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The control of phonon scattering by interfaces is critical to the manipulation of heat conduction in composite
materials and semiconducting nanostructures. However, one of the factors limiting our understanding of elastic
phonon scattering is the lack of a computationally efficient approach for describing the phenomenon in a manner
that accounts for the atomistic configuration of the interface and the exact bulk phonon dispersion. Building
on the atomistic Green’s function (AGF) technique for ballistic phonon transport, we formulate an atomistic
S-matrix method that treats bulk phonon modes as the scattering channels and can determine the numerically
exact scattering amplitudes for individual two-phonon processes, enabling a highly detailed analysis of the
phonon transmission and reflection spectrum as well as the directional dependence of the phonon scattering
specularity. Explicit formulas for the individual phonon reflection, absorption, and transmission coefficients
are given in our formulation. This AGF-based S-matrix approach is illustrated through the investigation of (1)
phonon scattering at the junction between two isotopically different but structurally identical carbon nanotubes,
and (2) phonon boundary scattering at the zigzag and armchair edges in graphene. In particular, we uncover
the role of edge chirality on phonon scattering specularity and explain why specularity is reduced for the ideal
armchair edge. The application of the method can shed new light on the relationship between phonon scattering
and the atomistic structure of interfaces.
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I. INTRODUCTION

It is well known that phonon scattering with interfaces and
surfaces modifies phonon trajectories and thermal conduc-
tivity at the nanoscale in insulators and semiconductors [1]
and can potentially be exploited to control heat conduction
for high-efficiency thermoelectric applications [2,3]. For ex-
ample, the dramatically lower thermal conductivity in silicon
nanowires has been attributed to the enhanced surface scatter-
ing of phonons [4–6] while molecular dynamics simulations
suggest that surface modification can lower the thermal con-
ductivity of silicon thin films [7,8].

In spite of the importance of phonon scattering by inter-
faces and surfaces for thermal transport, our understanding of
the phenomenon [9–11] is constrained by the currently limited
range of experimental means for the direct determination of
the spectral transmission coefficients [12] and relies heavily
on acoustic-based approximations which are valid only in
the long-wavelength limit. For example, the acoustic and
diffuse mismatch theories [13], which describe how incoming
phonons are scattered elastically by an interface, are widely
used to estimate the transmission probability of phonons while
variations of Ziman’s model of elastic scattering by a rough
surface [14] are used to model diffuse phonon reflection
from boundaries [15]. However, attempts to simulate elastic
phonon scattering atomistically remain constrained by the
lack of an efficient numerical method that can treat directly
the scattering-induced transition between an incoming bulk
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phonon and an outgoing bulk phonon of equal frequency
on either side of the interface. Although other atomistic
approaches such as wave-packet-based simulations [16] have
been used to study phonon transmission and reflection at inter-
faces [17] and surfaces, [18,19] their application is difficult as
they require large simulation domains and are computational
expensive, limiting their usefulness for extracting quantitative
insights as well as applicability to more complicated atomistic
structures. The traditional atomistic Green’s function (AGF)
method [20–22], which is numerically exact and can be used
to compute the overall transmittance spectrum for solid inter-
faces [23,24], cannot resolve the transmission of individual
phonons.

Nevertheless, there has been significant recent progress
[25,26] in extending the AGF method for studying the trans-
mission and conversion of individual phonon modes at the
interface, giving us a more detailed picture of the forward
scattering (or transmission) of phonons in terms of their po-
larization and wavelength dependence. Building on methods
developed for tight-binding models of quantum transport in
Ref. [27] and exploiting the properties of the Bloch ma-
trix [28], it is shown in Ref. [25] how the transmission coeffi-
cient of individual phonon modes can be calculated by using
an extension of the traditional AGF method. An alternative
formulation of the calculation method that also connects the
transmission spectrum to the bulk phonon spectra and simi-
larly yields the dependence of the transmission coefficient on
phonon polarization and wavelength is presented in Ref. [26].

Despite their methodological improvements, such AGF-
based approaches remain incomplete because they cannot
treat phonon reflection which is important for understanding
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the boundary scattering of phonons; for instance, there is no
accessible quantification of phonon polarization and wave-
length conversion in backward scattering (reflection) by the
interface, unlike the case for the forward scattering (trans-
mission) of phonons. More generally, we lack an atomistic
approach to elastic phonon scattering (forward and backward)
that considers the granularity of the crystal structure and
can be used for the computation of scattering cross sections,
important for modeling phonon transport [16,29,30]. More-
over, in heat conduction within low-dimensional structures
such as atomically thin crystals and nanowires, the spec-
ularity of boundary scattering plays an important role in
phonon transport and depends on the configuration of the
boundary [5,31,32]. Thus, phonon momentum relaxation from
elastic boundary scattering is often invoked [5] to explain the
reduced thermal conductivity of these nanostructures relative
to their bulk counterparts [6]. However, this interpretation
relies on certain assumptions about the boundary scattering
specularity, and thus the direct determination of the specu-
larity parameters can provide a more complete and accurate
description of the phenomenon especially in situations where
the atomistic configuration of the boundary may be important.

To address this state of affairs, we introduce in this paper a
numerical S-matrix approach that generalizes earlier method-
ological developments by Ong and Zhang [25] and, more
importantly, has the advantage of grounding the description
of phonon transmission and reflection in the language of
conventional quantum mechanical scattering theory, allowing
us to draw on existing numerical techniques and conceptual
insights in our modeling of the phenomenon. The key idea
in our method is to exploit the relationship between the
Green’s function, which encodes the transition between the
initial and final states [33] and for which we have well-
developed numerical methods, and scattering theory. To the
best of our knowledge, this conceptual connection between
the Green’s function and the S-matrix in transport models
was first made by Lee and Fisher [34] who describe electron
transport through a finite disordered system in terms of the
transmission and reflection of the plane-wave lead eigenstates.
A similar theoretical framework underpins our conceptualiza-
tion of phonon transmission and reflection by the interface.
Proceeding along similar lines, we identify the bulk phonon
modes and the interface with the scattering channels and
scatterer, respectively. Thus, in the parlance of conventional
scattering theory [35], phonon transmission and reflection by
the interface is treated as a multichannel elastic scattering
problem in which individual scattering processes are charac-
terized by the scattering amplitudes between incoming and
outgoing phonon channels.

Nevertheless, although it is known that a formal connection
can be made between the Green’s function and scattering, the
formulation of a numerical scheme to determine the elastic
scattering amplitudes between scattering channels remains
challenging, because it requires us to adapt the general scatter-
ing formalism, which is largely based on plane waves [33], to
variables derived from the interatomic force constant matrices
that characterize the lattice. In our paper, we give a detailed
description of how the scattering formalism can be imple-
mented numerically in an AGF-based S-matrix approach that
uses these interatomic force constant matrices. To minimize

confusion and maintain consistency of notation, the paper is
written in a largely self-contained manner so that the basic
ideas behind the calculation techniques are digestible.

As a cautionary note, we point out that our AGF-based
S-matrix method is only applicable to two-phonon elastic scat-
tering processes. Inelastic mechanisms such as three-phonon
processes [36], which may play a significant role in interfacial
thermal transport, cannot be treated in our approach for now
and their treatment requires complementary approaches like
those described in Refs. [37,38] or possibly a modification of
the techniques presented in this paper. Bearing these limita-
tions in mind, the formalism introduced in this paper should
be sufficiently general that it can be easily extended to a
wider class of problems involving elastic phonon scattering
such as scattering by crystallographic defects (e.g., isotopes,
vacancies, and dislocations).

The organization of our paper is as follows. We first review
the original AGF method [39] and its extension in Ref. [25].
Next, we show how the transmitted and reflected phonon
modes can be determined from the incident phonon mode, and
derive the transmission ( t̄RL and t̄LR) and reflection matrices
(r̄LL and r̄RR) which constitute the full S matrix (S). The
general properties and application of the transmission and
reflection matrices are also discussed. Finally, the advantages
and versatility of our AGF-based S-matrix approach are illus-
trated through two examples: (1) the investigation of phonon
reflection and transmission at the armchair junction between
two isotopically different (8,8) carbon nanotubes, and (2) the
investigation of phonon scattering by the graphene armchair
and zigzag edges. In the second example where transverse
periodic boundary conditions are important, we describe the
Fourier decomposition of the force-constant matrices for the
efficient computation of the phonon channels and the ap-
plication of the zone-unfolding technique [40,41] to map
the phonon channels to the phonon modes of the primitive
Brillouin zone of graphene. From our analysis of the effects of
edge chirality and isotopic disorder on phonon specularity, we
show why phonon specularity is reduced for armchair edges.

II. METHOD

A. Review of original atomistic Green’s function (AGF) method

We briefly give here an overview of the basic elements
of the original atomistic Green’s function (AGF) formalism,
introduced by Mingo and Yang in Ref. [39], and its extension
developed in Ref. [25] so that the context for the new S-
matrix method is clear. A similar review of the method can
also be found in Ref. [42]. The main idea of the traditional
AGF method is as follows: We take the harmonic matrix H
of the infinite system (left lead, scattering region, and right
lead) and break it up into submatrices associated with the
principal layers of the leads and the scattering region. From
these submatrices, we construct (1) the uncoupled surface
Green’s function of each lead and (2) the effective frequency-
dependent harmonic matrix H′ of the finite projected system
that consists of the scattering region and its edges. The re-
tarded Green’s function Gret of the projected system, which
determines overall phonon transmission �(ω), is then com-
puted from H′. In the extension of the AGF method [25], the
Bloch matrices and bulk phonon modes can be computed from
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FIG. 1. Schematic of the scattering system (left lead, scattering
region, and right lead) and the submatrices associated with each
slice or principal layer which represents the set of atomic degrees
of freedom for a block row in Eq. (1). The left and right lead each
consist of a semi-infinite one-dimensional array of identical slices
while the scattering region corresponds to the interface.

the uncoupled surface Green’s function of the leads and thus
used to determine from Gret the scattering amplitudes between
the incident and the transmitted modes.

1. Numerical setup for AGF calculation

In our scheme, as shown in Fig. 1, the system is parti-
tioned into three subsystems: (1) the left lead, (2) the scat-
tering region, and (3) the right lead. The leads are identified
with the physical bulk lattices while the scattering region
contains the interface. Each lead consists of a semi-infinite
one-dimensional array of identical slices (or principal layers)
while the scattering region is considered a slice by itself.
Hence, the entire system has an infinite number of slices, each
of which can be indexed by an integer. The index convention
used in this paper is one in which the index increases as one
goes from left to right. We define the scattering region as
slice 1 while the principal layers in the left and right lead are
enumerated −∞, . . . , 0 and 2, . . . ,+∞, respectively.

Formally, the lattice dynamical properties of the system are
determined by the mass-normalized force-constant matrix H
which represents the harmonic coupling of the entire system
and has the block-tridiagonal structure,

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . H00
L H01

L

H10
L H00

L HLC

HCL HC HCR

HRC H00
R H01

R

H10
R H00

R
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(1)

where HC and HCL (HCR) are respectively the force-constant
submatrices corresponding to the interface region and the

coupling between the interface region and the semi-infinite
left (right) lead. We can associate each slice in Fig. 1 with
a block row in H. In the standard AGF setup, the block row
submatrices H00

α and H01
α , where α = L and α = R for the left

and right lead, respectively, characterize the lead phonons. If
we set the slices to be large enough so that only adjacent slices
can couple, then H00

α corresponds to the force-constant matrix
for each slice while H01

α (H10
α ) corresponds to the harmonic

coupling between each slice and the slice to its right (left) in
the lead. In the rest of the paper, we reserve α as the dummy
variable for distinguishing the leads, with α = L and α = R
representing the left and right lead, respectively.

We note here that in spite of the infinite number of slices
making up the system, only a finite set of unique force-
constant matrices (HC, HCL, HCR, H00

L , H01
L , H00

R , and H01
R )

are needed as inputs for the AGF calculation because the
leads are made up of identical slices and the Hermiticity
of H implies that HLC = (HCL)† and HRC = (HCR)†, and
H01

α = (H10
α )†. The periodic arraying of the slices in the leads

means that each slice constitutes a unit cell and that the bulk
phonon dispersion for the lead can be determined from the
expression

det[ω2 Iα − Dα (k)] = 0, (2)

where Dα (k) = H10
α e−ikaα + H00

α + H01
α eikaα is the dynami-

cal matrix and Iα is the identity matrix of the size as H00
α ;

the variables k and aα represent the phonon wave vector and
lattice constant in one dimension, respectively.

2. Total phonon transmission

In principle, the system dynamics are determined by the in-
finitely large H in Eq. (1). However, for the effective dynamics
at a fixed frequency ω, the lattice dynamics problem becomes
more tractable as we need only to project the dynamics onto
a finite portion of the system [21,43], corresponding to slices
0 to 2 in Fig. 1, to determine phonon transmission through
the scattering region (slice 1). Hence, we use the submatrices
in Eq. (1) to construct the effective harmonic matrix for this
subsystem [21]

H′ =
⎛⎝ H ′

L H ′
LC 0

H ′
CL H ′

C H ′
CR

0 H ′
RC H ′

R

⎞⎠, (3)

where H ′
L = H00

L + H10
L gret

L,− H01
L and H ′

R = H00
R +

H01
R gret

R,+ H10
R represent the left and right edge, respectively,

while H ′
C = HC and H ′

CL/CR = HCL/CR = (H ′
LC/RC)† (see

Fig. 2). The retarded surface Green’s functions gret
L,− and gret

R,+
are given by

gret
α,− = [

(ω2 + iη)Iα − H00
α − H10

α gret
α,− H01

α

]−1
, (4a)

gret
α,+ = [

(ω2 + iη)Iα − H00
α − H01

α gret
α,+ H10

α

]−1
, (4b)

where η is the small infinitesimal part that we add to ω2

to impose causality, and they are commonly generated using
the decimation technique [44] or by solving the generalized
eigenvalue equation [21,26]. Physically, Eq. (4a) is the re-
tarded surface Green’s function for a decoupled semi-infinite
lattice extending infinitely to the left (denoted by the “−” in
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 Slice 0 Slice 1  Slice 2

FIG. 2. Schematic of the finite projected system in Eq. (3),
consisting of the scattering region (slice 1) and its terminated edges
(slices 0 and 2). The frequency-dependent dynamics of the semi-
infinite leads are implicitly included in H ′

L and H ′
R through the sur-

face Green’s functions gret
L,− and gret

R,+ from which we can derive the
incoming and outgoing phonon modes [U adv/ret

L (−) and U adv/ret
R (+)]

and their group velocities [V adv/ret
L (−) and V adv/ret

R (+)].

the subscript of gret
α,−) while Eq. (4b) is the corresponding

surface Green’s function for a decoupled semi-infinite lattice
extending infinitely to the right (denoted by the “+” in the
subscript of gret

α,+). In addition, the advanced surface Green’s
functions can be obtained from the Hermitian conjugates of
Eq. (4), i.e., gadv

α,− = (gret
α,−)† and gadv

α,+ = (gret
α,+)†.

To find the phonon transmission through the interface,
we compute the corresponding Green’s function for Eq. (3),
Gret = [(ω2 + iη)I′ − H′]−1, where I′ is an identity matrix of
the same size as H′; the Gret matrix can be partitioned into
submatrices in the same manner as H′, i.e.,

Gret =

⎛⎜⎝Gret
L Gret

LC Gret
LR

Gret
CL Gret

C Gret
CR

Gret
RL Gret

RC Gret
R

⎞⎟⎠. (5)

In the original AGF method [20,21], the phonon transmittance
through the scattering region is given by the well-known
Caroli formula [20,21,45]:

�(ω) = Tr
[
�RGret

RL�L
(
Gret

RL

)†]
, (6)

where �L = i H10
L (gret

L,− − gadv
L,−)H01

L and �R = i H01
R (gret

R,+ −
gadv

R,+)H10
R .

B. Phonon transmission, reflection, and S matrix

From the Green’s function Gret in Eq. (5), we can use
the traditional AGF method to compute the phonon trans-
mittance �(ω) which is the sum of the individual phonon
transmission coefficients [25,46]. A more explicit connection
to conventional scattering theory may be made by noting
that the transmission coefficients can be derived directly from
the diagonal elements of the transmission matrix [34], which
relates the amplitude of the incoming phonon flux to that of
the outgoing forward-scattered (or transmitted) phonon flux
and is computed numerically from Gret [25]. However, this
picture of the scattering process is incomplete as it does not

treat the amplitude of the backward-scattered (or reflected)
phonons and the trajectories of the phonons reflected from
the interface. This suggests that a matrix analogous to the
transmission matrix is needed for the backward component of
the scattered phonons. To accomplish this, we introduce the
reflection matrix and show how it can be computed efficiently
by building on the technical ideas given in Ref. [25]. The
reflection matrix for each lead can then be combined with the
transmission matrices to form the S matrix that governs overall
phonon transmission and reflection at the interface.

1. Definition of transmission, absorption,
and reflection coefficients

Before we proceed, we clarify some of the terminology
used in the following discussions. An incident or “incoming”
phonon is one that has its group velocity pointing towards
the interface and corresponds to the asymptotically free (t →
−∞) bulk phonon state prior to scattering while an “outgo-
ing” phonon is one that has its group velocity pointing away
from the interface and corresponds to the asymptotically free
(t → ∞) bulk phonon state after scattering. There are two
types of outgoing phonons: (1) the transmitted or forward-
scattered phonons on the other side of the interface with a
group velocity in the same direction as that of the incident
phonon and (2) the reflected or backward-scattered phonons
on the same side of the interface but with a group velocity
opposite to that of the incident phonon. For example, an
incoming phonon in the left lead propagating towards the
interface has a positive group velocity. After colliding with
the interface, the incoming phonon is scattered into a range
of outgoing phonon states, transmitted and reflected, with a
“scattering amplitude” and “transition probability” associated
with each transition between the incoming phonon state and
an outgoing phonon state.

We also use the transmission, absorption, and reflection
coefficients, which can be obtained from sums of the relevant
transition probabilities, to characterize the loss and gain of
energy by phonon channels. The transmission coefficient �

associated with each incoming phonon channel is defined as
the fraction of the energy flux lost by the incoming phonon
channel across the interface to all the outgoing phonon chan-
nels on the other side. The absorption coefficient ξ associated
with each outgoing phonon channel is defined as the fraction
of the energy flux gained by the outgoing phonon channel
from all the incoming phonon channels across the interface.
Similarly, we can also associate a reflection coefficient ξ ′
with each outgoing phonon channel, which we define as the
fraction of the energy flux gained by the outgoing phonon
channel from all the incoming channels on the same side of
the interface.

2. Bloch matrices and bulk phonon eigenmodes

The advanced and retarded Bloch matrices [25,27,28] of
the left and right lead, Fadv/ret

α (+) and Fadv/ret
α (−), describe

their bulk translational symmetry along the direction of the
heat flux and can be computed directly from the formulas

Fadv/ret
α (+) = gadv/ret

α,+ H10
α , (7a)

Fadv/ret
α (−)−1 = gadv/ret

α,− H01
α . (7b)
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As pointed out in Ref. [25], the bulk eigenmodes for the
lead can be determined directly from the Bloch matrices:

Fadv/ret
α (+)Uadv/ret

α (+) = U adv/ret
α (+)�adv/ret

α (+), (8a)

Fadv/ret
α (−)−1U adv/ret

α (−) = U adv/ret
α (−)�adv/ret

α (−)−1, (8b)

where U ret
α (+) [U ret

α (−)] is a matrix with its column vec-
tors corresponding to the rightward-going (leftward-going)
extended or rightward (leftward) decaying evanescent modes
and has the form U ret

α = (e1e2 . . . eN ) where en is a nor-
malized eigenvector of the Bloch matrix in the nth column
of U ret

α [U ret
α (−)]. Similarly, Uadv

α (−) [Uadv
α (+)] is a matrix

with its column vectors corresponding to rightward-going
(leftward-going) extended or leftward (rightward) decaying
evanescent modes. The matrix �adv/ret

α (+) [�adv/ret
α (−)] is a

diagonal matrix with matrix elements of the form eikna where
kn is the phonon wave vector corresponding to the nth column
eigenvector in U adv/ret

α (+) [Uadv/ret
α (−)].

We note that because the Bloch matrices are not Hermitian,
their eigenvectors are not necessarily orthogonal. This can
pose a problem [26] for transmission coefficient calculations
when the eigenvectors have the same k and are degenerate.
This issue can be simply resolved by orthonormalizing the de-
generate column eigenvectors in Uadv/ret

α with a Gram-Schmidt
procedure [47,48]. The final piece of ingredient needed for
the following phonon scattering calculations is the diagonal
velocity matrix [21,27],

V adv/ret
α (+) = iaα

2ω

[
Uadv/ret

α (+)
]†

H01
α

[
gadv/ret

α,+

− (
gret/adv

α,+
)†]

H10
α U adv/ret

α (+), (9)

which has group velocities of the eigenvectors in U adv/ret
α (+)

as its diagonal elements. Likewise, V adv/ret
α (−) is defined as

V adv/ret
α (−) = − iaα

2ω

[
Uadv/ret

α (−)
]†

H10
α

[
gadv/ret

α,−

− (
gret/adv

α,−
)†]

H01
α Uadv/ret

α (−). (10)

For evanescent modes, the group velocity is always zero while
for propagating modes that contribute to the heat flux, the
group velocity is positive (negative) in V ret

α (+) and V adv
α (−)

[V ret
α (−) and V adv

α (+)]. In addition, we define the diagonal

matrices Ṽ
adv/ret
α (+) and Ṽ

adv/ret
α (−) in which their nonzero di-

agonal matrix elements are the inverse of those of V adv/ret
α (+)

and V adv/ret
α (−), respectively. For each lead, we can also define

the diagonal matrices

I adv/ret
α (+) = V adv/ret

α (+)Ṽ
adv/ret
α (+), (11a)

I adv/ret
α (−) = V adv/ret

α (−)Ṽ
adv/ret
α (−), (11b)

in which the nth diagonal element equals 1 if the nth column
of Uadv/ret

α (+) and Uadv/ret
α (−) corresponds to an extended

mode and 0 otherwise. Therefore, it follows from Eq. (11)
that the number of rightward-going phonon channels Nα (+)
and the number of leftward-going phonon channels Nα (−) are
given by

Nα (+) = Tr
[
I ret

α (+)
] = Tr

[
I adv

α (−)
]
, (12a)

Nα (−) = Tr
[
I ret

α (−)
] = Tr

[
I adv

α (+)
]
. (12b)

3. Phonon scattering: transmission

Now, let us consider the scattering problem for an incom-
ing phonon from the left lead that is incident on the scattering
region. In the n = 0 slice at the edge of the left lead, the
motion can be decomposed into two parts, i.e.,

c0 = c0(+) + c0(−), (13)

where c0(+) and c0(−) respectively represent the rightward-
going (incident) and leftward-going (reflected) components,
while in the n = 2 slice at the edge of the right lead, the
motion is given by

c2 = c2(+), (14)

where the right-hand side represents a rightward-going (trans-
mitted) wave which can be a linear combination of bulk
right-lead phonon modes propagating away from the interface.
Suppose the rightward-going component in Eq. (13) is a
left-lead bulk phonon mode, i.e., c0(+) = uL,n(k, ω), where
n and k are the phonon polarization index and wave vector,
respectively. Then, it can be shown [27] that the transmitted
wave c2(+) in the right lead is related to the incident wave
c0(+) from the right lead, via the expression

c2 = Gret
RL QLuL,n(k, ω), (15)

where

Qα = (ω2 + iη)Iα − H00
α − H10

α gret
α,−(ω)H01

α

− H01
α gret

α,+(ω)H10
α (16)

and Q−1
α is the bulk Green’s function of the α lead. The

expression in Eq. (15) can be expressed as a linear combina-
tion of transmitted right-lead phonon modes uR,m(km, ω), i.e.,
c2 = ∑

m uR,m(km, ω)τmn, where τmn is the linear coefficient
and forms the matrix elements of the transmission matrix τ ,
where

τ = [
U ret

R (+)
]−1

Gret
RL QLU ret

L (+). (17)

The flux-normalized transmission matrix is tRL =
[V ret

R (+)]1/2τ [Ṽ
adv
L (−)]1/2, which we can rewrite as [25]

tRL = 2iω√
aRaL

[
V ret

R (+)
]1/2[

U ret
R (+)

]−1

× Gret
RL

[
Uadv

L (−)†
]−1[

V adv
L (−)

]1/2
. (18)

Each row of tRL corresponds to either a transmitted right-
lead extended or evanescent mode. For an outgoing evanes-
cent mode, the row elements and group velocity, given by
the diagonal element of V ret

R (+), are zero. Conversely, each
column of tRL corresponds to either an incident left-lead
extended or evanescent mode, and the column elements and
group velocity of the evanescent modes, given by the diagonal
element of V adv

L (−), are zero. If the mth row and nth column
of tRL correspond to extended transmitted and incident modes,
then |[tRL]mn|2 gives us the probability that incident left-lead
phonon is transmitted across the interface into the right-lead
phonon. Similarly, we can define the flux-normalized trans-
mission matrix for phonon transmission from the right to the
left lead:

tLR = 2iω√
aLaR

[
V ret

L (−)
]1/2[

U ret
L (−)

]−1

× Gret
LR

[
Uadv

R (+)†
]−1[

V adv
R (+)

]1/2
. (19)
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4. Phonon scattering: reflection

Like in Eq. (15), we can describe the motion in slice 0 in
terms of the incident wave, i.e., c0 = Gret

L QLuL,n(k, ω). It fol-
lows that the reflected component is c0(−) = c0 − c0(+) =
(Gret

L − Q−1
L ) QLuL,n(k, ω). Therefore, the flux-normalized

reflection matrix, which gives the scattering amplitude be-
tween leftward-going (reflected) and rightward-going (inci-
dent) states in the left lead, can be defined as

rLL = 2iω

aL

[
V ret

L (−)
]1/2[

U ret
L (−)

]−1

× (
Gret

L − Q−1
L

)[
Uadv

L (−)†
]−1[

V adv
L (−)

]1/2
. (20)

The corresponding expression for phonon reflection in the
right lead can be similarly defined as

rRR = 2iω

aR

[
V ret

R (+)
]1/2[

U ret
R (+)

]−1

× (
Gret

R − Q−1
R

)[
Uadv

R (+)†
]−1[

V adv
R (+)

]1/2
, (21)

which gives the scattering amplitude between rightward-going
(reflected) and leftward-going (incident) states in the right
lead.

5. Phonon transmission and reflection matrices

Given Eqs. (18) to (21), we can construct the rationalized
smaller matrices t̄RL, t̄LR, r̄LL, and r̄RR from tRL, tLR, rLL, and
rRR by deleting the matrix rows and columns corresponding to
evanescent states. This is done numerically by inspecting each
diagonal element of I adv/ret

α (±) of Eq. (11), which is either
equal to 0 (evanescent) or 1 (extended), and removing the
corresponding columns or rows when [I adv/ret

α (±)]nn = 0. For
example, to find t̄RL, we inspect I ret

R (+) for row deletion and
I adv

L (−) for column deletion in tRL. Hence, t̄RL is an NR(+) ×
NL(+) matrix. Similarly, we can also define the rationalized
smaller matrices �̄

adv/ret
α (+) by deleting the rows and columns

associated with evanescent modes from �adv/ret
α (±) in Eq. (8).

The transmission coefficient of the nth incoming phonon
channel in the left lead is defined as the nth diagonal element
of t̄†RL t̄RL, i.e.,

�L,n = [ t̄†RL t̄RL]nn, (22)

which is equal to the fraction of its energy flux transmitted
across the interface, and its wave vector kn can be determined
from [�̄

adv
L (−)]nn = eiknaL or kn = 1

aL
cos−1 Re[�̄

adv
L (−)]nn.

For the reflected modes, the reflection coefficient of the mth
outgoing leftward-going mode in the left lead is given by the
mth diagonal element of r̄LL r̄†LL, i.e.,

ξ ′
L,m = [r̄LL r̄†LL]mm, (23)

with its phonon wave vector km given by km =
1
aL

cos−1 Re[�̄
ret
L (−)]mm, while the absorption coefficient

of the lth outgoing rightward-going mode in the right lead is
given by the lth diagonal element of t̄RL t̄†RL, i.e.,

ξR,l = [ t̄RL t̄†RL]ll , (24)

with its phonon wave vector kl given by kl =
1
aR

cos−1 Re[�̄
ret
R (+)]ll .

The transmission coefficient for the nth incoming phonon
channel in the right lead (�R,n), the absorption coefficient of
the lth outgoing phonon channel in the left lead (ξL,l), and the
reflection coefficient of the mth outgoing phonon channel in
the right lead (ξ ′

R,m) can be similarly defined like in Eqs. (22)
to (24), and their formulas are summarized in Table I. It should
also be noted that for α = L, R,

ξα,m + ξ ′
α,m = 1, (25)

which physically means that the sum of the energy flux frac-
tions from absorption and reflection equals unity, consistent
with the conservation of energy. In addition, we remark that
the phonon transmittance can be expressed as the sum of the
transmission [Eq. (26a)] or absorption [Eq. (26b)] coefficients
of either lead, i.e.,

�(ω) =
NL(+)∑
n=1

�L,n =
NR(−)∑
m=1

�R,m (26a)

=
NL(−)∑
n=1

ξL,n =
NR(+)∑
m=1

ξR,m. (26b)

6. Phonon scattering specularity

With our method, the phonon scattering specularity param-
eter, which measures the “smoothness” of a surface, can be
extracted directly from the reflection matrices r̄LL and r̄RR.
Here, we discuss briefly the meaning of phonon specularity
and how it is computed in the AGF-based S-matrix approach.
In Ref. [14], the specularity parameter is simply defined as the
proportion of the intensity of the incident wave that remains
in the outgoing wave in the specular direction, with the effects

TABLE I. Summary of formulas for the phonon mode transmission, absorption, and reflection coefficients. The term “incoming” describes
a phonon moving towards the interface while “outgoing” refers to phonons moving away from the interface.

Variable Formula Phonon wave vector

Incoming left-lead phonon transmission coefficient �L,n = [ t̄†RL t̄RL]nn kn = 1
aL

cos−1 Re[�̄
adv
L (−)]nn

Outgoing right-lead phonon absorption coefficient ξR,n = [ t̄RL t̄†RL]nn kn = 1
aR

cos−1 Re[�̄
ret
R (+)]nn

Outgoing left-lead phonon reflection coefficient ξ ′
L,n = [r̄LL r̄†LL]nn kn = 1

aL
cos−1 Re[�̄

ret
L (−)]nn

Incoming right-lead phonon transmission coefficient �R,n = [ t̄†LR t̄LR]nn kn = 1
aR

cos−1 Re[�̄
adv
R (+)]nn

Outgoing left-lead phonon absorption coefficient ξL,n = [ t̄LR t̄†LR]nn kn = 1
aL

cos−1 Re[�̄
ret
L (−)]nn

Outgoing right-lead phonon reflection coefficient ξ ′
R,n = [r̄RR r̄†RR]nn kn = 1

aR
cos−1 Re[�̄

ret
R (+)]nn
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of polarization conversion ignored and the rest of the intensity
assumed to be redistributed equally in all directions. In our
S-matrix approach, we adopt a similar definition for atom-
istic phonon scattering specularity P by taking it to be the
intensity proportion that is scattered to the specularly reflected
outgoing channel, which we define as the outgoing phonon
channel with the longitudinal wave vector kn̄ = −kn and of
the same polarization. However, we caution that this definition
of specularity does not necessarily imply that the remainder is
equally distributed in the rest of the outgoing channels; i.e.,
the absence of specularity does not mean corresponding to
diffusive scattering.

In the case of total phonon reflection in the left lead,
the specularity parameter PL(kn) for the incoming left-lead
phonon at kn is determined by its transition probability to the
outgoing phonon channel at kn̄, i.e.,

PL(kn) = |[r̄†LL]nn̄|2. (27)

The expression in Eq. (27) satisfies the requirement that
P = 1 for fully specular reflection and in the limit that the
number of channels goes to infinity, P = 0 for fully diffusive
scattering [14]. In the more general case of partial phonon
reflection and transmission at an interface, the specularity
parameter for the mode at kn in Eq. (27) has to be normalized
by the overall probability of its phonon reflection, giving us

PL(kn) = |[r̄†LL]nn̄|2∑
m |[r̄†LL]nm|2

= |[r̄†LL]nn̄|2
[r̄†LL r̄LL]nn

. (28)

Similarly, the specularity parameter for an incoming right-
lead phonon with the wave vector km is PR(km) =
|[r̄†RR]mm̄|2/[r̄†RR r̄RR]mm.

7. S-matrix description of phonon scattering

Given t̄RL, t̄LR, r̄LL, and r̄RR, we can define the S matrix

S =
(

r̄LL t̄LR

t̄RL r̄RR

)
, (29)

which connects the amplitudes of the scattered (reflected and
transmitted) bulk phonons to the incident bulk phonons and
is unitary if the system possesses time-reversal symmetry,
i.e., SS† = S†S = Ip, where Ip is an identity matrix of the
same size as S. The unitarity of S allows us to derive several
identities involving t̄RL, t̄LR, r̄LL, and r̄RR. Equations (12) and
(29) imply that

NL(+) + NR(−) = NL(−) + NR(+); (30)

i.e., the total number of incoming phonon channels is equal to
the total number of outgoing phonon channels. It follows from
Eqs. (29) and (25) that{

NL(+)
NL(−)

}
=

{
Tr(r̄†LL r̄LL + t̄†RL t̄RL)

Tr(r̄LL r̄†LL + t̄LR t̄†LR)

}
(31)

and NL(+) = NL(−); i.e., the number of leftward-going bulk
phonon channels is equal to the number of rightward-going
bulk phonon channels in the left lead. Similarly, we also have{

NR(−)
NR(+)

}
=

{
Tr(r̄†RR r̄RR + t̄†LR t̄LR)
Tr(r̄RR r̄†RR + t̄RL t̄†RL)

}
(32)
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FIG. 3. (a) Plot of the armchair junction between two isotopi-
cally different carbon nanotubes (CNT’s). The left CNT (“CNT-
12”) is constructed from 12C atoms while the right CNT (“CNT-
24”) has 24C atoms. Phonon momentum and polarization-resolved
plot of (b) left-lead reflection coefficients, (c) left-lead transmission
coefficients, and (d) right-lead absorption coefficients for phonon
transmission from CNT-12 to CNT-24.

and NR(−) = NR(+). Equations (31) and (32) also allow us
to establish the general reciprocity relationship [49],

Tr( t̄RL t̄†RL) = Tr( t̄LR t̄†LR), (33)

or that the total rightward-going phonon transmission is equal
to total leftward-going phonon transmission. They also imply
that the phonon transmittance is bounded by the finite number
of channels, i.e., �(ω) � min(NL(+), NR(−)).

III. EXAMPLE WITH CARBON NANOTUBE JUNCTION

We illustrate the method by simulating phonon scattering
at the armchair junction between two isotopically different
but structurally identical (8,8) carbon nanotubes, as can be
seen in Fig. 3(a), with the left one (“CNT-12”) consisting of
12C atoms and the right one (“CNT-24”) of 24C atoms which
have twice the mass of 12C atoms. The greater atomic mass of
the 24C atom doubles the mass density of CNT-24 and hence
rescales its phonon frequencies by a factor of 1√

2
, introducing

a difference in the polarization and distribution of phonon
channels on either side of the junction at each frequency ω.
However, the phonon dispersion (ω vs. k) curves in CNT-24
are identical in shape to those of CNT-12 apart from the
difference in frequency scaling. Thus, each phonon branch
or “subband” in CNT-12, which depends on polarization and
angular symmetry [50], has a unique image subband in CNT-
24 and as we shall show later, this simplifies our analysis of
the polarization dependence of phonon scattering. Although
24C atoms do not exist, this fictitious system is sufficiently
realistic to contain the essential physics of phonon scattering
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by an interface as well as to illustrate key concepts introduced
in the previous section.

A. Calculation details

We build the carbon nanotube (CNT) and optimize its
structure in GULP [51] using the Tersoff potential [52] param-
eters from Ref. [53]. The force-constant matrices for the left
and right leads (H00

L , H01
L , H00

R , and H01
R ) are also computed

in GULP. In our CNT structure, the interatomic interactions
are sufficiently short-range so that the primitive unit cells
correspond to the individual slices in our AGF calculation. At
each frequency (ω) point, we use the force-constant matrices
to find the surface Green’s function gret

R,+ and gret
L,−, from

which we determine H′ and Gret using Eqs. (3) and (5).
Using Eqs. (7) and (8), we also calculate the incoming phonon
modes Uadv

L (−) and Uadv
R (+) and the outgoing phonon modes

U ret
L (−) and U ret

R (+) as well as their associated velocity
matrices,V adv

L (−), V adv
R (+), V ret

L (−), and V ret
R (+). The sur-

face Green’s functions gret
R,− and gret

L,+ are also computed and
combined with gret

R,+ and gret
L,− to find QR and QL. Finally,

these matrix variables are collected and used to compute the
transmission and reflection matrices (tRL, tLR, rLL, and rRR)
in Eqs. (18) to (21). We then eliminate the nonphysical matrix
rows and columns from them to obtain t̄RL, t̄LR, r̄LL, and r̄RR

which constitute the S matrix in Eq. (29). The transmission,
absorption, and reflection coefficients of the phonon channels
for each CNT are computed, using Eqs. (22) to (24).

B. Transmission, absorption and reflection coefficients

We analyze the distribution of the transmission, absorp-
tion, and reflection coefficients for the incident phonon flux
from CNT-12 to CNT-24. Figure 3(b) shows the reflec-
tion coefficient distribution [ξ ′

L,n for n = 1, . . . , NL(−)] for
the outgoing leftward-going phonon modes while Fig. 3(c)
shows the transmission coefficient distribution [�L,n for n =
1, . . . , NL(+)] for the incoming rightward-going phonon
modes in CNT-12. On the other side of the interface, the ab-
sorption coefficient distribution [ξR,n for n = 1, . . . , NR(+)]
for the outgoing rightward-going phonon modes in CNT-24
is shown in Fig. 3(d). We also plot the phonon dispersion
curves for CNT-12 and CNT-24 in Fig. 3 over the frequency
range between 0 and 100 meV, with the individual phonon
branches [54] clearly visible. In each spectrum, we note that
only half of the points on the dispersion curves contribute
to the transmission or absorption/reflection because half of
the modes are either leftward- or rightward-going. Thus, only
half of the phonon channels can contribute to the phonon
transmission or reflection at any frequency.

Figure 3(c) shows that at low frequencies (ω < 20 meV),
the transmission coefficients (�L,n) of all the incoming
phonon modes are very close to unity; i.e., the phonon modes
in CNT-12 are nearly perfectly transmitted across the in-
terface. Conversely, the reflection coefficients (ξ ′

L,n) of the
corresponding outgoing phonon modes in Fig. 3(b) are close
to zero at low frequencies. A comparison of Figs. 3(b) and 3(c)
shows that each reflected phonon mode at ki with a reflection
coefficient of ξ ′

L,i in Fig. 3(b) corresponds symmetrically to a
transmitted phonon mode at kj = −ki with a transmission co-

efficient of �L,j = 1 − ξ ′
L,i in Fig. 3(c). In CNT-24 [Fig. 3(d)],

the absorption coefficient spectrum (ξR,n) for the outgoing
phonon modes reveals that many of the rightward-going
phonon channels have an absorption coefficient close to zero
even at low frequencies although others have an absorption
coefficient close to unity, indicating that there are preferred
outgoing channels and subbands for phonon absorption. The
presence of these ξR,n ∼ 0 channels is because at the same
frequency (ω), there are generally more phonon channels in
CNT-24 than in CNT-12 and the phonon flux at the interface
is thus limited by the transmission bottleneck through the
fewer incoming phonon channels in CNT-12. The absorption
coefficients also tend to be lower for outgoing phonon modes
nearer the phonon subband edges and with a lower group
velocity (v = ∂ω

∂k
).

C. Transition probabilities of scattering processes

In our analysis of the absorption spectrum in Fig. 3(d),
we find that energy is preferentially transmitted to some
phonon subbands, suggesting that transitions between phonon
channels associated with certain subbands are dominant. To
elucidate the role of the subbands in phonon scattering,
we use our method to determine and analyze the transi-
tion probabilities between different bulk phonon channels.
We analyze two sets of scattering processes, with the first
corresponding to an incoming phonon channel at k1 in the
left lead (CNT-12) and the second to an incoming phonon
channel at k̄3 in the right lead (CNT-24), at ω = 39.5 meV.
Here and in our subsequent discussion of the scattering sim-
ulation results, to represent a phonon wave vector of equal
magnitude but directionally opposite to ki , we write a bar
over the latter, i.e., k̄i = −ki ; the corresponding integer index
for k̄i is written as ī. The transition probabilities P (k →
k′) for all available incoming and outgoing phonon chan-
nels are computed from the square of the scattering ampli-
tudes determined from the matrix elements of t̄RL, t̄LR, r̄LL,
and r̄RR.

1. Incoming phonon channel at k1 in CNT-12

Figures 4(a) and 4(b) show the distribution of outgo-
ing (reflected and transmitted) phonon channels in CNT-12
[Fig. 4(a)] and CNT-24 [Fig. 4(b)] as well as the incoming
phonon channel with the wave vector k1 in CNT-12 super-
imposed on the phonon dispersion spectrum of CNT-12 and
CNT-24. The transition probabilities between the incoming
phonon channel at k1 and its main outgoing phonon channels
at k̄1, k2, and k3, which are all doubly degenerate, are calcu-
lated from the matrix elements of r̄LL and t̄RL and indicated
in Figs. 4(a) and 4(b). The dominant transition probabilities
[P (k1 → k̄1), P (k1 → k2), and P (k1 → k3)] add up to nearly
unity once the twofold degeneracy of the final phonon states
is taken into account.

We find that the transmission of the incoming phonon
mode at k1, which has a transmission coefficient of �L,1 =
0.642, is dominated by forward scattering transitions (k1 →
k3) to the outgoing phonon channels at k3, with the transition
probability given by P (k1 → k3) = 0.307 or nearly half of the
transmission coefficient, because the phonon subbands for k3

are the CNT-24 image of the phonon subbands for k1 as shown
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FIG. 4. Plot of leftward-going phonon channels (hollow circles) in (a) CNT-12 and rightward-going phonon channels (solid circles) in
(b) CNT-24 for the incoming phonon channel (square symbol) at ω = 39.5 meV and k1 = 5.65 × 109 m−1 in CNT-12, superimposed on the
phonon dispersion curves of CNT-12 and CNT-24. The transition probability for each outgoing phonon channel from the incoming phonon at
k1 is between 0 and 1, and indicated in color. The dominant scattering processes, corresponding to (i) the k1 → k̄1 intra-subband reflection,
(ii) the k1 → k2 inter-subband reflection, and (iii) the k1 → k3 transmission, are drawn with dotted arrows with the transition probabilities
explicitly given. The outgoing phonon channels in (c) CNT-12 and (d) CNT-24 for the incoming phonon channel at ω = 39.5 meV and k̄3 in
CNT-24 are also shown. The main outgoing phonon channels for the incoming phonon at k̄3 are at k̄1, k3, and k4 and also indicated by dotted
arrows with the transition probabilities given. To guide the eye, the subbands for k1, k̄1, k3, and k̄3 are indicated in bold dashed lines while the
subbands for k2 and k4 are indicated in bold magenta dotted lines.

in Figs. 4(a) and 4(b), indicating that angular symmetry and
polarization considerations play an important role in forward
scattering. The phonon reflection processes is dominated by
backward scattering to the phonon channels at k̄1 and k2.
Unusually, the k1 → k̄1 transition, which corresponds to an

intra-subband process, has a slightly lower probability than
the k1 → k2 transition, an inter-subband process, suggesting
that transitions between these two phonon subbands, indicated
by bold dashed and dotted lines in panels (a) and (b), are
favored in backward scattering.
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2. Incoming phonon channel at k̄3 in CNT-24

Given the dominant transition between k1 in CNT-12 and
k3 in CNT-24, it would be interesting to study the scattering
processes associated with the incoming phonon channel at
k̄3 in CNT-24. As before, the transition probabilities are
computed from the matrix elements of r̄RR and t̄LR, and
shown in Figs. 4(c) and 4(d). We find that the transmission
of the mode at k̄3, which has a transmission coefficient of
�R,3̄ = 0.651, is dominated by the k̄3 → k̄1 process which
has the transition probability of P (k̄3 → k̄1) = 0.307, numer-
ically equal to P (k1 → k3) as expected, because the k̄3 →
k̄1 transition is the time reversal of the k1 → k3 transition
in Figs. 4(a) and 4(b). Also, the main reflected outgoing
phonon channels in CNT-24 are at k3 and k4. Like in the
previous simulation, the k̄3 → k4 transition, an inter-subband
process, plays a greater role in phonon reflection than the
k̄3 → k3 transition, an intra-subband process, but also to
a substantially greater extent since P (k̄3 → k4) � P (k̄3 →
k3), highlighting the role of polarization in phonon scattering.
The k̄3 → k4 inter-subband transition is favored because the
subband for k4 is the CNT-24 image of the subband for k2 in
Fig. 4(a).

IV. EXAMPLE WITH ZIGZAG AND ARMCHAIR
GRAPHENE EDGE

To illustrate the utility of our method for studying bound-
ary scattering, we apply the S-matrix method to investi-
gate the effects of edge orientation and structure on phonon
scattering in graphene. Unlike the previous example of the
CNT junction, there is no phonon transmission as we are
dealing with pure phonon reflection in which every incoming
phonon is backscattered elastically into a range of outgoing
phonon channels. The phonon scattering specularity, impor-
tant for understanding phonon transport in graphene nanorib-
bons [31,32,55], can be obtained from the distribution of the
transition probabilities.

In addition, because the system is a two-dimensional one
in which we partition the lattice into unit cells larger than the
usual primitive unit cell, two additional intermediate proce-
dures are needed in the application of our S-matrix method to
graphene. The first procedure deals with the periodic bound-
ary conditions in the transverse direction which affect the
structure of the matrices H00

L and H01
L associated with the

bulk lead and permit us to decompose them into their Fourier-
component submatrices, facilitating the efficient computation
of the surface and bulk Green’s functions. This Fourier de-
composition requires us to partition the rectangular slices in
Fig. 1 into unit cells in the transverse direction [Fig. 5(a)]
and index the incoming and outgoing phonon channels with
wave vectors associated with phonon modes in the “folded”
Brillouin zone [Fig. 5(b)] which follows from the transverse
partitioning of the rectangular slices in Fig. 1. The second
procedure deals with the mapping of the phonon modes in
the “folded” Brillouin zone to the bulk phonon eigenmodes
in the standard “unfolded” Brillouin zone associated with the
symmetry of the primitive unit cell in graphene. Although this
step is not strictly necessary, the use of the zone-unfolding
technique, as described by Boykin and Klimeck [40,41],

Brillouin zone (BZ)

Folded BZ

)b()a(

x

y

FIG. 5. (a) Schematic of the bulk graphene slice (bounded by
dotted lines) for the armchair edge scattering simulation. Each slice
is partitioned in the transverse (y) direction into 4-atom unit cells.
(b) The 4-atom unit cell is twice as large as the 2-atom primitive unit
cell, resulting in a smaller folded Brillouin zone (bounded by dashed
lines) with half the area of the standard Brillouin zone (bounded by
solid lines). The longitudinal and transverse reciprocal lattice vectors
for the folded BZ are given by Glong and Gtran, respectively.

improves the clarity of the scattering results by presenting
their analysis in more familiar terms.

A. Calculation details

Like in the previous example, we construct the bulk
graphene monolayer and optimize its structure in GULP [51]
using the same Tersoff potential parameters [53]. We assume
that the graphene edge is terminated on the right and its bulk
extends infinitely to the left. Thus, unlike the schematic shown
in Fig. 1, we need only to consider the force-constant matrices
H00

L and H01
L to describe the left bulk and HC and HCL to

describe the graphene edge and its coupling to the left bulk.
The force-constant matrices H00

R , H01
R , and HCR in Eq. (1)

are not needed in this study and their matrix elements are set
to zero.

The force-constant matrices for the bulk slices (H00
L and

H01
L ) are computed in GULP. For the armchair and zigzag

edge structures, the slices in the leads each have 4N atoms.
We take advantage of the periodicity in the transverse di-
rection to partition the slice into N 4-atom unit cells, as
shown in Fig. 5(a), at the real lattice points R1, . . . , RN where
Rp = (p − 1)T and T is the lattice vector characterizing the
transverse periodicity. The 12 × 12 force-constant submatrix
corresponding to the coupling between the unit cells at Rp

and Rq within the same slice is denoted as H00
L (Rp, Rq )

while the 12 × 12 force-constant submatrix corresponding to
the coupling between the unit cell at Rp in the slice and the
unit cell at Rq in the slice on the right (left) is denoted by
H01

L (Rp, Rq ) [H10
L (Rp, Rq )].

The transverse translational symmetry implies that the
force-constant submatrices depend only on the relative
displacement between the unit cells in the transverse
direction, i.e.,

Hlm
L (Rp, Rq ) = Hlm

L (Rp − Rq ) (34)
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for l = 0, 1 and m = (l − 1) mod 2. For a slice with N transverse unit cells, the submatrices make up the 12N × 12N matrix
associated with the entire slice,

H lm
L =

⎛⎜⎜⎜⎜⎝
Hlm

L (R1, R1) Hlm
L (R1, R2) · · · Hlm

L (R1, RN )

Hlm
L (R2, R1) Hlm

L (R2, R2) · · · Hlm
L (R2, RN )

...
...

. . .
...

Hlm
L (RN, R1) Hlm

L (RN, R2) · · · Hlm
L (RN, RN )

⎞⎟⎟⎟⎟⎠. (35)

It follows from Eq. (35) that Hml
L (Rq, Rp ) = Hlm

L (Rp, Rq )†. In addition, Eq. (34) and the transverse periodic boundary
conditions imply that we can write Eq. (35) as

H lm
L =

⎛⎜⎜⎜⎜⎝
Hlm

L (0) Hlm
L (−T ) · · · Hlm

L (−(N − 1)T )

Hlm
L (−(N − 1)T ) Hlm

L (0) · · · Hlm
L (−(N − 2)T )

...
...

. . .
...

Hlm
L (−T ) Hlm

L (−2T ) · · · Hlm
L (0)

⎞⎟⎟⎟⎟⎠, (36)

which has the form of a block-circulant matrix [56].

1. Working with transverse Fourier components

Although it seems natural to use Eq. (4) directly to deter-
mine the surface Green’s function, it is numerically more effi-
cient to exploit the block-circulant matrix structure of Eq. (36)
by employing a discrete Fourier-transform approach like in
Ref. [56] which also yields a set of indices Qn, where n =
0, . . . , N − 1, associated with the periodicity in the transverse
direction. The matrix H lm

L in Eq. (36) can be transformed into

the block-diagonal form H̃
lm

L , via the expression

H lm
L = P H̃

lm

L P−1, (37)

where

P = 1√
N

⎛⎜⎜⎜⎜⎝
ĨLei Q1·R1 ĨLei Q2·R1 · · · ĨLei QN ·R1

ĨLei Q1·R2 ĨLei Q2·R2 · · · ĨLei QN ·R2

...
...

. . .
...

ĨLei Q1·RN ĨLei Q2·RN · · · ĨLei QN ·RN

⎞⎟⎟⎟⎟⎠
(38)

is the special unitary matrix used for the basis transformation,
ĨL is the 12 × 12 identity submatrix, and H̃

lm

L is

H̃
lm

L =

⎛⎜⎜⎜⎜⎝
H̃lm

L ( Q1)

H̃lm
L ( Q2)

. . .

H̃lm
L ( QN )

⎞⎟⎟⎟⎟⎠.

(39)

Each diagonal submatrix in Eq. (39) is the discrete Fourier
transform of Hlm

L (Rp, Rq ), i.e.,

H̃lm
L ( Qn) =

N−1∑
q=0

Hlm
L (Rp, Rp+q )e−i Qn·(Rp−Rp+q ), (40)

where l = 0, 1 and m = (l − 1) mod 2, and represents a
transverse Fourier component corresponding to the trans-
verse wave vector Qn = n

N
Gtran, where n = 0, . . . , N − 1,

and Gtran is the transverse reciprocal lattice vector satisfy-
ing Gtran · T = 2π . It can also be shown that H̃ml

L ( Qn) =
[H̃lm

L ( Qn)]†.
The block-diagonal form of Eq. (39) allows us to treat

each Fourier component as an effectively independent sub-
system and determine piecewise the essential matrix variables
such as the surface Green’s functions from the force-constant
submatrices H̃00

L ( Qn) and H̃01
L ( Qn), using the methodology

described in Sec. II. In the following discussions, we use the
Badv/ret

L,± as a shorthand notation to refer to the four related
matrices Bret

L,+, Bret
L,−, Badv

L,+, and Badv
L,− where B is any matrix

function (e.g., the surface Green’s function g).
In the same manner, the surface Green’s function can be

block-diagonalized with the same P in Eq. (37), i.e.,

gadv/ret
L,± = P g̃adv/ret

L,± P−1, (41)

where g̃adv/ret
L,± is a block-diagonal matrix like H̃

lm

L in Eq. (39)
and has the block-diagonal 12 × 12 submatrices g̃adv/ret

L,± ( Qn)
for n = 1, . . . , N , with

g̃ret
L,−( Qn) = [

(ω2 + iη)ĨL − H̃00
L ( Qn)

− H̃10
L ( Qn)g̃ret

L,−( Qn)H̃01
L ( Qn)

]−1
, (42a)

g̃ret
L,+( Qn) = [

(ω2 + iη)ĨL − H̃00
L ( Qn)

− H̃01
L ( Qn)g̃ret

L,+( Qn)H̃10
L ( Qn)

]−1
, (42b)

like in Eq. (4) and g̃adv
L,±( Qn) = g̃ret

L,±( Qn)†.
Similarly, we have the block-diagonal Bloch matrices

F̃
adv/ret
L,± with the diagonal submatrices F̃adv/ret

L,± ( Qn) given
by F̃adv/ret

L,+ ( Qn) = g̃adv/ret
L,+ ( Qn)H̃10

L ( Qn) and F̃adv/ret
L,− ( Qn) =

g̃adv/ret
L,− ( Qn)H̃01

L ( Qn) from Eq. (7). The bulk eigenmode
submatrices Ũadv/ret

L,± ( Qn) are determined from Eq. (8),

i.e., F̃adv/ret
L,+ ( Qn)Ũadv/ret

L,+ ( Qn) = Ũadv/ret
L,+ ( Qn)�̃

adv/ret
L,+ ( Qn) and

F̃adv/ret
L,− ( Qn)−1Ũadv/ret

L,− ( Qn) = Ũadv/ret
L,− ( Qn)�̃

adv/ret
L,− ( Qn)−1. As

in Eq. (8), the matrices �̃
adv/ret
L,± ( Qn) have only diagonal ele-

ments containing the eigenvalues of F̃adv/ret
L,± and make up the
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block-diagonal submatrices in

�̃
adv/ret
L,± =

⎛⎜⎜⎜⎜⎜⎝
�̃

adv/ret
L,± ( Q1)

�̃
adv/ret
L,± ( Q2)

. . .

�̃
adv/ret
L,± ( QN )

⎞⎟⎟⎟⎟⎟⎠, (43)

which is a purely diagonal 12N × 12N matrix. The Bloch eigenmode matrices have the form

Ũadv/ret
L,± ( Qn) = (

ũadv/ret
L,± ( Qn, kn,1), . . . , ũadv/ret

L,± ( Qn, kn,12)
)
, (44)

where ũadv/ret
L,± ( Qn, kn,m) is the 12 × 1 column eigenvector for the transverse wave vector Qn and the longitudinal wave vector

kn,m for m = 1, . . . , 12. The corresponding eigenvelocity submatrices Ṽadv/ret
L,± ( Qn) can be found using Eqs. (9) and (10), and

have the form

Ṽadv/ret
L,± ( Qn) =

⎛⎜⎜⎝
vadv/ret

L,± ( Qn, kn,1) · · · 0
...

. . .
...

0 · · · vadv/ret
L,± ( Qn, kn,12)

⎞⎟⎟⎠,

where vadv/ret
L,± ( Qn, kn,m) is the corresponding longitudinal group velocity for the eigenmode ũadv/ret

L,± ( Qn, kn,m).

2. Real-space matrix variables

To recover the real-space surface Green’s function matrix gadv/ret
L,± , we apply the transformation gadv/ret

L,± = P g̃adv/ret
L,± P−1 like in

Eq. (41) and obtain

gadv/ret
L,± =

⎛⎜⎜⎜⎜⎝
gadv/ret

L,± (R1, R1) gadv/ret
L,± (R1, R2) · · · gadv/ret

L,± (R1, RN )

gadv/ret
L,± (R2, R1) gadv/ret

L,± (R2, R2) · · · gadv/ret
L,± (R2, RN )

...
...

. . .
...

gadv/ret
L,± (RN, R1) gadv/ret

L,± (RN, R2) · · · gadv/ret
L,± (RN, RN )

⎞⎟⎟⎟⎟⎠. (45)

Similarly, the real-space Bloch matrix from Eq. (7) can be obtained via the expression Fadv/ret
L (±) = P F̃

adv/ret
L,± P−1. Given that

the real-space Bloch matrix must satisfy the conditions

Fadv/ret
L (±)±1U adv/ret

L (±) = U adv/ret
L (±)�adv/ret

L (±)±, (46)

where �adv/ret
L (±) is also a purely diagonal matrix like �̃

adv/ret
L,± with the eigenvalues of Fadv/ret

L (±) along its diagonal. Equation (46)

implies that �adv/ret
L (±) = �̃

adv/ret
L,± and we can write the real-space bulk eigenmode matrix as

Uadv/ret
L (±) = PŨ

adv/ret
L,± , (47)

giving us

U adv/ret
L (±) = 1√

N

⎛⎜⎜⎜⎜⎝
Ũadv/ret

L,± ( Q1)ei Q1·R1 Ũadv/ret
L,± ( Q2)ei Q2·R1 · · · Ũadv/ret

L,± ( QN )ei QN ·R1

Ũadv/ret
L,± ( Q1)ei Q1·R2 Ũadv/ret

L,± ( Q2)ei Q2·R2 · · · Ũadv/ret
L,± ( QN )ei QN ·R2

...
...

. . .
...

Ũadv/ret
L,± ( Q1)ei Q1·RN Ũadv/ret

L,± ( Q2)ei Q2·RN · · · Ũadv/ret
L,± ( QN )ei QN ·RN

⎞⎟⎟⎟⎟⎠
= (

uadv/ret
L,± ( Q1, k1,1), . . . , uadv/ret

L,± ( Q1, k1,12), . . . , uadv/ret
L,± ( QN, kN,1), . . . , uadv/ret

L,± ( QN, kN,12)
)
, (48)

where the right-hand side of Eq. (48) is a 12N × 12N

matrix with each column vector corresponding to an ex-
tended or evanescent bulk eigenmode and represented by
uadv/ret

L,± ( Qn, kn,m), where n = 1, . . . , N and m = 1, . . . , 12.
Hence, we have a total of 12N eigenmodes; associated with
each is a real or complex longitudinal wave vector. For each
transverse wave vector Qn, we have 12 longitudinal wave

vectors which we enumerate as kn,1 to kn,12. It also follows
from Eqs. (46) and (47) that the real-space velocity matrix is
V adv/ret

L (±) = Ṽ
adv/ret
L,± .

Given the real-space surface Green’s functions in Eq. (45),
we can compute the effective harmonic matrix in Eq. (3)
and the corresponding Green’s function Gret

L from Eq. (5).
Using V ret/adv

L (−) and U ret/adv
L (−) from Eq. (48), we compute
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r̄LL from Eq. (20) which gives us the transition amplitudes
between the incoming and outgoing phonon channels.

3. Brillouin zone unfolding

In our transverse partitioning scheme, we can associate
with each phonon channel in Eq. (48) a transverse wave
vector Qn and its longitudinal wave vector kn,m. The vector
sum of these two wave vectors (k = Qn + kn,m x̂ where the
longitudinal direction is in the x direction) yields the locus
of the mode (k) within the “folded” Brillouin zone (BZ) as
shown in Fig. 5(b). This folded BZ is a consequence of the
4-atom unit supercell used in our S-matrix method, which
requires the partitioning of the atomic degrees of freedom
into rectangular slices, and thus has half the reciprocal space
area of the primitive BZ but contains 12 phonon branches
compared to 6 phonon branches in the primitive BZ.

To make sense of our analysis of the transmission coeffi-
cients and individual transition amplitudes, it is necessary to
map the scattering channels to the phonon modes in the bulk
graphene lattice. This is done by “unfolding” the 12 phonon
branches within the folded BZ to obtain 6 phonon branches
within the larger primitive BZ using the zone-unfolding tech-
nique of Boykin and Klimeck [40,41]. Given our choice of
the 4-atom unit supercell, each phonon mode (k) in the folded
BZ has two possible image points (k′) in the primitive BZ,
with one of them satisfying k′ = k and the other shifted by an
integer multiple of Glong and Gtran, i.e., k′ = k + n1Glong +
n2Gtran, where n1 and n2 are whole numbers that depend on
k. For notational brevity, we write k′ = k + G(k). However,
only one of the two image points corresponds to the correct
bulk mode, except in the special case where Qn = −Gtran/2
and all the phonon modes are twofold degenerate.

For completeness, we outline the application of the
Boykin-Klimeck unfolding technique [40,41] to the
graphene lattice. We write the 12 × 1 column eigenvector
ũadv/ret

L,± ( Qn, kn,m) in Eq. (44), after dropping the superscripts
and subscripts for the sake of brevity, as

ũ(k) =
(

β̃1(k)

β̃2(k)

)
, (49)

where, for n = 1, 2, β̃n(k) is the 6 × 1 column vector corre-
sponding to nth 2-atom primitive unit cell of the 4-atom su-
percell, and ρn is its displacement vector within the supercell.
From Eq. (49), we define the 12 × 1 column vector

B̃(k) =
(

β̃1(k)e−ik·ρ1

β̃2(k)e−ik·ρ2

)
and the 12 × 12 matrix

W (k) = 1√
2

(
Ĩ ĨeiG(k)·ρ1

Ĩ ĨeiG(k)·ρ2

)
,

where Ĩ is the 6 × 6 identity matrix. The 12 × 1 column vec-
tor C̃ (k) containing the unfolded modes is given by [40,41]

C̃ (k) =
(

c̃k

c̃k+G(k)

)
= W (k)−1 B̃(k), (50)

where c̃k and c̃k+G(k) are the 6 × 1 column vectors corre-
sponding to the possible unfolded eigenmodes at k′ = k and
k′ = k + G(k), respectively. If the folded mode in Eq. (49)
is not degenerate, then only one of the two possible unfolded
eigenmodes in Eq. (50) is correct and the correct unfolded
wave vector can be identified through elimination as the incor-
rect eigenmode is zero in all its components. Using Eq. (50) as
an example, if |c̃k| = 0, then the correct unfolded wave vector
is k′ = k + G(k) and the corresponding eigenvector is given
by

ũ(k) → ũ(k) = |B̃(k)|√
2|c̃k+G(k)|

(
c̃k+G(k)e

ik·ρ1

c̃k+G(k)e
ik·ρ2

)
.

On the other hand, if the folded mode in Eq. (49) is degen-
erate, i.e., there are other modes that share its wave vector
and frequency, then it is possible that neither |c̃k| = 0 nor
|c̃k+G(k)| = 0, and hence both c̃k and c̃k+G(k) represent correct
unfolded eigenmodes, of which we may consider ũ(k) in
Eq. (49) as a mix. We can “unmix” the degenerate folded
eigenmodes by assigning one unfolded eigenmode to each
of the former. For example, in the special case where Qn =
−Gtran/2, the modes at each k are doubly degenerate and can
be represented as ũ1(k) and ũ2(k). In that case, we have

ũ1(k) → ũ1(k) = |B̃(k)|√
2|c̃k|

(
c̃ke

ik·ρ1

c̃ke
ik·ρ2

)
,

ũ2(k) → ũ2(k) = |B̃(k)|√
2|c̃k+G(k)|

(
c̃k+G(k)e

ik·ρ1

c̃k+G(k)e
ik·ρ2

)
,

and the unfolded wave vectors of ũ1(k) and ũ2(k) are k and
k + G(k), respectively.

To illustrate the unfolding method, we compute the flex-
ural acoustic (ZA) phonon channels for Qn = 2n−N−2

2N
Gtran,

where n = 1, . . . , N , at ω = 33 meV for a bulk graphene
system consisting of N = 24 4-atom supercells, like those in
Fig. 5(a), in the transverse (armchair) direction. The locus (k)
of these phonon channels in the folded BZ is represented by
the square symbols in Fig. 6 and has the shape of a dual-blade
ax head because of the zone-folding of some of the phonon
modes (red and blue square symbols in Fig. 6). After applying
the Boykin-Klimeck zone-unfolding method [40,41], the re-
sultant locus of these wave vector points has the approximate
shape of a circle, with the “unfolded” modes represented by
circles in Fig. 6. The locus of the phonon channels in which
the wave vectors in the folded BZ and their image in the
primitive BZ differ by ±Gtran is represented by red (k′ = k +
Gtran) and blue (k′ = k − Gtran) circles in the primitive BZ
and by squares in the folded BZ. For example, the unfolded
points in the primitive BZ at k′

1 and k′
2 in Fig. 6 are obtained

by a displacement of −Gtran and Gtran in reciprocal space,
respectively.

B. Chirality dependence of phonon boundary
scattering in graphene

We study the effects of the edge chirality or orientation
on the boundary scattering of low-energy flexural acoustic
(ZA) phonons in graphene. It is shown by Wei, Chen, and
Dames in Ref. [18] using wave packet dynamics simulations
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FIG. 6. Plot of computed ZA phonon modes at ω = 33 meV in
the folded Brillouin zone (BZ) and their image points in the unfolded
primitive BZ. The locus of the phonon channels (square symbols)
within the folded BZ forms the shape of a dual-blade ax head while
the shape of the locus of the phonon channels within the primitive
BZ is approximately circular.

that the scattering of ZA phonons by the armchair edge can
lead to what they call “wave packet splitting,” a phenomenon
in which the incoming wave packet is split into two or more
outgoing components with dissimilar wave vectors and back-
scattered wave packets are generated after scattering. In the
scattering framework, the two outgoing wave packet compo-
nents correspond to having two outgoing phonon channels in
which the transition probability is not zero. Wave packet split-
ting is however not observed in their simulations of scattering
with the zigzag edge [18], suggesting that the edge chirality
exerts a profound effect on the phonon scattering specular-
ity. Additional evidence of this edge chirality dependence is
provided by molecular dynamics simulations showing that
the thermal conductivity is lower for armchair-edge graphene
nanoribbons than for zigzag-edge graphene nanoribbons [55].
To explain their findings [18], Wei, Chen, and Dames attribute
the wave packet splitting to “the deeper symmetry properties
of armchair and zigzag edges of the hexagonal graphene
lattice.”

To understand the physics underlying this phenomenon
more precisely, we investigate the edge scattering of ZA
phonons by using our S-matrix approach to compute the tran-
sition probabilities between an incoming ZA phonon channel
incident on the edge and the outgoing (reflected) ZA phonon
channels for different edge chirality types. The scope of our
investigation is limited to ZA phonons because the wave
packet splitting of the longitudinal (LA) and transverse acous-
tic (TA) phonons can also arise from polarization conversion
which does not affect ZA phonons but can obscure the spec-
ularity dependence on edge chirality. Our simulated system
comprises a semi-infinite graphene sheet that is terminated
on the right like in Figs. 7(a) and 7(d). In our scattering
calculations, we set ω = 33 meV or 5 × 1013 rad/s and set
the incident phonon to be at either normal (ky = 0) or oblique
(ky �= 0) incidence.

1. Zigzag edge

Figure 7(b) shows the transition probability distribution
along the reciprocal-space locus of the outgoing ZA phonon
channels (solid square symbols) as well as the position of
the incoming phonon channel at k1 (solid circle), which is
at normal incidence (ky = 0) to the zigzag-edge boundary as
shown in Fig. 7(a). We find that incident phonon is specularly
scattered, i.e., P (k1) = 1, to the outgoing phonon channel
at k̄1 = σ k1, where σ is the operator corresponding to the
reflection (kx, ky ) → (−kx, ky ) in reciprocal space, given the
computed transition probability of P (k1 → k̄1) = 1.000. Fig-
ure 7(c) shows the transition probability distribution for the in-
coming phonon channel at k2 which is at an oblique incidence
(ky �= 0) to the boundary. The calculation also yields P (k2 →
k̄2) = 1.000 for k̄2 = σ k2, indicating that the phonon is also
specularly scattered. These results are consistent with the
findings in Ref. [18] where it is shown that ZA phonon
scattering with the zigzag edge is always specular regardless
of the angle of incidence.

2. Armchair edge

We repeat our calculations for ZA phonon scattering with
the armchair edge as shown in Fig. 7(d). At normal incidence
to the armchair edge, the incident phonon at k3 is specularly
scattered to the outgoing phonon channel k̄3 = σ k3 since
P (k3 → k̄3) = 1.000 as shown in Fig. 7(e). However, at
oblique incidence, the scattering of the incoming phonon
channel at k4 is only partially specular as P (k4 → k̄4) =
0.264 for k̄4 = σ k4 and the incident phonon is also backscat-
tered to a second outgoing phonon channel at k̄5 with P (k4 →
k̄5) = 0.736. There are no other outgoing channels to which
the incident phonon is scattered because the total transi-
tion probability of these two outgoing channels is P (k4 →
k̄4) + P (k4 → k̄5) = 1.000. This splitting of the incident ZA
phonon to two outgoing ZA phonon channels after scattering
with the armchair edge is qualitatively consistent with the
wave packet splitting observed in Ref. [18].

To explain the partial scattering specularity of the incident
phonon at k4, we note that the y component of k̄5 − k̄4,
which is the difference in the reciprocal-space position of
the outgoing phonon channels at k̄4 and k̄5, is equal to Gtran

which characterizes the periodicity of the armchair edge as
well as that of the supercell [Fig. 7(d)] in the transverse
(y) direction. To make this clearer, we plot in Fig. 7(f) the
point k̄

′
5 = k̄5 + Gtran which is collinear with k4 and k̄4. More

generally, this implies that any elastic phonon scattering by
the edge must satisfy the conservation condition

ŷ · (kin − kout) = m|Gtran|, (51)

where m ∈ Z and kin (kout) is the wave vector of the incoming
(outgoing) phonon channel.

Therefore, given Eq. (51), we can explain why phonon
scattering by the armchair edge is fully specular in Fig. 7(e)
and only partially specular in Fig. 7(f). In Fig. 7(e) where the
incoming phonon at k3 is at normal incidence to the boundary,
the only outgoing phonon channel that satisfies Eq. (51) is at
k̄3 and hence, the incident phonon undergoes fully specular
scattering. On the other hand, when the incoming phonon
is at k4, there are two outgoing phonon channels (k̄4 and
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FIG. 7. Diagram of the smooth graphene (a) zigzag and (d) armchair edge structure along the y direction. The bulk and edge C atoms
are colored brown and yellow, respectively. For the zigzag edge, the two-dimensional distribution of the incoming and outgoing (reflected)
phonon channels at ω = 33 meV in the first Brillouin zone (BZ) are shown for an incident flexural phonon at (b) k1 and (c) k2. The locus of
channels can be placed in three “rings” corresponding to the longitudinal acoustic (LA), transverse acoustic (TA), and flexural acoustic (ZA)
phonons. In addition to the first BZ, we also draw the outline of the folded BZ (dashed lines) corresponding to the supercell shown in (a). The
associated transition probabilities for the outgoing reflected channels are indicated in color. The incident phonons are specularly scattered to
the channels at k̄1 and k̄2. For the armchair edge, the distributions of the incoming and outgoing phonon channels are similarly shown for the
incident phonon at (e) k3 and (f) k4. The phonon at k3 is specularly scattered to k̄3 but the phonon at k4 is scattered into two channels at k̄4

and k̄5, with the k4 → k̄5 transition probability greater than the k4 → k̄4 transition probability. The point at k̄
′
5 = k̄5 + Gtran is collinear with

k4 and k̄4 as a consequence of Eq. (51).

k̄5) that satisfy Eq. (51), such that ŷ · (k4 − k̄4) = 0 and ŷ ·
(k4 − k̄5) = |Gtran|, resulting in a “splitting” of the incoming
phonon.

Along the same lines, we can also explain the full specular-
ity of ZA phonon scattering and the absence of wave packet
splitting for the zigzag edge. The greater symmetry of the
zigzag edge means that its |Gtran| is larger than the |Gtran| of
the armchair edge since |Gtran| = 2π√

3a
and 2π

3a
for the zigzag

and armchair edge, respectively, where a is the carbon-carbon
bond length. This can also be seen when we compare the
width of the folded BZ along the ky axis in Figs. 7(b) and
7(e). Hence, the conservation condition in Eq. (51) is more
restrictive for the zigzag edge because its larger |Gtran| allows
for only one outgoing phonon channel when ω = 33 meV.

C. Effect of graphene edge chirality and isotopic disorder on
ZA phonon specularity

1. Ordered edges

We use our S-matrix method to study how the ZA phonon
boundary scattering specularity (P) varies systematically with
frequency (ω) and wave vector (k) for different edge chirality
configurations. The specularity parameter distribution of the
incoming flexural acoustic (ZA) phonons is computed at ω =
lω0, where ω0 = 6.6 meV or 1013 rad/s and l = 1, . . . , 6, in

Fig. 8 for (a) the ideal zigzag edge with N = 42 unit cells
or 84 atoms and (b) the ideal armchair edge with N = 24
unit cells or 96 atoms in the transverse direction. At each
frequency point, the locus of all the incoming ZA phonons
is represented by a constant-frequency arc, as shown in Fig. 8,
and the loci form a concentric arrangement of arcs with the
innermost and outermost arc corresponding to ω = ω0 and
ω = 6ω0, respectively.

Figure 8(a), which corresponds to the ideal zigzag edge,
shows that the specularity is perfect (P = 1) as expected for
all incoming ZA phonons in the frequency range studied,
confirming the conservation condition in Eq. (51). However,
in Fig. 8(b) which corresponds to the ideal armchair edge,
the ZA phonon specularity varies with the frequency ω and
wave vector k = (kx, ky ), in agreement with the findings of
Ref. [18]. Figure 8(b) shows that the variation in specular-
ity with k becomes more pronounced at larger ω. In each
constant-frequency arc in Fig. 8(b) for ω = 4ω0 to 6ω0,
P (k) approaches its minimum as ky approaches ± 1

2 |Gtran|
as indicated in Fig. 8(b). The existence of this minimum at
a particular incident angle is reported but not explained in
Ref. [18].

For the specularity minimum at ky = ± 1
2 |Gtran|, there are

two outgoing channels at k̄ and −k. Figure 8(b) shows that
as we increase the frequency, the k → −k transition, which
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FIG. 8. Plot of the specularity parameter value P distribution within the Brillouin zone for incoming (incident) flexural acoustic (ZA)
phonon channels (filled circles) at ω = lω0, where ω0 = 6.6 meV or 1013 rad s−1 and l = 1, . . . , 6, for the (a) ordered zigzag, (b) ordered
armchair, (c) disordered zigzag, and (d) disordered armchair edge, computed using Eq. (27). The outgoing ZA phonon channels are represented
by hollow square symbols. The ZA phonon channels are arranged in concentric constant-ω arcs. The P (k) minima at each ω lie along the
ky = ± 1

2 |Gtran| line (labeled “min”) for both the isotopically ordered and disordered armchair edge.

corresponds to the reversal of the phonon trajectory such that
the angle of incidence is equal to the negative of the angle of
reflection, becomes increasingly more probable. This implies
that at high phonon frequencies, a greater proportion of the
phonon momentum in the y direction is lost due to scattering
with the ideal armchair edge.

2. Disordered edges

Given the role of the edge translational symmetry in the ZA
phonon scattering specularity, it would be interesting to see
the effect of the loss of that symmetry on phonon specularity.
To break the translational symmetry of the graphene edge,
we randomly replace 25% of the edge12C atoms with 24C
atoms [Figs. 8(a) and 8(d)] to create isotopic disorder along
the edges.

Figure 8 shows the specularity parameter distribution at
ω = lω0, where l = 1, . . . , 6, for incoming ZA phonon chan-
nels at (a), (b) the zigzag edge with N = 42 unit cells
or 84 atoms and (c), (d) the armchair edge with N =
24 unit cells or 96 atoms in the transverse direction. The
specularity distributions for the mass-disordered edges in
Figs. 8(b) and 8(d) are obtained after averaging over 20 re-

alizations of disorder while the distributions in Figs. 8(a) and
8(c) have no disorder and represent the baseline specularity
values.

A comparison of Figs. 8(a) and 8(c) shows that the P (k) =
1 result no longer holds in the disordered zigzag edge. We
observe that the specularity decreases as the frequency and
the angle of incidence decrease. This dependence on the angle
of incidence is unexpected as models of surface roughness
scattering [10,14] suggest that the specularity should decrease
monotonically with the angle of incidence. This suggests
that the effect of edge disorder is different from that of
edge roughness and that caution should be exercised when
using specularity approximations based on surface roughness
scattering.

In Fig. 8(d) at large ω (ω = lω0 for l = 4 to 6), we observe
that the specularity parameter P (k) is maximum at normal
incidence to the edge but decreases as the angle of incidence
increases before reaching its minimum when ky = ± 1

2 |Gtran|
like in Fig. 8(c). Comparing Figs. 8(c) and 8(d), we find that
the isotopic disorder at the armchair edge reduces P (k), with
the decrease in P (k) becoming larger at higher frequency and
angle of incidence, similar to the trend observed for the zigzag
edge.
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V. SUMMARY AND CONCLUSION

We have described the improvement of the atomistic
Green’s function (AGF) method for treating individual
phonon transmission and reflection, and shown explicitly how
the phonon transmission and reflection matrices can be deter-
mined numerically and used to construct the unitary S matrix
that characterizes scattering by the interface and treats bulk
phonon modes as scattering channels. In our AGF-based S-
matrix approach, the scattering amplitude between the phonon
channels is determined from the corresponding S-matrix el-
ement and yields the transition probability for the forward
(transmission) or backward (reflection) scattering process. We
illustrate the advantages of our approach by first applying it to
the example of phonon scattering at the junction of two iso-
topically different (8,8) carbon nanotubes. The S-matrix ap-
proach allows us to determine the dependence of the phonon
transmission and reflection on frequency, polarization, and
phonon velocity. We also analyze the transition probability for
individual scattering processes as well as describe the role of
intra- and inter-subband processes in phonon reflection.

We also illustrate the utility of the method by applying
it to the study of phonon reflection from a graphene edge.
We take advantage of the transverse periodic boundary con-
dition to partition the system into its Fourier components for
more efficient computation of matrix variables such as the
surface Green’s function. For clarity, the scattering channels
are mapped to the bulk phonon modes of graphene using the
Boykin-Klimeck zone-unfolding technique. Our numerical
calculations reveal that unlike the zigzag edge, phonon scatter-
ing with the armchair edge is only partially specular because

of the symmetry difference between the armchair edge and the
bulk lattice. We also find that the specularity varies with wave
vector and frequency and decreases as expected when isotopic
disorder is introduced to the edge.

Potentially, the application of our AGF-based S-matrix
method in the atomistic simulations of other interfaces can
provide a similarly detailed picture of phonon transmission
and reflection, and shed light on the relationship between
phonon scattering and the atomistic structure of the interface
or surface. The method may also be incorporated into mul-
tiscale models of phonon and thermal conduction in hetero-
geneous solids with interfaces [57] by combining it with the
transport models based on the Boltzmann transport equation.
The method can also be used to estimate phonon specularity
in transport models of low-dimensional systems (e.g., silicon
nanowires or graphene nanoribbons) in which edge scatter-
ing is important for momentum relaxation. In addition, the
formalism presented in this paper may be applicable on its
own to the numerical simulation of scattering in linear systems
(e.g., photonic crystals [58]) that have a lattice structure and
are second order in time.
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