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Spontaneous formation of spin lattices in semimagnetic exciton-polariton condensates
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An exciton-polariton microcavity that incorporates magnetic ions can exhibit spontaneous self-trapping
phenomenon which is an analog of the classical polaron effect. We investigate in detail the full model of a
polariton condensate that includes pumping and losses, the spin degree of freedom, external magnetic field,
and energy relaxation. In the quasi-one-dimensional case, we show that the polaron effect can give rise to a
spontaneous lattice of perfectly arranged polarization domains in an antiferromagnetic configuration. We find
that partial polarization of the condensate at moderate magnetic field strengths facilitates formation of such
“polaron lattices,” which are qualitatively different from self-trapped polarons that appear in a fully polarized
condensate. Within Bogoliubov–de Gennes approximation, we calculate an instability condition which marks
the appearance of patterns. Surprisingly, we find that the stability condition displays a discontinuity at the point
of partial-full polarization threshold.
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I. INTRODUCTION

Diluted magnetic (also known as semimagnetic) semicon-
ductors are characterized by exchange interaction between
spins of magnetic ions and carriers, which leads to phenomena
such as the giant Zeeman effect [1–5]. Magnetic polarons are
spin-organized bound states formed due to this interaction.
This concept was first proposed by de Gennes in 1960 [6]
and thoroughly investigated both theoretically and experimen-
tally in semimagnetic semiconductors [7–13] in the cases of
impurity-bound and free (self-trapped) polarons.

In microcavity semiconductor structures, exciton-polariton
quasiparticles exist when exciton-photon coupling is strong
enough [14–16]. These light-matter quasiparticles can Bose
condense even at room temperature due their effective mass
which is many orders of magnitude smaller than the electron
mass [17–19]. Furthermore, exciton-polariton condensates al-
lowed for the observation of some fascinating phenomena,
from superfluid excitations [20–26] to solitons [27–29]. Sev-
eral possible applications have been put forward as well, rang-
ing from low threshold lasers [30,31], to all-optical transistors
[32–34], to quantum simulation [35,36].

In semimagnetic polariton systems, it was demonstrated
theoretically that self-trapping phenomenon can occur for
realistic system parameters thanks to the strong exciton-ion
interaction and polariton coherence in a condensed state.
Existence of self-trapped “polariton-polarons” was theoreti-
cally predicted both in the equilibrium case [37] and in the
nonequilibrium case which includes the effect of pumping and
losses [38]. Note that a qualitatively different, nonmagnetic
collective polaron effect was observed in an exciton-polariton
system [29] due to interaction with lattice phonons [39].

In this paper we investigate magnetic self-trapping in a
semimagnetic polariton condensate taking into account both
the spin degree of freedom, pumping and losses, and energy
relaxation. We consider a Cd1−xMnxTe microcavity that has
been recently realized experimentally [5,40,41]. In our model,

the magnetic ion subsystem is fully thermalized, but the
polariton subsystem is far from thermal equilibrium, as sug-
gested by experiments [5,42]. Nevertheless, we find that in the
phase diagram of the system the inverse of polariton relaxation
rate plays the role of the effective polariton temperature.

We show that the system spontaneously forms intricate
spin structures even at relatively low magnetic field strength.
We find that spontaneous spin lattices are formed with side-
by-side antiferromagnetic arrangement of spin domains. At
higher magnetic fields or when the ion-exciton interaction
is stronger, the system develops more typical polariton self-
trapping similar to the previously considered spin-polarized
case [37,38]. Using the Bogoliubov–de Gennes method, we
calculate an analytical condition for stability of the system
and compare it with numerical results. Interestingly, we find a
jump of the stability threshold when entering a spin-polarized
state, which is due to the lack of partially spin-polarized
excitations in this case. Our results should pave the way for the
first direct observation of magnetic self-trapping and pattern
formation in a semiconductor system.

II. MODEL

We take into consideration a two-dimensional cavity with
a microwire that confines the condensate in one dimension
[43,44]. In the mean-field approximation, exciton-polaritons
can be described with coupled one-dimensional complex
Ginzburg-Landau equations for macroscopic wave functions
[37,38]

i(1 + i�)h̄
∂ψσ

∂t

= − h̄2

2m∗
∂2ψσ

∂x2
+ g1|ψσ |2ψσ + g2|ψ−σ |2ψσ

+ iPψσ − i
1

2
γLψσ − iγNL|ψσ |2ψσ − σλMψσ , (1)
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where (1 + i�) is a term that corresponds to energy relaxation
with the energy dissipation factor � [45]. This term introduces
not only relaxation of kinetic energy, but also relaxation in
the spin space between two polarizations σ = σ+, σ−. The
g1 and g2 coefficients are constants of interaction between
same and oppositely polarized spins, P is the external uniform
pumping, m∗ is the effective mass, and γL, γNL are linear and
nonlinear loss coefficients. The last term corresponds to the
influence of diluted magnetic ions. This effective additional
potential depends on spin σ , magnetic ion-polariton interac-
tion constant λ, and the mean-field ion magnetization M (x, t ).
Note that in our simple model, we do not take into account the
exciton reservoir as a separate degree of freedom. Such an
assumption is justified in the limit of adiabatic approximation
to the reservoir dynamics [46,47].

Magnetic ion dynamics can be described by the spin relax-
ation equation [48]

∂M (x, t )

∂t
= 〈M (x, t )〉 − M (x, t )

τM
, (2)

with a characteristic ion spin relaxation time τM. Here
〈M (x, t )〉 is the equilibrium value of magnetization given by
the Brillouin function [49]

〈M (x, t )〉 = nMgMμBJ BJ

(
gMμBJBeff

kBT

)
, (3)

where

BJ(x) = 2J +1

2J
coth

(
2J +1

2J
x

)
− 1

2J
coth

(
1

2J
x

)
, (4)

and nM is the concentration of ions, gM is the g factor, J =
5/2 is the total spin of a Mn ion, μB is the Bohr magneton, T is
the temperature of the ion subsystem, and kB is the Boltzmann
constant. The magnetic field felt by the ions is effectively
increased by the spin polarization of the condensate

Beff = B + λSZ, (5)

where B is the external magnetic field. The pseudospin
density SZ is given by 1

2 (|ψ+|2 − |ψ−|2) and polariton-ion
coupling constant λ is given by the ion-exciton exchange
interaction βEX, the excitonic Hopfield coefficient X, and the
width of the quantum well LZ [37],

λ = βEXX2

μBgMLZ
. (6)

We neglect the effect of intrinsic exciton Zeeman splitting
that is unnoticeable at weak fields [5,50] and TE-TM splitting
which could cause polariton spin precession [51], but can be
avoided by an appropriate sample design.

III. HOMOGENEOUS SOLUTIONS

We begin the analysis of the system by considering station-
ary homogeneous states in the absence of self-trapping. The
stationary solutions can be described with the density nσ and
the chemical potential μσ of each component

ψ
(0)
+ (x, t ) = √

n+e−iμ+t/h̄, (7)

ψ
(0)
− (x, t ) = √

n−e−iμ−t/h̄, (8)

FIG. 1. Pseudospin-polarization degree of a homogeneous con-
densate shown in coordinates of the magnetic field B and the inverse
of energy relaxation 1/� at 0.1 K temperature. Black and blue lines
are theoretical boundaries of full polarization (Sz = N/2) in the
weak and strong magnetic field limit, respectively. The dependence
of polarization degree on 1/� allows us to interpret it as an effective
nonequilibrium “temperature.”

M (0)(x, t ) = 〈M〉. (9)

After substituting Eqs. (7) and (8) into (1), from the real and
imaginary part of the equation we obtain the conditions

Peff − n+γNL − �(n+g1 + n−g2 − λM ) = 0, (10)

Peff − n−γNL − �(n−g1 + n+g2 + λM ) = 0, (11)

where the effective pumping Peff = P − 1
2γL. Clearly the

terms in the parentheses correspond to modification of losses
due to relaxation, proportional to the potential for a given spin
component.

Equations (10) and (11) together with Eq. (3) allow us
to find numerical densities n+, n− and magnetization M . In
Fig. 1 we show the polariton pseudospin polarization degree
as a function of the magnetic field B and the inverse of the en-
ergy relaxation 1/�. The results were obtained by simulating
system evolution without the kinetic energy term until a stable
state was reached, for each point in the figure. The computed
mean value of the polarization degree, i.e., 2SZ/N , where
N = |ψ+|2 + |ψ−|2, is shown for the final steady states. We
also depict in Fig. 1 the analytically predicted boundaries of
full polarization of steady states in the limit of weak and
strong magnetic field, marked with lines. In the weak mag-
netic field limit, the Brillouin function can be linearized and
in the strong magnetic field limit, the value of magnetization
saturates, so in both cases the equations become solvable. The
details of the calculation are given in Appendix A.

We note that the phase diagram depicted in Fig. 1 re-
sembles the one that was obtained in the case of thermal
equilibrium [37] provided that the temperature is replaced
with the inverse of the relaxation rate 1/�. Hence, one can
argue that 1/� plays the role of an effective temperature of the
polariton subsystem. Similar conclusions were obtained pre-
viously in several works discussing this analogy in the context
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of nonequilibrium condensates [52–55]. This analogy can be
explained intuitively: for large relaxation rates �, as compared
to the polariton lifetime, the system is expected to be close
to the polariton ground state, which is the condensate state
within the equilibrium theory. With decreasing temperature
(or increasing relaxation rate) the ions and polaritons are more
likely to align in the direction of the external magnetic field,
which translates to a larger polarization degree.

IV. INSTABILITY AND POLARON FORMATION

We now investigate the stability of homogeneous states and
demonstrate the formation of polarons and polaron lattices in
the unstable regime. We take into account the spin degree of
freedom, in contrast to previous studies where self-trapped
polarons were fully polarized [37,38]. The self-trapping effect
was shown to occur far from the thermal equilibrium [38] due
to ion-exciton interaction, which induces an effective attrac-
tive interaction between polaritons. Within this interpretation,
self-trapped polarons can be considered as bright solitons in
analogy to the conservative nonlinear Schrödinger equation
systems [57].

Here we show that in the case when the condensate is
not fully polarized, the system can develop coherent spatial
structures that are qualitatively different from such “bright
soliton” polarons. They take the form of “polaron lattices,”
which are perfectly aligned domains of condensate polariza-
tion in an antiferromagnetic configuration, see Fig. 2(a). The
phase difference between the polarons in the lattice appears
to be random (not shown) thus we do not investigate the role
of phase fluctuation in the system with respect to formation
of long-range order. Formation of these structures appears to
be triggered by phase separation between spin-up and spin-
down components, as follows from the analysis within the
Bogoliubov approximation, described in detail in Sec. V. For
comparison, in Fig. 2(b) we show the bright soliton polaron
structures that appear when the condensate is completely spin
polarized. Clearly the arrangement of polarons in this case
is less regular, and they differ in width and amplitude. They
may also experience complicated dynamics, in contrast to the
stable lattice structures from Fig. 2(a). The dynamics of such
structures was described in our previous work [38].

In Figs. 2(c)–2(f) we depict the typical dynamics of the
system described by Eqs. (1) and (2) in the case corresponding
to Fig. 2(a). The initial state is a stationary state as in Eqs. (7)
and (8) disturbed by a small white noise. The creation of
polaron lattice appears to follow the same path as in the case of
polarized polarons [38], however with an important difference
that the final state is of perfectly aligned and equal amplitude
peaks. The mean distance between peaks is inversely pro-
portional to the most unstable k mode, i.e., momentum that
correspond to the maximum value of the imaginary part of
the Bogoliubov dispersion relation obtained by linearization
around the homogeneous solutions given in Eqs. (7)–(9) (see
Sec. V). The total density, depicted in Fig. 2(c), is only
slightly varying. On the other hand, the polarization degree in
Fig. 2(d) is strongly modulated due to the antiferromagnetic
configuration of domains. Importantly, such an alternating
spin structure can be the factor that will allow us to distinguish

FIG. 2. (a) Example of the densities of the σ+ and σ− com-
ponents and the total density |ψ |2 = |ψ+|2 + |ψ−|2 in a “polaron
lattice” state with alternating spin-up and spin-down domains.
(b) The same for a fully polarized case, a set of localized polarons is
visible. (c)–(f) Evolution of the exciton-polariton condensate leading
to the formation of lattice from (a). Shown are (c) total density |ψ |2,
(d) normalized pseudospin SZ/|ψ |2, (e) density of the σ+ component,
and (f) density of the σ− component. Parameters of the simulation are
given in [56].

self-localized polaron lattices from density fluctuations that
are simply trapped in a defect of the sample.

The crucial parameter for the emergence of polarons is the
ion-polariton coupling that should be within an appropriate
range. Weak coupling will not lead to a sufficiently strong
ion mediated interaction effect, while too strong coupling
leads to the saturation of the Brillouin function. Figures 3
and 4 present the stability diagrams of the homogeneous
state computed using the Bogoliubov–de Gennes method (see
Sec. V) and verified numerically by solving Eqs. (1) and (2).
Although the polaron lattice is a stable solution we cannot
exclude that there may occur other instabilities. The figures
are depicted in a parameter space of ion-polariton coupling λ

vs temperature T and energy relaxation factor �, respectively.
The color scale illustrates the instability rate: cyan color
shows that the system is stable (it is marked as an additional
zero on the logarithmic scale), other colors represents unstable
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FIG. 3. Diagram of stability in coordinates of the ion-polariton
coupling constant λ and temperature T . Red line corresponds to the
boundary between fully and partially spin-polarized condensate as
predicted by the homogeneous state analysis. Polaritons are partially
polarized on the left-hand side and fully on the right-hand side. The
regions marked as A (in particular the dot point) and B (in particular
the cross point) correspond to the states shown in Figs. 2(a) and 2(b),
respectively. Magnetic field B = 0.01 T and relaxation � = 0.001.

states where κ is defined as the largest value of the imaginary
part of the Bogiubov eigenfrequency (see Sec. V). Note that
homogeneous states are partially polarized on the left side
of the red line and fully polarized on the right side. The
change of the states at the red line bound is continuous and
thus there are no bistabilities. Hence, the red line shows the
boundary between partially and fully spin-polarized conden-
sate, although for the inhomogeneous polaron states the limit
is slightly different than the analytical one depicted by the
line. One can observe that there is a noncontinuous shift of
stability threshold when crossing the red line. While this shift
may seem tiny, one should take into account that the figures
are plotted on a logarithmic scale. The shift of the stability

FIG. 4. Same as Fig. 3, but in coordinates of the ion-polariton
coupling constant λ and energy relaxation factor �. Crosses and
dots mark the theoretical predictions of stability threshold for fully
and partially polarized condensate, Eqs. (17) and (16), respectively.
Magnetic field B = 0.01 T and temperature T = 0.1 K.

threshold is actually quite substantial (about a factor of
√

2 on
the λ axis) and it is discussed in detail in Sec. V.

Note that in Fig. 3 at very low temperatures the condensate
is stable for all values of λ. As we previously demonstrated
[38], the range of such stable temperatures increases with the
external magnetic field strength. According to Fig. 3 stability
depends strongly on the temperature while in Fig. 4, for
partially polarized condensate (left of the red line), stability
does not depend on � (see also Sec. V). Hence, with regard to
stability, the temperature of the ion subsystem appears to be
more important than the effective nonequilibrium temperature
of the polariton subsystem. This is understandable as the
response given by the Brillouin function depends explicitly on
the ion temperature only. The crosses and dots in Fig. 4 mark
the analytical predictions of the stability boundary in the case
of fully and partially polarized condensate, according to the
Eqs. (16) and (17), which agree very well with the numerical
results.

V. STABILITY ANALYSIS

We perform analysis of stability of the condensate within
the Bogoliubov–de Gennes approximation. For convenience,
we introduce a dimensionless form of the model. By rescaling
space, time, wave function, and other parameters as x =
ξ x̃, t = αt̃ , ψσ = (ξβ )−1/2ψ̃σ , g(1,2) = h̄ξβα−1 ˜g(1,2), Peff =
h̄α−1P̃eff , γNL = h̄ξβα−1 ˜γNL, M = ζM̃ , λ = h̄α−1λ̃, we
obtain (we omit tildes below)

i(1 + i�)
∂ψσ

∂t
= −∂2ψσ

∂x2
+ g1|ψσ |2ψσ + g2|ψ−σ |2ψσ

+ iPeffψσ − iγNL|ψσ |2ψσ − σζλMψσ ,

(12)

∂M

∂t
= α

τM
{JBJ[δλ(|ψ+|2 − |ψ−|2)] − M}, (13)

where ξ = √
h̄α/2m∗, ζ = gMμBnM, δ = gMμBJ

2kBT
h̄

αβξ
, while α,

β are free parameters of the scaling.
As we previously demonstrated [38], the appearance of the

polarons is related to the instability of the homogeneous sta-
tionary state. To analyze the stability we perturb the stationary
solution [58] (7)–(9)

ψ+ = ψ
(0)
+

[
1 + ε

∑
k

{uk (t )eikx + vk (t )e−ikx}
]
,

ψ− = ψ
(0)
−

[
1 + ε

∑
k

{rk (t )eikx + sk (t )e−ikx}
]
,

M = M (0)

[
1 + ε

∑
k

{wk (t )eikx + w∗
k (t )e−ikx}

]
, (14)

where ε is a small parameter. Substituting Eqs. (14) into
Eqs. (1) and (2) and then taking ε up to the first or-
der and expanding Brillouin function up to the first order
term we obtain the usual eigenvalue problem QkUk = ωkUk ,
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where Uk = (uk, v
∗
k , rk, s

∗
k , wk )T and

Qk =

⎛
⎜⎜⎜⎜⎝

(k2 + n+g̃1)�̃ n+g̃1�̃ n−g2�̃ n−g2�̃ −JBJλζ �̃

−n+g̃1
∗�̃∗ −(k2 + n+g̃1

∗)�̃∗ −n−g2�̃
∗ −n−g2�̃

∗ JBJλζ �̃∗

n+g2�̃ n+g2�̃ (k2 + n−g̃1)�̃ n−g̃1�̃ JBJλζ �̃

−n+g2�̃
∗ −n+g2�̃

∗ −n−g̃1
∗�̃∗ −(k2 + n−g̃1

∗)�̃∗ −JBJλζ �̃∗

i α̃n+δλB̃J i α̃n+δλB̃J −i α̃n−δλB̃J −i α̃n−δλB̃J −i α̃

⎞
⎟⎟⎟⎟⎠, (15)

where g̃1 = g1 − iγNL, �̃ = (1 + i�)−1, α̃ = α/τM, B̃J =
B ′

J/JBJ, and BJ = BJ[δλ(n+ − n−)]. Figures 3 and 4 show
the numerical solution of this eigenvalue problem in param-
eter space. Stable configurations, for which all ωk have a
negative imaginary part, are marked with cyan color, while
unstable ones with color that represents the fastest rate of the
instability (the largest imaginary part of ωk).

Using the method of analysis of zeros of the corresponding
polynomial [59], we calculate analytically the stability condi-
tion (see Appendix B)

λ2B ′
J

(
gMμB

2kBT
Jλ(n+ − n−)

)
<

(g1 − g2)kBT

nMg2
Mμ2

BJ 2
(16)

and compare it with the analogous condition in the fully
polarized case [38]

λ2B ′
J

(
gMμB

2kBT
Jλn+

)
<

2g1kBT

nMg2
Mμ2

BJ 2
. (17)

Notice the factor of 2 in the nominator on the right-hand side
of the above equation. These conditions do not depend on the
energy relaxation �, the fact that is reproduced in Fig. 4, and
weakly depend on the polariton density. Note that condition
(16) is valid in the case when (g1 + g2) > 0, which is always
satisfied in polariton condensates.

The discontinuity of the stability threshold in Figs. 3 and 4
is caused by the transition from the polarized to nonpolarized
regime and the reduction of the number of degrees of freedom
for the excitations. Indeed, in the fully polarized case, the
stability threshold is given by Eq. (17) while in the partially
polarized case a stronger condition Eq. (16) should be taken

FIG. 5. Imaginary part of eigenfrequencies ωk of Bogoliubov
quasiparticles, for parameters corresponding to Fig. 2(a).

into account. As a result, the system becomes unstable at
weaker coupling λ. The ratio of the critical values of the
ion-polariton coupling constants in the two cases (λF for fully
and λP for partially polarized) can be estimated as

λF

λP
=

√
2g1

g1 − g2
(18)

in the limit of small λ when the derivative of the Brillouin
function is roughly constant. As in the realistic system the
intercomponent interaction constant g2 is much smaller than
intracomponent interaction constant g1, this leads to a roughly√

2 jump of the stability threshold. Physically, this reduced
threshold for stability is related exactly to the appearance of
a new inhomogeneous state of polaron lattice in the partially
spin-polarized regime. In Appendix C we show, in the adi-
abatic regime, the physical origin of this conditions.A plot
of imaginary parts of eigenfrequencies of the Bogoliubov
quasiparticles is shown in Fig. 5. It corresponds to the sim-
ulated evolution presented in Fig. 2(a). In contrast to the full
polarized case [38], the spectrum has five branches instead
of three. Two additional branches (green and black lines in
Fig. 5) appear in the partially polarized case, therefore they
correspond to counterpolarized polaritons. The red branch has
values above zero, which evidences dynamical instability of
the condensate.

VI. CONCLUSIONS

In conclusion, we investigated a partially polarized
exciton-polariton condensate in a semimagnetic semiconduc-
tor microcavity. In a system which is far from equilibrium,
we demonstrated several regimes of dynamics. We observed
numerically stable solutions, polaron lattice formation with
antiferromagnetic arrangement, and spin-polarized polaron
regime. The lattice regime is particularly significant for ex-
periments, since it can be distinguished in a straightforward
way from density fluctuations trapped on defects of the semi-
conductor microcavity. We derived a critical condition for
the formation of polarons which is different from the one
predicted in the fully polarized case.
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APPENDIX A: HOMOGENEOUS STATIONARY STATES
IN THE WEAK AND STRONG MAGNETIC FIELD LIMITS

In this Appendix we calculate the partial-full polarization
boundary in the limits of weak and strong magnetic field. In
the weak field limit the Brillouin function can be linearized:

M = JBJ[δλ(n+− n−) + 2δB0]

≈ c δλ(n+− n−) + 2c δB0, (A1)

where c = J (J + 1)/3. From the condition for the two-
component stationary state, Eqs. (10) and (11), we can esti-
mate the value of n+ at the full-partial polarization boundary
by substituting n− = 0,

n+ = 2Peff

�g1 + �g2 + γNL
. (A2)

By substituting M and n+ into Eq. (10) we get a quadratic
equation for �,

1

�2
α − 1

�
(β + γB0) − εB0 = 0, (A3)

where α = PeffγNL, β = Peff (2ζλ2δc − g1 + g2), γ =
2ζλδcγNL, ε = 2ζλδc(g1 + g2). Note that α, γ , and ε

are positive. The appropriate solution is given by

1

�
= β + γB0

2α
+

√
(β + γB0)2 + 4αεB0

2α
. (A4)

When the magnetic field is strong, the magnetization is satu-
rated and the Brillouin function attains the maximum value of
unity

M = J BJ[δλ(n+ − n−) + 2δB0] = J. (A5)

We can obtain the equation for 1/� by putting M , n+ into

Eq. (10),

1

�2
PeffγNL − 1

�
[ζλJγNL − Peff (g1 − g2)]

− ζλJ (g1 + g2) = 0. (A6)

The positive solution for 1/� does not depend on B0,

1

�
= ζλJγNL − Peff (g1 − g2)

2PeffγNL

+
√

[ζλJγNL−Peff (g1−g2)]2+4PeffγNLζλJ (g1+g2)

2PeffγNL

(A7)

and for g2 � g1 can be estimated as

1

�
= ζλJ

Peff
. (A8)

APPENDIX B: BOGOLIUBOV ANALYSIS

Determining condition (16) consists of solving the eigen-
value problem QkUk = ωkUk with Bogoliubov matrix (15)

det Lk = det(Qk − 1ω) = 0. (B1)

Analyzing the solutions in the limits k → 0 and k → ∞
reveals two (in the case of partial polarization) or three (full
polarization) solutions of Im(ω) = 0 at k = 0 and five nega-
tive solutions in k → ∞ limit. It turns out that analogously to
[38,59] only the purely imaginary branch may have positive
imaginary part of the frequency (the red branch in Fig. 5).
Similar as in [38,59], we find the zero-frequency crossing of
Im(ω) as a function of k. Since Re(det Lk ) = 0 we consider
the ω1 = 0 solution and substitute it into Im(det Lk ) to obtain

k8 + 2k6(n+ + n−)(g1 − B ′
Jδλ

2ζ ) + 4k4n+n−
[(

g2
1 − g2

2

) − 2B ′
Jδλ

2ζ (g1 + g2)
] = 0. (B2)

Apart from k = 0 solutions we get

k2 = (n+ + n−)(B ′
Jζ δλ2 − g1) ±

√
(n+ + n−)2(B ′

Jζ δλ2 − g1)2 − 4n+n−
[(

g2
1 − g2

2

) − 2B ′
Jδλ

2ζ
(
g1 + g2

)]
. (B3)

Condensate is stable only if there is no zero crossing of Im(ω)
as a function of k, for k2 > 0. This is the case when the right-
hand side of Eq. (B3) is less then zero. Otherwise, a range of k

with positive imaginary part must exist. It is easy to check that
the expression under the square root on the right-hand side of
(B3) is always positive. Considering the solution with the plus
sign leads to the condition

B ′
Jλ

2 <
g1 − g2

2δζ
. (B4)

This condition is more restrictive than B ′
Jζ δλ2 < g1 derived

for the fully polarized case, which is due to the presence of n−
component. The above formula is rewritten in physical units
in (16).

APPENDIX C: ADIABATIC APPROXIMATION

In the adiabatic approximation we assume that the spin
relaxation time τM is much shorter than other timescales in

the system, and consequently M = 〈M〉. By expanding the
Brillouin function up to the first order around the stationary
value BJ(δλ �n) where �n = n+−n−, we get

M (x, t ) = JBJ [δλ(|ψ+|2−|ψ−|2)]

≈ M0 + Jδλ(|ψ+|2−|ψ−|2)B ′
J , (C1)

where we used the notation M0 =JBJ−Jδλ �nB ′
J, B ′

J =
B ′

J(δλ �n). Substituting Eq. (C1) to the dimensionless form
of the complex Ginzburg-Landau equation Eq. (12) leads to

i(1 + i�)
∂ψσ

∂t
= −∂2ψσ

∂x2
+ (g1 − βB ′

J )|ψσ |2ψσ

+ (g2 + βB ′
J )|ψ−σ |2ψσ + i(Peff

− γNL|ψσ |2)ψσ − σζλM0ψσ , (C2)

where β = Jζλ2δ.
We now investigate the stability of the stationary state in

the limit of low kinetic energies by a method alternative to the
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Bogoliubov approximation. The effective potential for the σ

component is

Uσ = (g1 − βB ′
J )nσ + (g2 + βB ′

J )n−σ − σζλM0. (C3)

We consider slight local changes of densities �n+ and �n−
assuming that the value of the derivative of the Brillouin
function remains approximately the same. Our question is
whether such local fluctuations will have the tendency to
grow in time or if they will decay. We consider slow, almost
stationary dynamics so assume that the chemical potentials
remain practically unchanged

0 ≈ (g1 − βB ′
J )�n+ + (g2 + βB ′

J )�n−, (C4)

0 ≈ (g1 − βB ′
J )�n− + (g2 + βB ′

J )�n+. (C5)

We inspect how the change of �n+ affects the potential U+.
The positive value of �U+/�n+ corresponds to a stable
condensate since the polariton effective mass is positive. Neg-
ative value of �U+/�n+ means that the density fluctuation

creates an effectively attractive potential which leads to
further density growth, leading to instability. Combining
Eqs. (C3) and (C4) we obtain

�U

�n+
= (g1 − βB ′

J ) − (g1 − βB ′
J ) > 0, (C6)

which leads to the stability condition in the fully polarized
case βB ′

J < g1 that is equal, in physical units, to Eq. (17). On
the other hand, from Eqs. (C3) and (C5) we get

�U

�n+
= (g1 − βB ′

J ) − (g2 + βB ′
J )2

g1 − βB ′
J

> 0, (C7)

which leads to the condition

(g1 − g2 − 2βB ′
J )(g1 + g2) > 0. (C8)

Since in a polariton gas we have g1 + g2 > 0, the condition
for stability is

βB ′
J <

g1 − g2

2
, (C9)

which corresponds to (16) in physical units.
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P. Plochocka, M. Potemski, and P. Kossacki, Phys. Rev. B 92,
045412 (2015).

[10] T. Dietl, P. Peyla, W. Grieshaber, and Y. Merle d’Aubigné, Phys.
Rev. Lett. 74, 474 (1995).

[11] T. Dietl, Phys. Rev. B 91, 125204 (2015).
[12] C. B. A La Guillaume, Phys. Status Solidi (b) 175, 369 (1993).
[13] A. V. Kavokin and K. V. Kavokin, Semicond. Sci. Technol. 8,

191 (1993).
[14] J. J. Hopfield, Phys. Rev. 112, 1555 (1958).
[15] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys.

Rev. Lett. 69, 3314 (1992).
[16] G. M. A. V. Kavokin, J. J. Baumberg and F. P. Laussy, Micro-

cavities (Oxford University Press, Oxford, 2007).
[17] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,

J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André,

J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S.
Dang, Nature (London) 443, 409 (2006).

[18] S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D.
Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G.
Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean,
Phys. Rev. Lett. 98, 126405 (2007).

[19] K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen,
Nat. Mater. 13, 271 (2014).

[20] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I.
Carusotto, R. Houdré, E. Giacobino, and A. Bramati, Nat. Phys.
5, 805 (2009).

[21] G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S.
Daskalakis, L. Dominici, M. De Giorgi, S. A. Maier, G. Gigli,
S. Kéna-Cohen, and D. Sanvitto, Nat. Phys. 13, 837 (2017).

[22] K. G. Lagoudakis, B. Pietka, M. Wouters, R. André, and B.
Deveaud-Plédran, Phys. Rev. Lett. 105, 120403 (2010).

[23] M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac,
L. Ferrier, I. Sagnes, E. Galopin, A. Lemaître, G. Malpuech, and
J. Bloch, Nat. Phys. 9, 275 (2013).

[24] K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I.
Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, Nat.
Phys. 4, 706 (2008).

[25] D. Sanvitto, F. M. Marchetti, M. H. Szymanska, G. Tosi, M.
Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L.
Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, Nat.
Phys. 6, 527 (2010).

[26] K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H.
Liew, V. Savona, A. V. Kavokin, R. André, and B. Deveaud-
Plédran, Phys. Rev. Lett. 106, 115301 (2011).

[27] A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I.
Carusotto, F. Pisanello, G. Leménager, R. Houdré, E. Gia-
cobino, C. Ciuti, and A. Bramati, Science 332, 1167 (2011).

[28] M. Sich, D. N. Krizhanovskii, M. S. Skolnick, A. V. Gorbach,
R. Hartley, D. V. Skryabin, E. A. Cerda-Méndez, K. Biermann,
R. Hey, and P. V. Santos, Nat. Photon. 6, 50 (2011).

195303-7

https://doi.org/10.1103/PhysRevB.46.7713
https://doi.org/10.1103/PhysRevB.46.7713
https://doi.org/10.1103/PhysRevB.46.7713
https://doi.org/10.1103/PhysRevB.46.7713
https://doi.org/10.1103/PhysRevB.73.205337
https://doi.org/10.1103/PhysRevB.73.205337
https://doi.org/10.1103/PhysRevB.73.205337
https://doi.org/10.1103/PhysRevB.73.205337
https://doi.org/10.1103/PhysRevB.95.085429
https://doi.org/10.1103/PhysRevB.95.085429
https://doi.org/10.1103/PhysRevB.95.085429
https://doi.org/10.1103/PhysRevB.95.085429
https://doi.org/10.1103/PhysRev.118.141
https://doi.org/10.1103/PhysRev.118.141
https://doi.org/10.1103/PhysRev.118.141
https://doi.org/10.1103/PhysRev.118.141
https://doi.org/10.1103/PhysRevLett.48.355
https://doi.org/10.1103/PhysRevLett.48.355
https://doi.org/10.1103/PhysRevLett.48.355
https://doi.org/10.1103/PhysRevLett.48.355
https://doi.org/10.1103/PhysRevB.27.2308
https://doi.org/10.1103/PhysRevB.27.2308
https://doi.org/10.1103/PhysRevB.27.2308
https://doi.org/10.1103/PhysRevB.27.2308
https://doi.org/10.1103/PhysRevB.92.045412
https://doi.org/10.1103/PhysRevB.92.045412
https://doi.org/10.1103/PhysRevB.92.045412
https://doi.org/10.1103/PhysRevB.92.045412
https://doi.org/10.1103/PhysRevLett.74.474
https://doi.org/10.1103/PhysRevLett.74.474
https://doi.org/10.1103/PhysRevLett.74.474
https://doi.org/10.1103/PhysRevLett.74.474
https://doi.org/10.1103/PhysRevB.91.125204
https://doi.org/10.1103/PhysRevB.91.125204
https://doi.org/10.1103/PhysRevB.91.125204
https://doi.org/10.1103/PhysRevB.91.125204
https://doi.org/10.1002/pssb.2221750208
https://doi.org/10.1002/pssb.2221750208
https://doi.org/10.1002/pssb.2221750208
https://doi.org/10.1002/pssb.2221750208
https://doi.org/10.1088/0268-1242/8/2/008
https://doi.org/10.1088/0268-1242/8/2/008
https://doi.org/10.1088/0268-1242/8/2/008
https://doi.org/10.1088/0268-1242/8/2/008
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1103/PhysRevLett.69.3314
https://doi.org/10.1103/PhysRevLett.69.3314
https://doi.org/10.1103/PhysRevLett.69.3314
https://doi.org/10.1103/PhysRevLett.69.3314
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature05131
https://doi.org/10.1103/PhysRevLett.98.126405
https://doi.org/10.1103/PhysRevLett.98.126405
https://doi.org/10.1103/PhysRevLett.98.126405
https://doi.org/10.1103/PhysRevLett.98.126405
https://doi.org/10.1038/nmat3874
https://doi.org/10.1038/nmat3874
https://doi.org/10.1038/nmat3874
https://doi.org/10.1038/nmat3874
https://doi.org/10.1038/nphys1364
https://doi.org/10.1038/nphys1364
https://doi.org/10.1038/nphys1364
https://doi.org/10.1038/nphys1364
https://doi.org/10.1038/nphys4147
https://doi.org/10.1038/nphys4147
https://doi.org/10.1038/nphys4147
https://doi.org/10.1038/nphys4147
https://doi.org/10.1103/PhysRevLett.105.120403
https://doi.org/10.1103/PhysRevLett.105.120403
https://doi.org/10.1103/PhysRevLett.105.120403
https://doi.org/10.1103/PhysRevLett.105.120403
https://doi.org/10.1038/nphys2609
https://doi.org/10.1038/nphys2609
https://doi.org/10.1038/nphys2609
https://doi.org/10.1038/nphys2609
https://doi.org/10.1038/nphys1051
https://doi.org/10.1038/nphys1051
https://doi.org/10.1038/nphys1051
https://doi.org/10.1038/nphys1051
https://doi.org/10.1038/nphys1668
https://doi.org/10.1038/nphys1668
https://doi.org/10.1038/nphys1668
https://doi.org/10.1038/nphys1668
https://doi.org/10.1103/PhysRevLett.106.115301
https://doi.org/10.1103/PhysRevLett.106.115301
https://doi.org/10.1103/PhysRevLett.106.115301
https://doi.org/10.1103/PhysRevLett.106.115301
https://doi.org/10.1126/science.1202307
https://doi.org/10.1126/science.1202307
https://doi.org/10.1126/science.1202307
https://doi.org/10.1126/science.1202307
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1038/nphoton.2011.267
https://doi.org/10.1038/nphoton.2011.267
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