCFBA in such
a low-density regime. First, Fermi liquid theory (resulting
in Boltzmann transport) typically breaks down at ultralow
densities [38]. For another, the rapid drop seen in the conduc-
tivity as the density is lowered indicates a diverging scattering
rate, and one might think that this could lead to interimpurity
interference effects, such as weak antilocalization [39]. As it
turns out, however, this is not the case, provided we focus on
ni 
 n, which is precisely the Boltzmann limit. To see this,
recall that the only diagrams excluded from the SCFBA are
the crossed diagrams, which give rise to quantum interference
effects. An example of such a crossed diagram is shown in
Fig. 13, compared to a non-crossed diagram of the same order.
We know that the SCFBA spectral function is a Lorentzian
with a width 1/τ given in Eq. (58). At the Fermi level EF ,
this corresponds to a smearing (�k) in momentum space that
satisfies

[kF ± (�k)]2

2m
− λ[kF ± (�k)] ∼ EF + 1/τ, (75)

where + and − correspond to the > and < states respectively.
As shown in Ref. [37], the condition for crossed diagrams
to be negligible is that (�k) 
 k0. We include this argument
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k2 k − k1 + k2

k1 − k2

×
×k1 − k

k1

k − k1

k2

k2 − k1

k1

Non-crossed

××

k1

k1 − k

Crossed

k2 − k1 k− k1

k1 − k2

Δk

Δk

k1

k2

−k1

k2

FIG. 13. Top: example of a noncrossed Feynnman diagram that
contributes to the irreducible part of the SCFBA self-energy and
the corresponding phase space for internal momenta. Both k1 and
k2 can lie anywhere within the two black annuli defined by the
Fermi surface. Bottom: a crossed diagram of the same order (second
order in ni , fourth order in the interaction), and one example of the
corresponding phase space. Once k2 is fixed, −k1 is restricted to lie
within the black diamonds.

here for completeness. The result of Eq. (75) is that

(�k) ∼ k0δ

(
− 1 +

√
1 + 2m

(k0δ)2
(1/τ )

)
. (76)

Returning to the diagrams in Fig. 13, we see that the internal
momenta in the noncrossed diagram are independent, so that
the phase space for this diagram is

�NC = [(2πk< + 2πk>)(�k)]2 = [4πk0(�k)]2. (77)

On the other hand, crossing diagrams have the restric-
tion |k2 + k − k1| ∈ [k − (�k), k + (�k)], which means that
once one momentum is fixed, the other is restricted to the
intersection of four annuli. One possibility is shown in the
bottom right of Fig. 13 with two intersections, but there are
three other cases with four, six and eight intersections as well.
Regardless, the phase space will be

�C ∼ 8πk0(�k)3. (78)

So we can neglect crossing diagrams (at least at this order),
provided that

�C/�NC ∼ (�k)

2πk0

 1. (79)

In the low-energy regime, this means that

1

E0τ

 4π2. (80)

Let us now see if the SCFBA scattering rate meets
this criteria. To be consistent with impurity averaging and
the low-density approximations we have made, we should

focus on

ni

n0

 n

n0

 1. (81)

In this case, we have seen that the scattering rate is well
approximated by the low-density Boltzmann result. From
Eq. (20), we have

1

E0τ
= e2

π

(
n

n0

)
1

σdc
. (82)

If the conductivity drops to zero too rapidly as the electron
density is lowered, one is not able to satisfy Eq. (80). But
using Eq. (29), as the index l of the plateau increases, the
conductivity decreases at a rate of

dσdc

dl
= −n0

ni

e2

8l2
, (83)

treating l as a continuous variable and ignoring the detailed
non-linear behavior. Likewise, the density at each plateau
transition is given by n/n0 ≈ δ∗

l , which for δ-shell impurities
Eq. (27) means

ln(n/n0) = ln

(
(k0R)2

4

)
l − 2 ln(|l|!) + c, (84)

and

d(n/n0)

dl
= n

n0

[
ln

(
(k0R)2

4

)
− 2ψ (|l| + 1)

]
, (85)

where c = ln(mv0R
2/2) and ψ (x) is the digamma function.

Now if l is large, the conductivity will decay slowly according
to Eq. (83), and the n/n0 prefactor in Eq. (82) will ensure
that the crossed diagrams are negligible. The only concern
therefore is when l is small. But in this case, ψ (|l| + 1) ≈
−γ , and ln(|l|!) ≈ −γ l, where γ is the Euler-Mascheroni
constant. The result is

l2 =
(

ln(n/n0) − c

ln
[ (k0R)2

4

] + 2γ

)2

, (86)

and

dσdc

d(n/n0)
= dσdc

dl

dl

d(n/n0)
∼ n0/ni

n/n0[ln(n/n0) − c]2
. (87)

Integrating with respect to n/n0, we see that, roughly speak-
ing, the conductivity changes with the density according to

σdc ∼ n0/ni

ln(n/n0)
, (88)

so that

1

E0τ
∼ (n/n0)(ni/n0) ln(n/n0) (89)


 (n/n0)2 ln(n/n0) (90)


 1. (91)

Thus we can trust the SCFBA result in the regime where the
conductivity quantization is observed.
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IV. CONCLUSION

The main result of this work was to show that the low-
density conductivity due to impurity scattering in a 2D Rashba
system takes a highly nonlinear form that exhibits quantiza-
tion as a function of the logarithm of the electron density.
This unusual behavior arises from the full nonperturbative
low-energy T matrix describing electron-impurity scattering
near the ring minimum at the bottom of the Rashba conduction
band. In the limit of a single impurity, this T matrix was
discussed in detail in Ref. [24].

It is clear that this highly degenerate band minimum is
responsible for many unusual characteristics of low-energy
transport. For one thing, the Fermi surface consists of two
concentric circles with group velocities in opposite directions.
At zero temperature, in the low-density limit, this produces
an unconventional Drude-like expression for the conductivity
that is controlled by the electron lifetime, as opposed to the
usual transport time that appears in the conventional Drude
formula. The transition from conventional to unconventional
Drude transport as the density is lowered results in a nonlinear
conductivity as a function of density. This behavior was first
pointed out in Ref. [20]. The focus of our paper has been on
the ultralow density regime, where the unconventional Drude
conductivity becomes quantized. We showed this quantization
within a semiclassical Boltzmann treatment (provided the
full T matrix is used in the scattering rate), as well as a
fully quantum Kubo formula treatment, provided the electron
density remains larger than the impurity density.

The most important distinction between this and previous
work is the use of the nonperturbative T matrix in calcu-
lations. A T matrix limited to the first Born approximation
(or even a SCBA) leads to qualitatively different transport
phenomena. In particular, the first Born conductivity decays
smoothly to zero with decreasing electron density, while the
full T matrix leads to a seemingly abrupt drop at zero density.
For a Rashba semiconductor, we showed that this translates to
a sharp drop in conductivity as the chemical potential passes
through the band bottom, and that this drop retains significant
weight at finite temperature.

We recognize that experimentally it is difficult to control
the electron density with enough precision to access these
ultralow-density features. We have outlined a brief proposal
of one way to overcome this difficulty in Rashba semicon-
ductors. Namely, one could use a pump-probe approach in
which the conductivity is measured as function of delay time
between the two pulses. Such an approach allows one to use
the logarithm of the carrier density as a control parameter.
Of course, many technical issues would need to be addressed
for such an experiment. One would need to carefully choose
a 2D Rashba system with large splitting and Fermi level in
the gap. The experiment would have to be done at very low
(�10 K) temperatures. Furthermore, the effect of hole carriers
and excitons has not been addressed.

The last important point to emphasize is that our anal-
ysis is restricted to noninteracting systems. We recognize
that at the low densities we are considering here, the ef-
fect of electron-electron interactions is enhanced, and one
might expect Wigner crystallization to occur as a result. The
electron-electron scattering process itself is dependent on a

T matrix that would likely contain unusual features similar
to the impurity-scattering T matrix considered here. Such a
T matrix may enhance or suppress the transport properties
described in this paper or produce unique signals of its
own. To say more would require explicit calculations that
are beyond the scope of this paper. Instead, we can look for
cases where we expect Fermi liquid theory to hold, outside
the Wigner crystal regime. For one, it should be noted that
many examples of Rashba 2D electron gases occur within
gated samples. The presence of a metallic gate is expected
to screen the Coulomb interaction, and the resulting short-
range interaction may be insufficient to cause crystallization.
Without knowing the details of the interaction, it is hard to say
more, though it should be noted that the unique low-energy
density of states of the Rashba system may allow liquid
crystal or anisotropic Wigner crystal phases to exist even
for short-range interactions as described in Refs. [16–18].
Of course, the stability of these phases to disorder must be
considered as well. Perhaps the simplest way to avoid the
crystalline phase is to focus on temperatures above the melting
point of the Wigner crystal. This occurs at a critical value
of the dimensionless parameter � = e2√πn/(4πε0kBT ), the
ratio of potential and kinetic energies of a classical gas
of electrons. In two dimensions, the melting point occurs
around � ≈ 130 [40,41]. Using this number, we see that at
the ultralow densities considered in this paper, the Wigner
crystal should melt at very low temperatures. For example,
the density corresponding to the first plateau in Fig. 12 at
n/n0 ∼ 10−2 would be within the Fermi liquid phase for
T � 2K. The second plateau at n/n0 ∼ 10−5 corresponds to
a melting temperature of T ∼ 0.07K. Now, of course, our
SCFBA analysis was performed at zero temperature, but given
the robustness of the nonperturbative transport effects to finite
temperature in the Boltzmann treatment (Figs. 5, 6), it is
reasonable to assume that at least the first plateau would be
observable at temperatures above the Wigner crystal melting
point.

It is likely that these unusual transport features are not
unique to Rashba systems. It would be interesting to deter-
mine exactly what aspects of this Hamiltonian are responsible
for such nonlinear behavior. If the key aspect is the degenerate
ring minimum in the band structure, then such features could
also be observed in materials with pure Dresselhaus SOC [42].
If the key aspect is the topology of the Fermi sea, then these
features could appear in higher dimensional systems as well.
Indeed, if the same quantization occurs in three-dimensional
systems, then the group of candidate materials for experimen-
tal observation would be enlarged significantly.
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APPENDIX A: SYMMETRY OF T l (E)

Besides rotation symmetry, which allows us to expand
the T matrix in circular harmonics with coefficients T l (E),
the Rashba T matrix for circular impurity potentials is also
symmetric under reflections in the y − z plane. In the spin
basis, this means

σxT (Mx (k, k′))σx = T (k, k′), (A1)

where Mx maps kx to −kx . Transforming to the helicity basis,
this condition becomes

(−ie−iφkσz)T (Mx (k, k′))(ieiφk′ σz) = T (k, k′). (A2)

Both sides may be expanded in circular harmonics,∑
l

e−i(l+1)(φk−φk′ )σzT
l (E)σz =

∑
l

eil(φk−φk′ )T l (E). (A3)

Shifting l → −l − 1, we get

σzT
−l−1(E)σz = T −l (E). (A4)

For the lower helicity component T−−, this means

T l−1(E) = T −l (E). (A5)

Note that this condition guarantees detailed balance in the
Boltzmann scattering rate Eq. (6), since

|T k′k|2 =
∣∣∣∣∣
∑

l

T l (E)eil(φk′−φk )

∣∣∣∣∣
2

(A6)

=
∣∣∣∣∣
∑

l

T −l (E)eil(φk−φk′ )

∣∣∣∣∣
2

(A7)

=
∣∣∣∣∣
∑

l

T l−1(E)eil(φk−φk′ )

∣∣∣∣∣
2

(A8)

=
∣∣∣∣∣
∑

l

T l (E)eil(φk−φk′ )

∣∣∣∣∣
2

|ei(φk−φk′ )|2 (A9)

= |T kk′ |2. (A10)

Another important consequence of this symmetry is the
identity ∫ 2π

0

dφ

2π
sin φ|T kk′ |2 = 0, (A11)

where φ is the angle between k and k′. This follows from
expanding the left-hand side in circular harmonics to get

1

2i

∑
l

(T l (E)∗T l−1(E) − T l (E)∗T l+1(E))

= 1

2i

∑
l

(T −l (E)∗T l (E) − T −l (E)∗T l (E)) (A12)

= 0, (A13)

where we used mirror symmetry and shifted the summation
index in each term.

APPENDIX B: DERIVATION OF IMPORTANT INTEGRALS

1. I l
−

We first derive the low-energy form of I l
− [Eq. (48)]. This

is the integral that governs the energy dependence of the T

matrix. We use the cutoff scheme k0(1 − �) < k < k0(1 +
�) with � 
 1, and letting ε = (q − k0)/k0, we have

I l
− = m

2π

∫ �

−�

dεf (ε; E), (B1)

where

f (ε; E) ≡ (1 + ε)[V l (k0, k0(1 + ε))+V l+1(k0, k0(1 + ε))]

(E + μ)/E0 − ε2 − �(E)/E0
.

(B2)

The integrand f (ε; E) has two poles located at ε = ±z, where

z ≡
√

(E + μ)/E0 − �(E)/E0. (B3)

We can perform this integral by considering a semicircular
contour of radius � through the upper half-plane, so that

I l
− = mi Res

ε=z
f (ε; E) − mi�

2π

∫ π

0
dφ eiφf (�eiφ ; E). (B4)

Keeping terms in the numerator of f (�eiφ ; E) at lowest order
in �, we have

I l
− = mi Res

ε=z
f (ε; E) − i�δ∗

l

π

∫ π

0

dφ eiφ

z2 − �2e2iφ
, (B5)

where we have discarded the O(�) terms in the expansion
of V l (k0, k0(1 + �eiφ )) since these are suppressed by an
additional factor of k0R that we take to be small. Each pole
is located a distance z from the origin. Whether or not our
contour encloses the ε = +z pole depends on the low-energy
behavior of the (unknown) self-energy. We now show that
the contour must enclose this pole. We will make use of the
following identity:∫ π

0

dφ eiφ

z2 − �2e2iφ
=

{
2i
z�

Arctanh
(

�
z

)
, � < |z|,

− 2i
z�

Arctanh
(

z
�

)
, � > |z|, (B6)

Arctanh(x) being the principal value of arctanh(x). Suppose
for contradiction that the ε = +z pole lies outside our contour.
Then, we have the first of the two cases in Eq. (B6), and the
residue is zero:

I l
− = 2δ∗

l

πz
+ O(�3/z4). (B7)

This would mean |I l
−| < � 
 1, so that T l (E) ≈ δ∗

l /m, us-
ing Eq. (49). In that case, the self-energy would be

�(E) = ni

m
(mV−−(k0, k0)). (B8)

The prefactor must satisfy ni/m 
 �2E0 so that the aver-
age impurity spacing is much larger than the inverse of the
momentum cutoff scale. This implies that |�(E)/E0| 
 �2

(provided the impurity strength is not too large). But in the
low-energy regime we are considering, (E + μ)/E0 
 �2

as well, and so |z| 
 �, which is a contradiction. Thus the
ε = +z pole contributes to Eq. (B5), and using the second
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case of Eq. (B6), we have

I l
− ≈ − iδ∗

l

z
+ i�δ∗

l

π

(
2i

z�
Arctanh(z/�)

)

= −i
δ∗
l

z
− 2δ∗

l

π�
+ O(|z|2/�3). (B9)

2. Density of states

We may apply the same contour to evaluate the integral in
the density of states. From Eq. (59),

g(E) = − m

π2
Im �̃/E0

×
∫ �

−�

dε(ε + 1)

((E + μ̃ − Re �̃)/E0 − ε2)2 + (Im �̃/E0)2
.

(B10)

The ε term in the numerator is odd, so we need only evaluate
the integral

g(E) = − m

π2

Im �̃

E0

∫ �

−�

dε

(a − ε2)2 + b2
, (B11)

where a ≡ (E + μ̃ − Re �̃)/E0 and b ≡ Im �̃/E0. The inte-
grand now has two poles in the upper half-plane, ε = ∓z± ≡
∓√

a ± ib, both with magnitude (a2 + b2)1/4. By the same
reasoning as before, these poles must be contained within the
semicircle of radius � and therefore contribute residues to the
integral. The integral over the semicircle is given by

i�

∫ π

0

dφ eiφ

(a − �2e2iφ )2 + b2

= −�

2b

( ∫ π

0

dφ eiφ

z2+ − �2e2iφ
−

∫ π

0

dφ eiφ

z2− − �2e2iφ

)
(B12)

= i

b

[
1

z+
Arctanh(z+/�) − 1

z−
Arctanh(z−/�)

]
, (B13)

using Eq. (B6) again. The result is zero to order |z|2/�3. Thus
we are just left with the residue contribution,

g(E) = m

π2

Im �̃

E0

π

2b

(
1√

a + ib
+ 1√

a − ib

)
(B14)

= m

π
Re

(√
E0

E + μ̃ − �̃(E)

)
. (B15)

3. Advanced-retarded integrals

It turns out that all the integrals that enter the advanced-
retarded part of the conductivity are simply higher moments
of the density of states integral and can be solved analogously.
We will look at the first three moments, denoted P1, P2, P3.
From Eq. (59), we immediately see that

P1 ≡
∫ k0(1+�)

k0(1−�)
dp pGA(p,E)GR (p,E) (B16)

= −2π2

E0 Im �̃
g(E). (B17)

Likewise,

P2 ≡
∫ k0(1+�)

k0(1−�)
dp

p2

m
GA(p,E)GR (p,E) (B18)

= k3
0

mE2
0

∫ �

−�

dεε2

(a − ε2)2 + b2
+ λP1. (B19)

This time the integration over the semicircle gives

i�3
∫ π

0

dφ e3iφ

(a − �2e2iφ )2 + b2

= i

b
[z− Arctanh(z−/�) − z+ Arctanh(z+/�)] ≈ 2/�.

(B20)

Adding the residue contribution gives

P2 = λP1 − 4

λ

(
2

�
+ π

Im �̃
Re(

√
(E + μ̃)/E0 − �̃(E))

)
.

(B21)

Lastly, the third moment can be obtained from the first two:

P3 ≡
∫ k0(1+�)

k0(1−�)
dp

p3

m2
GA(p,E)GR (p,E) (B22)

= 4
∫ �

−�

dε(ε + 1)3

(1 − ε2)2 + b2
(B23)

= λ(3P2 − 2λP1). (B24)
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