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We study the effect of quenched disorder on the semimetal-superconductor quantum phase transition in a
model of two-dimensional Dirac semimetal with N flavors of two-component Dirac fermions, using perturbative
renormalization group methods at one-loop order in a double epsilon expansion. For N � 2 we find that the
Harris-stable clean critical behavior gives way, past a certain critical disorder strength, to a finite-disorder
critical point characterized by non-Gaussian critical exponents, a noninteger dynamic critical exponent z > 1,
and a finite Yukawa coupling between Dirac fermions and bosonic order parameter fluctuations. For N � 7 the
disordered quantum critical point is described by a renormalization group fixed point of stable-focus type and
exhibits oscillatory corrections to scaling.
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I. INTRODUCTION

The study of Dirac fermions in the presence of quenched
disorder is a problem of enduring interest due to its relevance
for a remarkable breadth of phenomena in condensed matter
physics, with early applications including disordered zero-gap
semiconductors [1,2], the random-bond Ising model [3], and
the integer quantum Hall plateau transition [4]. The discovery
of three-dimensional (3D) topological semimetals [5] has led
to renewed interest in this problem, as evidenced by the large
number of theoretical studies of disordered Weyl [6–21] and
Dirac [22–27] semimetals having appeared in recent years.
While this body of work has largely focused on the non-
interacting limit, relatively fewer studies have addressed the
combined effect of disorder and electron-electron interactions
in Dirac fermion systems. Limiting ourselves to 2D Dirac
fermions, our prime concern, such studies have addressed the
interplay of interactions and disorder on the integer quantum
Hall plateau transition [28], the physics of graphene [29–
34], and the surfaces of 3D topological insulators [35–37]
and superconductors [38–40]. Recent work has also demon-
strated the possibility of novel critical phases in massless
(2+1)D relativistic quantum electrodynamics in the presence
of quenched disorder [41–43], with possible applications to
disordered spin liquids.

In this work we study the effect of quenched disorder
on the semimetal-superconductor quantum phase transition
of 2D Dirac fermions at charge neutrality. While previous
work involving one of us has already partially addressed
this problem using mean-field [34,35] and standard epsilon
expansion [35] methods, here we revisit this problem using the
double epsilon expansion [44–46] which is better suited to the
study of quantum critical phenomena in disordered systems.
While the double epsilon expansion has traditionally been
applied to purely bosonic systems, e.g., the O(n) vector model
with random-Tc disorder [44–46], here we show that it can be
applied to fermionic quantum critical points (QCPs) described

by quantum field theories of the Gross-Neveu-Yukawa (GNY)
type [47,48], exploiting the fact that, like the O(n) vector
model, such theories have an upper critical dimension of
four absent quenched disorder. We consider a model of 2D
Dirac semimetal with N flavors of two-component Dirac
fermions, and show that at leading (one-loop) order in the
double epsilon expansion, a Harris-stable clean QCP gives
way beyond a certain critical disorder strength to a finite-
disorder QCP [49] with non-Gaussian critical exponents and
noninteger dynamic critical exponent z > 1. Furthermore,
Dirac fermions and bosonic order parameter fluctuations are
strongly coupled at this QCP. The latter is therefore a first
example of disordered fermionic QCP, which combines the
phenomenology of finite-disorder bosonic QCPs [50] with
that of (clean) fermionic QCPs, where coupling between
bosonic order parameter fluctuations and gapless fermionic
modes leads to new universality classes beyond those of the
purely bosonic Landau-Ginzburg-Wilson paradigm.

The paper is structured as follows. In Sec. II we present
our model for the semimetal-superconductor transition in the
presence of quenched disorder. In Sec. III we outline the
basic steps of the renormalization group (RG) approach in
the double epsilon expansion and present the beta functions
describing the flow under renormalization of various coupling
constants in the theory. In Sec. IV we find RG fixed points,
analyze their stability, and determine how they are connected
under the RG flow. In Sec. V we determine the critical
exponents at the various fixed points and derive implications
of the RG flow analysis for the phase diagram of the system.
A brief conclusion follows in Sec. VI, and the details of some
derivations are contained in three appendixes to the paper.

II. MODEL

We consider a model of N flavors of two-component
Dirac fermions ψ1, ψ2, . . . , ψN in 2+1 dimensions, which
in the absence of interactions are described by the low-energy
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imaginary-time Lagrangian

Lψ =
N∑

i=1

iψ̄ i (γ0∂τ + cf γ · ∇ )ψi, (1)

where γ0 and γ = (γ1, γ2) denote Euclidean 2 × 2 Dirac
matrices in 2+1 dimensions, obeying the SO(3) Clifford alge-
bra {γμ, γν} = 2δμνI2×2, μ, ν = 0, 1, 2, with I2×2 the 2 × 2
identity matrix and ψ̄ i = −iψi†γ0 the Dirac conjugate. In a
condensed matter system on a lattice the N flavors would
correspond to N symmetry-related linear band crossings in
the Brillouin zone, with a common Dirac velocity cf . We
also assume the underlying microscopic model is particle-
hole symmetric, which excludes any possible tilt of the Dirac
cones. For a 3D topological insulator the two components of
the spinor ψi correspond to physical spin; for a 2D Dirac
semimetal like graphene an equivalent four-component for-
mulation is more natural (see Appendix A).

We will be interested in superconducting instabilities, and
consider subjecting the Dirac fermions to sufficiently short-
range attractive interactions. At low energies, the various
possible superconducting order parameters will transform ac-
cording to irreducible representations of the symmetry group
of (1). We will assume the microscopic interactions are such
that in a certain range of couplings they favor pairing in the
flavor-symmetric, s-wave, spin-singlet channel, with an order
parameter

N∑
i=1

〈ψiT iσ2ψ
i〉, (2)

where T denotes the transpose and σ1, σ2, σ3 are the Pauli spin
matrices, which act on the physical spin degrees of freedom.
We consider first the clean limit, and assume that the chemical
potential is exactly at the Dirac point. The transition from
Dirac semimetal to superconductor at zero temperature pro-
ceeds via a QCP at finite attraction strength, since the density
of states of the Dirac semimetal vanishes at the Fermi energy
[35,51–55]. The critical behavior at the QCP is governed by
the so-called chiral XY GNY model [48],

Lclean = Lψ + Lφ + Lφψψ, (3)

where

Lφ = |∂τφ|2 + c2
b|∇φ|2 + r|φ|2 + λ2|φ|4, (4)

Lφψψ = hφ∗
N∑

i=1

ψiT iσ2ψ
i + H.c. (5)

The Lagrangian (3) describes gapless Dirac fermions interact-
ing with bosonic order parameter fluctuations φ with velocity
cb, r is a tuning parameter for the transition (r > 0 in the
semimetal phase, r < 0 in the superconducting phase, and
r = 0 at criticality), and the coupling constants λ2 and h obey
λ2 > 0 and h2 > 0. The absence of a term φ∗∂τφ linear in
time derivatives is a consequence of the assumed particle-hole
symmetry of the underlying microscopic model. The effec-
tive low-energy Lagrangian (3) exhibits an emergent O(N )
flavor symmetry under ψi → Wijψ

j , with W an arbitrary
orthogonal N × N matrix, and its critical properties for any N

can be accessed via an RG analysis in D = 4 − ε spacetime
dimensions [48,55–57]. For N = 1, the model is applicable
to the superconducting transition on the surface of a 3D
topological insulator with a single Dirac cone, and features
a QCP with emergent N = 2 supersymmetry [56,58–65]. For
N = 4 the model describes the superconducting transition in
graphene [55]. In the infrared limit, in which a Z3 anisotropy
∼(φ3 + φ∗3) becomes irrelevant, the N = 4 case is argued
to also belong to the same universality class as that of the
Kekulé valence-bond-solid transition in monolayer graphene
[66–72], and possibly also twisted bilayer graphene [73]. In
Appendix A we establish an equivalence between the two-
component formulation with Yukawa coupling to the Majo-
rana mass used here and in Ref. [63], and a four-component
formulation with normal and axial Dirac masses typically
used in discussions of graphene [55,56], where the U (1)
symmetry is realized as an axial symmetry.

Focusing on the superconducting transition, we now con-
sider the effect of quenched disorder on this transition. We
assume a random potential V (x) that is smooth on the scale of
the microscopic lattice constant, i.e., that is sufficiently long
range so as to not scatter Dirac fermions between different
valleys (see, e.g., Ref. [74]). The potential then couples iden-
tically to all fermion flavors,

Ldis = V (x)
N∑

i=1

ψi†ψi. (6)

Proceeding as in Ref. [35], we assume a Gaussian disorder
distribution with zero mean and variance �V ,

P [V (x)] ∝ e− ∫
d2 x V (x)2/2�V , (7)

and perform the quenched disorder average using the replica
trick [75]. This generates a four-fermion interaction nonlocal
in time,

Sdis,f = − �V

2

n∑
a,b=1

N∑
i,j=1

∫
d2x dτ dτ ′(ψi†

a ψi
a

)
(x, τ )

× (
ψ

j†
b ψ

j

b

)
(x, τ ′), (8)

where the replica limit n → 0 is to be taken at the end of
the calculation. This effective interaction preserves all the
symmetries of the clean limit, including translation symmetry
and O(N ) flavor symmetry. As will be explained in greater
detail in Sec. III, in the context of an RG analysis near four
dimensions the four-fermion interaction term (8) is strongly
irrelevant in perturbation theory, and thus would not appear to
affect critical behavior in the scaling limit. However, at two-
loop order this interaction generates an effective four-boson
interaction,

Sdis,b = −�

2

n∑
a,b=1

∫
d2x dτ dτ ′ |φa|2(x, τ )|φb|2(x, τ ′), (9)

where � ∝ h4�V at leading order in perturbation theory
(Fig. 1). The four-boson interaction (9) is identical to one
generated by Gaussian disorder in the coefficient of the |φ|2
term in Eq. (4), i.e., random-Tc disorder. By contrast with
Eq. (8), this interaction is relevant below four dimensions
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FIG. 1. Random-Tc disorder is generated from random chemical
potential disorder at two-loop order (dotted lines: order parame-
ter fluctuations; solid lines: fermions; box: disorder-induced four-
fermion coupling).

[76] and must be included in an RG analysis of the critical
behavior, to which we now turn.

III. RG IN THE DOUBLE EPSILON EXPANSION

In the limit of a unique fermion flavor N = 1, the problem
so far described has been studied in Ref. [35] using the
ε expansion in D = 4 − ε space-time dimensions. In this
expansion the four-fermion coupling �V in Eq. (8) has an
engineering dimension −1 + ε, and is thus strongly irrelevant
at the Gaussian fixed point for small ε, while the induced four-
boson coupling � in Eq. (9) has an engineering dimension 1 +
ε, which is strongly relevant at the Gaussian fixed point. In the
ε expansion one thus finds that disorder is relevant at the clean
QCP also [35], since dimensions of operators at this QCP
only receive O(ε) corrections relative to their engineering
dimensions. In fact, the conventional ε expansion below four
dimensions generally predicts runaway flows near QCPs with
random-Tc disorder [75]. While such runaway flows are often
interpreted as an indication that critical behavior is destroyed,

they really only signal the breakdown of the conventional ε

expansion as well as the need for another small parameter
with which to tame RG flows generated by disorder. Here
we will follow one particular approach to fulfill this need,
which consists in working in d = 4 − ε spatial and ετ time
dimensions, with both ε and ετ treated as small parameters
[44–46]. In the present case, to access the physical problem in
2+1 dimensions one extrapolates ε → 2 and ετ → 1. (For a
study of quantum critical phenomena in disordered 3D Dirac
semimetals using a different type of double epsilon expansion,
see Ref. [77].)

A. Bare vs renormalized actions

Focusing first on the critical theory r = 0, we thus study
the replicated action

S =
∑

a

∫
dd x dετ τ

(
iψ̄a (/∂τ + cf /∇ )ψa + |∂τφa|2

+ c2
b|∇φa|2 + λ2|φa|4 + h

(
φ∗

aψ
T
a iσ2ψa + H.c.

))
− �

2

∑
ab

∫
dd x dετ τ dετ τ ′|φa|2(x, τ )|φb|2(x, τ ′),

(10)

where a, b = 1, . . . , n are replica indices, we denote /∂τ ≡
γ0∂τ and /∇ ≡ γ · ∇ for simplicity, and we group the N

fermion flavors for each replica a into an O(N ) vector, ψa ≡
(ψ1

a , ψ2
a , . . . , ψN

a ). By rescaling the fermion and boson fields
as well as the time coordinate, and redefining the couplings
in the Lagrangian, one can eliminate the velocities cf and cb

from the Lagrangian at the expense of multiplying |∂τφa|2 by
the ratio (cf /cb )2, which we will denote c2.

To carry out an RG analysis of the above theory, we
compare the bare action

SB =
∑

a

∫
dd xB dετ τB

(
iψ̄a,B (/∂τB

+ /∇B )ψa,B + c2
B |∂τB

φa,B |2 + |∇Bφa,B |2 + λ2
B |φa,B |4

+ hB (φ∗
a,BψT

a,Biσ2ψa,B + H.c.)
) − �B

2

∑
ab

∫
dd xB dετ τB dετ τ ′

B |φa,B |2(xB, τB )|φb,B |2(xB, τ ′
B ) (11)

to the renormalized action

S =
∑

a

∫
dd x dετ τ

(
Z1iψ̄a /∂τψa + Z2iψ̄a /∇ψa + Z3c

2|∂τφa|2 + Z4|∇φa|2 + Z5λ
2με−ετ |φa|4

+ Z6hμ(ε−ετ )/2
(
φ∗

aψ
T
a iσ2ψa + H.c.

)) − Z7
�

2
με

∑
ab

∫
dd x dετ τ dετ τ ′ |φa|2(x, τ )|φb|2(x, τ ′), (12)

where the renormalized couplings c2, λ2, h, � are dimen-
sionless, and we have introduced a renormalization scale μ.
The renormalization constants Z1, . . . , Z7 are to be calculated
in perturbation theory. The bare and renormalized kinetic
terms for the fermion match if one takes xB = x, τB = ητ ,
and √

Z1ψa (x, τ ) = η(ετ −1)/2ψa,B (xB, τB ), (13)√
Z2ψa (x, τ ) = ηετ /2ψa,B (xB, τB ), (14)

which implies η = Z2/Z1. The dynamic critical exponent z

describes the relative scaling of space and time, which in
dimensionless units reads μτ ∼ (μ|x|)z. Defining the anoma-
lous dimensions

γi = d ln Zi

d ln μ
, i = 1, . . . , 7, (15)

this implies [42]

z = 1 + γ1 − γ2, (16)
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since the bare coordinate xB and time τB do not depend on μ.
Likewise, the |∇φ|2 terms match if one requires√

Z4φa (x, τ ) = ηετ /2φa,B (xB, τB ). (17)

From Eqs. (13), (14), and (17) we find that the bare and
renormalized coupling constants are related by

c2 = Z−1
3 Z4

(
Z1

Z2

)2

c2
B, (18)

λ2 = μ−(ε−ετ )

(
Z1

Z2

)ετ

Z2
4Z

−1
5 λ2

B, (19)

h2 = μ−(ε−ετ )

(
Z1

Z2

)ετ

Z2
2Z4Z

−2
6 h2

B, (20)

� = μ−εZ2
4Z

−1
7 �B, (21)

from which we obtain the RG beta functions βg ≡
dg/d ln μ, g ∈ {c2, λ2, h2,�},

βc2 = (2γ1 − 2γ2 − γ3 + γ4)c2, (22)

βλ2 = (−(ε − ετ ) + ετ (γ1 − γ2) + 2γ4 − γ5)λ2, (23)

βh2 = (−(ε − ετ ) + ετ (γ1 − γ2) + 2γ2 + γ4 − 2γ6)h2,

(24)

β� = (−ε + 2γ4 − γ7)�, (25)

using the fact that the bare couplings c2
B, λ2

B, h2
B , and �B

are independent of μ. For ε > ετ > 0, the couplings λ2, h2,
and � are relevant at the Gaussian fixed point, and one may
hope to find a controlled fixed point in perturbation theory
for small ε, ετ . Note that, at tree level, the fermion field has
scaling dimension [ψ] = (3 − ε + ετ )/2 and the boson field
[φ] = (2 − ε + ετ )/2. Therefore, the four-fermion disorder-
induced coupling �V in Eq. (8) has dimension

d + 2ετ − [ψ†ψψ†ψ] = −2 + ε, (26)

which is strongly irrelevant for small ε, ετ , justifying our
excluding it from the action (10).

To determine the correlation length exponent ν one needs
to compute the RG eigenvalue of the scalar field mass
term |φ|2 at the QCP, which is done by adding the term∑

a rB |φa,B |2 to the bare Lagrangian and
∑

a Zrrμ
2|φa|2 to its

renormalized counterpart. Equating the two gives the relation

r = μ−2Z4Z
−1
r rB, (27)

which yields the usual expression for the inverse correlation
length exponent [78],

ν−1 = 2 − γ4 + γr, (28)

defining γr = d ln Zr/d ln μ as for the other renormalization
constants. Finally, the fermion γψ and boson γφ anomalous di-
mensions are obtained from γψ,φ = d ln Zψ,φ/d ln μ, where
we define Zψ and Zφ via

ψa,B (xB, τB ) = √
Zψψa (x, τ ), (29)

φa,B (xB, τB ) = √
Zφφa (x, τ ). (30)

i, a
p0,p p0, p

a

q0, q

a a

a a

λ2q0, q

i, a a
/p

p2

1
c2p2

0 + p2

h

h

b

a a

b

a

i, a

i, a

i, a

i, a

a −(2π) τ δ(q0)Δ

FIG. 2. Feynman rules associated with the replicated action; a, b

are replica indices, i is a fermion flavor index, and q0, q denotes the
frequency-momentum transfer from top to bottom.

Using Eqs. (13), (14), and (17) we find

γψ = γ2 + ετ (z − 1), (31)

γφ = γ4 + ετ (z − 1). (32)

B. Renormalization constants

To derive the beta functions (22)–(25) one must first
compute the renormalization constants Z1, . . . , Z7, and to
determine the correlation length exponent one must calculate
Zr . Here we adopt the standard field-theoretic approach, with
renormalization constants calculated at one-loop order in the
modified minimal subtraction (MS) scheme with dimensional
regularization. The Feynman rules associated with the repli-
cated action are illustrated schematically in Fig. 2; the fermion
and boson propagators are given by

G
ij

ab(p) = 〈
ψi

a (p)ψ̄j

b (p)
〉 = δabδ

ij /p

p2
, (33)

Dab(p) = 〈φa (p)φ∗
b (p)〉 = δab

c2p2
0 + p2

, (34)

denoting the space-time momentum by p = (p0, p) and /p =
γμpμ.

In the MS scheme, the renormalization constants are com-
puted order by order in the loop expansion by writing Zi =
1 + δZi, i = 1, . . . , 7, r and demanding that the δZi cancel
the ultraviolet divergences of the one-particle irreducible (1PI)
effective action. In dimensional regularization, this means
that at one-loop order the δZi , which are computed from
the Feynman diagrams in Fig. 3, contain simple poles in
ε and ε − ετ . We present the details of the calculation in
Appendix B; here we simply quote the results (after taking
the replica limit n → 0):

Z1 = 1 − 8h2

ε − ετ

f (c2), (35)

Z2 = 1 − 4h2

ε − ετ

, (36)
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(a) (b) (c)

(d)

(e) (f) (g)

(h) (i)

FIG. 3. One-loop diagrams for the renormalization of (a),(b),(c)
the boson two-point function, (d) the fermion two-point function,
(e),(f),(g) the boson self-interaction λ2, and (h),(i) the disorder
strength �. At this order there is no renormalization of the Yukawa
coupling h.

Z3 = 1 − 2�

ε
− 4Nh2c−2

ε − ετ

, (37)

Z4 = 1 − 4Nh2

ε − ετ

, (38)

Z5 = 1 + 20λ2

ε − ετ

− 16Nh4λ−2

ε − ετ

− 12�

ε
, (39)

Z6 = 1, (40)

Z7 = 1 + 16λ2

ε − ετ

− 8�

ε
, (41)

Zr = 1 + 8λ2

ε − ετ

− 2�

ε
, (42)

where we have rescaled the coupling constants according to
g/(4π )2 → g, g ∈ {λ2, h2,�}, and we define the dimension-
less function (see Fig. 4),

f (c2) = c2(c2 − 1 − ln c2)

(c2 − 1)2
. (43)

C. Beta functions and anomalous dimensions

To calculate the beta functions, we first use the chain rule
to write

γi = 1

Zi

dZi

d ln μ
= 1

Zi

∑
g

∂Zi

∂g
βg, (44)

for i = 1, . . . , 7 and g ∈ {c2, λ2, h2,�}, which when substi-
tuted into the expressions (22)–(25) gives a linear system of
equations for the beta functions. Expanding the beta functions

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

c2

f (c
2 )

FIG. 4. Plot of f (c2) in Eq. (43), with c2 = (cf /cb )2 the velocity
ratio squared; f (0) = 0, f (1) = 1

2 , and f (∞) = 1.

to quadratic order in the couplings, we find that all poles in ε

and ε − ετ cancel, and obtain

βc2 = −2c2� + 4h2[c2(4f (c2) + N − 2) − N ], (45)

βλ2 = −(ε − ετ )λ2 − 12�λ2 + 20λ4 + 8Nh2λ2 − 16Nh4,

(46)

βh2 = −(ε − ετ )h2 + 4(N + 2)h4, (47)

β� = −ε� − 8�2 + 16�λ2 + 8N�h2. (48)

Setting ετ = 0 and � = 0, Eqs. (47) and (46) reduce to the
one-loop beta functions of the chiral XY GNY model in the
ordinary 4 − ε expansion [e.g., Eqs. (19) and (20) in Ref. [57]
in the e2 = 0 limit]. Note that the above beta functions are
perturbative in λ2, h2, and �, but exact in the relative velocity
parameter c2.

Using Eq. (44), from the renormalization constants (35)–
(41) and the beta functions (45)–(48) we can calculate the
anomalous dimensions γi , and from those the critical expo-
nents ν−1, z, γψ , and γφ . We obtain

ν−1 = 2 − 4Nh2 − 8λ2 + 2�, (49)

z = 1 + 4h2(2f (c2) − 1), (50)

γψ = 4h2[1 + (2f (c2) − 1)ετ ], (51)

γφ = 4Nh2
[
1 + (2f (c2) − 1)

ετ

N

]
, (52)

which are meant to be evaluated at the RG fixed points
(c2

∗, λ
2
∗, h

2
∗,�∗) discussed in the following section. At one-

loop order h2
∗ ∼ O(ε, ετ ), thus the subleading correction pro-

portional to ετ in the fermion (51) and boson (52) anomalous
dimensions should be discarded. In other words, at one-loop
order the correction z − 1 to the dynamic critical exponent is
O(ε, ετ ), which gives a term quadratic in ε, ετ in Eqs. (31) and
(32) that should be treated on par with two-loop corrections to
γ2, γ4, and thus eliminated when working at one-loop order.
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IV. RG FLOW ANALYSIS

We now search for fixed points of the flow equations
(45)–(48), i.e., common zeros (c2

∗, λ
2
∗, h

2
∗,�∗) of the beta

functions, which correspond to possible (multi)critical points
for the semimetal-superconductor transition. In the double
epsilon expansion, the nature of the fixed points and their
stability depend sensitively on the ratio ε/ετ (especially for
disordered fixed points with �∗ 
= 0) [44–46]. Since we are
interested in the limit ε → 2 and ετ → 1, corresponding to
2+1 dimensions, we set ε = 2ετ and expand to leading order
in ετ .

A. Fixed points

First considering possible clean fixed points with �∗ =
0, we find the Gaussian fixed point (c2

∗, 0, 0, 0) and O(2)
Wilson-Fisher fixed point (c2

∗,
ετ

20 , 0, 0), where c2
∗ is arbitrary

since the velocity parameter flows under RG only in the
presence of disorder or a nonzero Yukawa coupling [Eq. (45)].
We also find a GNY fixed point for all N ,(

1,
2 − N + √

N2 + 76N + 4

40(N + 2)
ετ ,

ετ

4(N + 2)
, 0

)
, (53)

corresponding to the semimetal-superconductor QCP in the
clean limit, and in agreement with earlier studies [48,55–
57]. Note that λ2

∗ > 0 for all N � 1. Since f (1) = 1
2 (see

Fig. 4), from Eq. (50) one finds z = 1, and the clean QCP
has emergent Lorentz invariance.

We now look for possible disordered fixed points with
�∗ 
= 0. Since at one-loop order βh2 depends on h2 alone
[Eq. (47)], we can separately consider the cases with h2

∗ zero
and nonzero. For h2

∗ = 0, we find the fixed point (0, ετ

2 , 0, 3ετ

4 )
for all N [79], which corresponds to the disordered fixed
point of the purely bosonic O(2) model [44–46] and de-
scribes the superfluid-Mott glass transition in the presence
of exact particle-hole symmetry [80]. For h2

∗ 
= 0, as already
mentioned one necessarily has h2

∗ = ετ /[4(N + 2)] like at the
clean fixed point (CFP) in Eq. (53), regardless of the values of
λ2

∗ and �∗. Solving for a common zero of βλ2 and β�, we find
two nontrivial disordered fixed points (DFP),

DFP 1:

(
c2
∗,DFP1,

ετ

N + 2
,

ετ

4(N + 2)
,

3ετ

2(N + 2)

)
, (54)

DFP 2:

(
c2
∗,DFP2,

Nετ

4(N + 2)
,

ετ

4(N + 2)
,

(N − 1)ετ

2(N + 2)

)
. (55)

As they occur at finite Yukawa coupling, and thus involve
strongly coupled bosonic and fermionic critical fluctuations,
we will term these fixed points fermionic disordered fixed
points. The critical couplings λ2

∗, h2
∗, and �∗ are strictly

positive, and thus physical, for all N � 2. Inserting (54) and
(55) into βc2 , one numerically finds that in both cases βc2

has a unique zero at a positive value of c2 for all N � 2
(Fig. 5). For DFP 1, one can derive the lower bound c2

∗,DFP1 �
N/(N − 1) and c2

∗,DFP1 tends to one as N increases. For DFP
2, c2

∗,DFP2 increases without bound as N increases, and we
have c2

∗,DFP2 � N/3.
The cases N = 1 and N = 4 are special. As N approaches

one from above, DFP 2 merges with the clean fixed point,

DFP 1
DFP 2
CFP

2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

N

c2 *

FIG. 5. Critical velocity parameters c2
∗ at the first disordered

fixed point (DFP 1), the second disordered fixed point (DFP 2), and
the clean fixed point (CFP, c2

∗ = 1), as a function of N � 2.

with c2
∗,DFP2 → c2

∗,CFP = 1, while DFP 1 moves off to infinite
coupling (c2

∗,DFP1 → ∞). As can be gleaned by looking at
Eqs. (54) and (55) and Fig. 5, as N → 4 DFP 1 and DFP 2
also merge. In accordance with the general scenario governing
the pairwise merging and annihilation of fixed points [81], and
as will be elaborated upon below, in the presence of disorder
we expect to find marginal scaling at the clean fixed point for
N = 1 and at the (unique) fermionic disordered fixed point for
N = 4.

B. Linear stability analysis

We now perform a linear stability analysis for the fixed
points found in the previous section, within the critical hyper-
surface r = 0. In the absence of disorder, as found previously
[48,55–57] the Gaussian and O(2) Wilson-Fisher fixed points
have at least one unstable direction, while the CFP is stable
and describes the critical behavior at the transition. In the
presence of disorder, both the Gaussian and O(2) Wilson-
Fisher fixed points acquire an additional unstable direction.
At the CFP, the RG eigenvalue (defined as the negative of
the slope of the ultraviolet beta functions) corresponding to
disorder is

−2

5

(√
N2 + 76N + 4 − N − 8

N + 2

)
ετ , (56)

which is strictly negative for all N � 2. Thus disorder is
perturbatively irrelevant at the CFP for all N � 2. For N = 1,
the eigenvalue (56) vanishes and one has marginal scaling, as
expected from the discussion at the end of the last section. Ex-
panding the beta functions to quadratic order in the couplings
near the CFP, we find that disorder is marginally relevant.

Turning now to the disordered fixed points, we find that the
disordered O(2) Wilson-Fisher fixed point is destabilized by a
nonzero Yukawa coupling for all N . By contrast, the stability
of DFP 1 and DFP 2 depends on N . For N = 2, 3, DFP 1
is stable while DFP 2 has one unstable direction; for N = 4,
DFP 1 and DFP 2 merge into a single fermionic disordered
fixed point with marginal flow; for N � 5, DFP 1 and DFP
2 exchange their stability properties, i.e., DFP 2 is stable and
DFP 1 has one unstable direction. As previously mentioned,
for N = 1 no finite-disorder fixed points remain.
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CFP

FIG. 6. RG flows for N = 1, with marginal flow (brown line)
away from the CFP.

C. RG flows

Having investigated the linearized RG flow near the fixed
points, we now analyze the full flow in the four-dimensional
space of couplings, as given by the solution of the coupled
differential equations (45)–(48). Since the beta function for
the Yukawa coupling (47) is independent of c2, λ2, and �,
the CFP, DFP 1, and DFP 2 share a common fixed-point value
of h2

∗ = ετ /[4(N + 2)]. Furthermore, we find that the scaling
field corresponding to the relative velocity parameter c2 is
irrelevant at each of those fixed points (except for N = 1,
which is discussed separately below). Therefore, we will plot
the projection of the RG flow in the λ2-� plane at fixed
h2 = h2

∗.
In Fig. 6 we plot the projected RG flows for N = 1.

There is marginal flow away from the CFP, with nonzero
projections along the λ2, �, and c2 directions. The point
(λ,�) = (ετ /3, ετ /2) towards which the marginal flow leads
in Fig. 6 is a remnant of DFP 1 [see Eq. (54)], but is not a fixed
point as it is impossible to make βc2 vanish there for N = 1.
The marginal flow at the CFP implies the existence of a
Landau pole that can be interpreted as a crossover temperature
scale T ∗ ∼ �e−1/α�0 above which scaling in the quantum
critical fan is controlled by the CFP, where � is a high-energy
cutoff, �0 is a dimensionless measure of the bare disorder
strength, and α is a numerical factor of order unity. Below T ∗
the runaway flow suggests the existence of a new fixed point,
not accessible at one-loop order, or a first-order transition.

In Fig. 7 we plot the flow diagram for N = 2. As found
in the linear stability analysis, the CFP and DFP 1 are stable
fixed points while DFP 2 has one unstable direction, and
controls a separatrix surface (appearing as a line in the λ2-�
plane) that separates the basins of attraction of the CFP and
DFP 1. For N = 3, the flow diagram is qualitatively similar

DFP 1

DFP 2

CFP

FIG. 7. RG flows for N = 2, with separatrix (green line) con-
trolled by DFP 2 between the CFP and DFP 1.

but DFP 1 and DFP 2 approach each other; at N = 4 they
merge into a single DFP with marginal flow towards the CFP
(Fig. 8).

For N = 5 (Fig. 9) and N = 6, the flow diagram is quali-
tatively similar as that for N = 2 and N = 3, but the stability
properties of DFP 1 and DFP 2 are interchanged. DFP 1 now
controls the separatrix and DFP 2 is the stable fixed point.
For N � 7, this state of affairs remains, but two irrelevant
eigenvalues of the stability matrix acquire a nonzero imagi-

CFP

DFP

FIG. 8. RG flows for N = 4: DFP 1 and DFP 2 merge into a
single DFP with marginal flow towards the CFP.
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DFP 1

DFP 2

CFP

FIG. 9. RG flows for N = 5.

nary part. Since the stability matrix is real, they are complex
conjugates ω± = ω′ ± iω′′, but their real part ω′ (defining ω±
to be the eigenvalues of the Jacobian matrix of the ultraviolet
beta functions) remains positive, since they correspond to
irrelevant directions. We obtain

ω± = N + 8 ± i
√

3N (5N − 32)

2(N + 2)
ετ . (57)

As a consequence of the nonzero imaginary part, RG trajec-
tories spiral around DFP 2, and the latter becomes a fixed
point of stable-focus type. Such fixed points have been found
before in disordered O(n) magnets [44,82]. As an illustrative
example, we plot the RG flows for N = 20 in Fig. 10 (stable-
focus behavior is obtained for all N � 7, but ω′′ is larger—
and thus the spiraling trajectories more easily seen—for
larger N ).

V. CRITICAL EXPONENTS AND PHASE DIAGRAM

From Eqs. (49)–(52) and the fixed point couplings (53),
(54), and (55) we can now determine the critical exponents
at the various fixed points (Table I), where ηψ, ηφ denote the
anomalous dimensions γψ, γφ evaluated at the fixed point.

For N = 1, the CFP becomes the supersymmetric fixed
point with ηψ = ηφ = ετ /3 [56,58–64]. At the present one-
loop order, the fermion/boson anomalous dimensions ηφ and
ηψ only depend on the Yukawa coupling h2, which is the same
at each fixed point as observed earlier. This state of affairs will
change at higher loop orders, and we expect the anomalous
dimensions to differ at different fixed points in general.

We plot the inverse correlation length exponent ν−1 ex-
trapolated to ετ = 1 as a function of N � 2 in Fig. 11. In
accordance with the linear stability analysis in Sec. IV B, the
CFP obeys the Harris criterion [83], according to which clean

CFP

DFP 1

DFP 2

FIG. 10. RG flows for N = 20; DFP 2 is a fixed point of stable-
focus type for all N � 7.

critical behavior is stable against random-Tc disorder if

ν−1 < d/2, (58)

where d = 2 is the (physical) spatial dimension and ν−1 is
the inverse correlation length exponent in the clean limit. At
the CFP, ν−1 is strictly less than one for all 1 < N < ∞ and
reaches one at both N = 1 and N = ∞; thus for N = 1 the
CFP is Harris marginal, as found in Sec. IV. Note that in the
context of a perturbative RG analysis, it is more appropriate to
use the Harris criterion in the form (58), rather than in the
usual form ν > 2/d, as (58) simply expresses the condition
of perturbative irrelevance of the disorder-induced interaction
(9), namely that its scaling dimension 2(d + ετ − ν−1) be
larger than the effective space-time dimensionality d + 2ετ

appropriate for this interaction. However, this makes clear the
fact that the Harris criterion is one of perturbative stability, and
does not preclude the existence of disordered critical points
occurring past a certain finite critical disorder strength, as
found here. At the DFP 1 (DFP 2), ν−1 increases (decreases)
monotonically as N increases, asymptotically reaching 1 (0)
at N = ∞. Thus at all fixed points ν−1 � 1, in agreement
with the Chayes inequality ν−1 � d/2 for critical points in
disordered systems [84].

TABLE I. Critical exponents at the CFP, DFP 1, and DFP 2.

Fixed point ν−1 z − 1 ηψ ηφ

CFP 2 − ( 4N+2+
√

N2+76N+4
5(N+2)

)
ετ 0 ετ

N+2
Nετ

N+2

DFP 1 2 − (
N+5
N+2

)
ετ

3+
(

1−c2∗
c2∗

)
N

2(N+2) ετ
ετ

N+2
Nετ

N+2

DFP 2 2 − (
2N+1
N+2

)
ετ

N

c2∗
−1

2(N+2) ετ
ετ

N+2
Nετ

N+2
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DFP 1
DFP 2
CFP

2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N

−1

FIG. 11. Inverse correlation length exponent ν−1 for ετ = 1, as a
function of N � 2.

We also plot the deviation of the dynamic critical exponent
z from unity at DFP 1 and DFP 2 in Fig. 12, as a function of
N � 2, and extrapolated to ετ = 1 (or equivalently, in units of
ετ ). The dynamic critical exponent depends on the fixed-point
value of the relative velocity parameter c2

∗, itself plotted in
Fig. 5.

Finally, by contrast with standard RG fixed points of
source/sink type where RG trajectories approach the fixed
point monotonically, fixed points of stable-focus type, such
as the DFP 2 for N � 7, are known to lead to oscillatory
corrections to scaling laws [82]. In particular, the uniform,
static order parameter susceptibility χ , which obeys the usual
scaling law χ ∼ |r|−γ with γ the susceptibility exponent,
develops corrections of the form

χ ∼ |r|−γ

[
1 + C

∣∣∣∣ r

r0

∣∣∣∣
νω′

cos

(
νω′′ ln

∣∣∣∣ r

r0

∣∣∣∣ + φ

)
+ · · ·

]
,

(59)

where r0, C, and φ are nonuniversal constants that depend
on the initial distance to the fixed point within the critical
hypersurface r = 0, but the exponents ω′ and ω′′, given in
Eq. (57) and plotted in Fig. 13, are universal properties of the
fixed point. [See Appendix C for a derivation of Eq. (59).]

The separatrix surface for N � 2 mentioned in Sec. IV C
has interesting nonmonotonicity properties. As the direction
corresponding to the relative velocity parameter c2 is always

DFP 1
DFP 2

2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

N

z−
1

FIG. 12. Correction z − 1 to the dynamic critical exponent for
ετ = 1 at the two disordered fixed points, as a function of N .

7 8 9 10 11 12 13 14 15
0.4

0.6

0.8

1.0

1.2

1.4

N

FIG. 13. Exponents ω′ and ω′′ appearing in oscillatory correc-
tions to scaling at DFP 2 for N � 7, for ετ = 1.

irrelevant at the CFP, DFP 1, and DFP 2 for N � 2, it is
sufficient to consider the separatrix as a 2D surface in the 3D
reduced parameter space (λ2, h2,�). In Fig. 14 we plot three
cuts through this surface at constant λ2 that are representative
of the qualitative behavior we have observed numerically for
all N � 2, and which can be summarized as follows. Let
� = gλ2 (h2) be an equation describing the separatrix curve
in the h2-� plane for a given λ2. Then there always exists an
interval [h2

1, h
2
2], dependent on λ2, and a value λ2

1 such that, for
λ2 < λ2

1, the function gλ2 (h2) is double valued. Conversely,
consider describing the same separatrix curve by the equation
h2 = g−1

λ2 (�) where g−1 is the inverse function. Then likewise
there always exists an interval [�1,�2], dependent on λ2, and
a value λ2

2 < λ2
1 such that for λ2 < λ2

2 the function g−1
λ2 (�) is

double valued. This double-valued/nonmonotonic behavior of
the separatrix surface has potential consequences for the phase
diagram of the system as will be discussed below.

By following the RG trajectories from a set of initial
conditions for the coupling constants (c2, λ2, h2,�) one can
deduce the following implications for the phase diagram of
the system. The N = 1 case has already been discussed previ-
ously: the one-loop analysis does not allow one to determine
the ultimate fate of the quantum critical point, which can
either fall in a new universality class or become a first-
order transition. For N � 2, consider as tuning variables the

2 / = 1
75

2 / = 4
30

2 / = 28
30

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0

h2 /

/

FIG. 14. Cuts of the separatrix surface at constant λ2 for N = 8.
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r
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CFP

SM

r

Δ
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DFP 2

DFP 1

CFP

SM

DFP

r

Δ

SC

DM

DFP 2

DFP 1

CFP

SM

CFP

DFP 1

(a) (b)

(c) (d)

FIG. 15. Schematic phase diagrams in the plane of tuning param-
eter r and disorder strength � for N � 2. SM: Dirac semimetal; DM:
diffusive metal; SC: superconductor. For sufficiently small initial
values of λ2 and h2, the universality class of the transition changes
beyond a critical disorder strength from that of the CFP to that of
one of the two disordered fixed points: (a) N = 2 and N = 3; (b)
N = 4; (c) N � 5. For sufficiently large λ2 and/or h2, beyond a
second critical disorder strength there is a reentrant critical regime
controlled by the CFP [plotted in (d) for N � 5, but an analogous
effect occurs for 2 � N � 4].

critical tuning parameter for the transition, r , and the disorder
strength �, assuming that λ2 and h2 are held fixed. For � =
0 the transition is between a clean Dirac semimetal and a
superconductor, and is in the universality class of the CFP.
For sufficiently small nonzero �, the initial conditions in
parameter space remain in the basin of attraction of the CFP
and the universality class of the transition is still controlled by
the latter. While irrelevant at the critical point in the double
epsilon expansion, chemical potential disorder—which led to
the disorder-induced four-fermion interaction in Eq. (8)—is
known to generate a nonzero density of states at (2+1)D
Dirac points in the absence of electron-electron interactions,
producing diffusive metallic behavior [2,4,85]. In other words,
Eq. (8) can be thought of as a dangerously irrelevant pertur-
bation. Note that we considered sufficiently smooth disorder,
such that there is no backscattering between different Dirac
points and thus no localization effects. As a result, for � > 0
the transition is really from a diffusive metal to a supercon-
ductor. Rare-region effects will likely lead to the formation
of quantum Griffiths phases on both sides of the transition
[50], characterized by essential Griffiths-McCoy singularities,
but are expected to produce exponentially small corrections to
thermodynamic observables at the critical point [86].

As � increases, it eventually crosses the separatrix surface
at a certain critical value �c,1, and for � > �c,1 enters the
basin of attraction of a disordered fixed point. Thus, for N = 2
and N = 3, the universality class of the transition is controlled
by the CFP for � < �c,1, by DFP 2 for � = �c,1, which
is a multicritical point, and by DFP 1 for � > �c,1 [see
Fig. 15(a)]. For N = 4, for � > �c,1 the RG trajectories flow
back to the (unique) DFP, such that the universality class of the

transition is controlled by the DFP for � � �c,1 [Fig. 15(b)].
For N � 5, the scenario is the same as for N = 2 and N =
3 but the roles of DFP 1 and DFP 2 are exchanged, with
DFP 1 acting as multicritical point at � = �c,1 and DFP 2
controlling the critical behavior for � > �c,1 [Fig. 15(c)].

As mentioned earlier and illustrated in Fig. 14, for suffi-
ciently small λ2 there is always an interval of values of h2

for which the separatrix curve is a double-valued function of
h2. As a result, if the initial value of h2 is contained in this
interval, as the disorder strength � increases from zero the
universality class of the transition will be first controlled by
the CFP, then by one of the disordered fixed points (depending
on the value of N ), and then again by the CFP [Fig. 15(d)].
However, this counterintuitive behavior may be an artifact of
the one-loop approximation.

VI. CONCLUSION

In conclusion, we have studied the critical properties of
the semimetal-superconductor quantum phase transition in
a model of 2D Dirac semimetal with N flavors of two-
component Dirac fermions, in the presence of quenched dis-
order assumed to be uncorrelated, but sufficiently smooth so
as to make the probability of scattering between different
Dirac cones negligible. Our one-loop analysis demonstrated
the possibility of a general scenario for critical phenomena in
disordered systems, to our knowledge not explicitly discussed
in the literature so far: a clean critical point may be stable
against disorder according to the Harris criterion, but yet may
be replaced by a finite-disorder critical point beyond a certain
finite, critical disorder strength. In the model studied here
such finite-disorder critical points were characterized by finite
fixed-point values of both the boson-boson and fermion-boson
couplings, and thus were dubbed disordered fermionic QCPs.
Other notable features of the disordered critical points found
included a noninteger dynamic critical exponent z > 1, as
well as oscillatory corrections to scaling for sufficiently large
N .

Possible applications of our results include the semimetal-
superconductor quantum phase transition in graphene (N =
4) and on the surface of a 3D topological insulator (N = 1);
the experimental results reported in Ref. [87] are encouraging
in regards to the latter, although one would need to addition-
ally tune the chemical potential to the Dirac point and reach
the quantum critical regime by the application of a nonther-
mal tuning parameter such as pressure. With those caveats
in mind, we also note that the surface of 3D topological
crystalline insulators [88,89] such as SnTe [90], Pb1−xSnxSe
[91], and Pb1−xSnxTe [92] supports N = 4 two-component
Dirac cones, as in graphene, and that superconductivity has
been observed in In-doped SnTe [93,94], though presumably
of bulk origin. Larger values of N may be accessible in
systems of ultracold large-spin alkaline-earth fermions [95]
loaded into optical honeycomb lattices, such as those studied
theoretically in Ref. [69], but with interactions tuned to be
attractive. Alternatively, our results may be relevant for the
Kekulé valence-bond-solid transition of repulsively interact-
ing fermions on the honeycomb lattice, but the interplay of
disorder with the C3 point group symmetry, which is broken
by the Kekulé order parameter, should be first investigated
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carefully. Besides the effect of disorder on the Kekulé tran-
sition, our approach can also be applied to other fermionic
QCPs described by GNY-type theories, on which we will
report in future publications.

To further elucidate the critical behavior at N = 1 in the
present model, perturbative calculations at two-loop order
would be necessary. The conformal bootstrap [96], pertur-
bative RG studies of the clean chiral XY GNY model at
four-loop order [56], as well as quantum Monte Carlo sim-
ulations [65] suggest that ν−1 is slightly above one at the
CFP for N = 1, implying via the Harris criterion that disorder
is in fact relevant (as opposed to marginally relevant as
found at one-loop order) at the CFP. (Interestingly, for N = 4
quantum Monte Carlo simulations of the Kekulé transition
in graphene [70] and naive extrapolation of the four-loop
GNY ε-expansion results [56] predict ν−1 > 1 at the CFP,
while Padé extrapolation of the latter results [56] as well as
functional RG studies of the Kekulé transition [72] predict
ν−1 < 1 in the clean limit, in agreement with our one-loop
result.) Beyond perturbative RG, it would be interesting to
try to apply strong-disorder RG methods [97–99] to this
problem, as done recently for the 2D bosonic superfluid-
Mott insulator transition [100], or to incorporate the effect of
quenched disorder in the sign-problem-free quantum Monte
Carlo simulations of Ref. [65], as done previously for the
disordered attractive Hubbard model [101].
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APPENDIX A: RELATION BETWEEN TWO-COMPONENT
AND FOUR-COMPONENT FORMULATIONS

In this section we prove the equivalence between the two-
component formulation of the chiral XY GNY model, used
here and in Ref. [63], and its four-component formulation,
used in Refs. [55,56]. We are only concerned with the fermion
part of the Lagrangian, and will set cf = 1 for simplicity,
without loss of generality. Consider an even number N =
2Nf of flavors of two-component Dirac fermions ψα, α =
1, . . . , N . Combining those into Nf four-component Dirac
spinors,

�α =
(

ψα

iψα+Nf

)
, α = 1, . . . , Nf , (A1)

the fermion Lagrangian can be written as

Lf =
Nf∑
α=1

�̄α /∂�α + h

⎛
⎝φ∗

Nf∑
α=1

�T
α i�2�α + H.c.

⎞
⎠, (A2)

where �̄α = �†
α�0, /∂ = �μ∂μ, and we define the 4 × 4

gamma matrices

�μ =
(

γμ 0
0 −γμ

)
, μ = 0, 1, 2. (A3)

One can easily check that the Lagrangian of Sec. II is repro-
duced by a suitable choice of 2 × 2 gamma matrices, such
as γ0 = σ3, γ1 = σ1, and γ2 = σ2. One can further define the
two Hermitian matrices

�3 =
(

0 −i

i 0

)
, �5 = �0�1�2�3 =

(
0 1
1 0

)
, (A4)

which square to the identity and anticommute with the gamma
matrices (A3). Defining the charge conjugation matrix C =
i�2, we now perform a change of variables to a new set of Nf

four-component spinors χα [102],

�α = P−χα + P+Cχ̄T
α , (A5)

where P± = 1
2 (1 ± �5) are projectors obeying P 2

± = P± and
P+P− = P−P+ = 0. Using the properties C�μC−1 = −�T

μ

and P±�μ = �μP∓, μ = 0, 1, 2, the conjugate spinor is
given by

�̄α = χ̄αP+ + χT
α CP−. (A6)

Inserting Eqs. (A5) and (A6) into the Lagrangian (A2), and
using the properties CP±C−1 = P∓, P T

± = P± and CT =
C−1 = C† = −C, we find

Lf =
Nf∑
α=1

χ̄α /∂χα + 2h

Nf∑
α=1

χ̄α (φ1 + iφ2�5)χα, (A7)

where φ = φ1 + iφ2, which is the form of the chiral XY GNY
model given in Refs. [55,56]. In graphene Nf = 2; thus for us
N = 2Nf = 4.

APPENDIX B: CALCULATION OF THE
RENORMALIZATION CONSTANTS AT ONE-LOOP ORDER

In this Appendix we calculate contributions to the di-
vergent part of the one-loop 1PI effective action, �div, that
correspond to the Feynman diagrams in Fig. 3. Demanding
that the full renormalized 1PI effective action (including the
counterterms) remains finite allows us to extract the one-
loop contributions to the renormalization constants δZi, i =
1, . . . , 7, r . At one-loop order there is no diagram consistent
with the Feynman rules in Fig. 2 that can renormalize the
Yukawa vertex; thus δZ6 = 0 at this order.

1. Boson two-point function

The diagrams are given in Figs. 3(a)–3(c). Figures 3(a) and
3(c) are tadpole diagrams which contribute to the boson mass
renormalization constant Zr ; thus in those diagrams one must
use a massive boson propagator,

Dab(p) = δab

c2p2
0 + p2 + rμ2

. (B1)

For Fig. 3(a), we obtain

δ�
(a)
div = 4λ2

∫
dετ p0

(2π )ετ

∫
dd p

(2π )d
1

c2p2
0 + p2 + rμ2

×
∑

a

∫
dd x

∫
dετ τ |φa|2. (B2)

Here and in the rest of this Appendix momentum integrals are
evaluated in the limit ε, ετ → 0, discarding all finite terms.
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We obtain∫
dετ p0

(2π )ετ

∫
dd p

(2π )d
1

c2p2
0 + p2 + rμ2

= − rμ2

8π2(ε − ετ )
,

(B3)

thus

δZ(a)
r = λ2

2π2(ε − ετ )
. (B4)

For Fig. 3(c), ignoring a term which vanishes in the replica
limit we have

δ�
(c)
div = − �

∑
a

∫
dDk

(2π )D
|φa (k)|2

×
∫

dd p
(2π )d

1

c2k2
0 + p2 + rμ2

, (B5)

where dDk = dετ k0 dd k. Using∫
db p

(2π )d
1

c2k2
0 + p2 + rμ2

= −c2k2
0 + rμ2

8π2ε
, (B6)

we find

δZ
(c)
3 = − �

8π2ε
, δZ(c)

r = − �

8π2ε
. (B7)

For Fig. 3(b), we have

δ�
(b)
div = − 2Nh2

∑
a

∫
dDk

(2π )D
φ∗

a (k)

×
∫

dDp

(2π )D
tr

/p(/p + /k)

p2(p + k)2
φa (k), (B8)

where tr denotes a trace over spinor indices. Using Feynman
parameters to express

1

p2(p + k)2
=

∫ 1

0

dx

[xp2 + (1 − x)(p + k)2]2
, (B9)

and shifting the integration variable p → p − (1 − x)k, we
obtain∫

dDp

(2π )D
tr

/p(/p + /k)

p2(p + k)2
= − k2

8π2(ε − ετ )
, (B10)

using the fact that the gamma matrices are two dimensional,
as well as the ’t Hooft–Veltman prescription [103],∫

dDp

(2π )D
1

p2
= 0. (B11)

We thus obtain

δZ
(b)
3 = − Nh2c−2

4π2(ε − ετ )
, δZ

(b)
4 = − Nh2

4π2(ε − ετ )
. (B12)

2. Fermion two-point function

A unique diagram, Fig. 3(d), contributes to the renormal-
ization of the fermion two-point function. The divergent part

of the effective action is

δ�
(d)
div = 4h2

∑
a

∫
dDk

(2π )D
ψ̄a (k)

×
∫

dDp

(2π )D
/p + /k(

c2p2
0 + p2

)
(p + k)2

ψa (k). (B13)

Using Feynman parameters as in Eq. (B9), and shifting p →
p − (1 − x)k to perform the integral over p first, we have

I1 ≡
∫

dDp

(2π )D
/p + /k(

c2p2
0 + p2

)
(p + k)2

= �(ε/2)

(4π )d/2

∫ 1

0
dx

∫
dετ p0

(2π )ετ

γ0(p0 + k0) + xγ · k
(M2)ε/2

,

(B14)

where

M2 = (1 + (c2 − 1)x)

×
[
�2

0 + x(1 − x)k2

1 + (c2 − 1)x
+ x(1 − x)c2k2

0

(1 + (c2 − 1)x)2

]
,

(B15)

with

�0 = p0 + (1 − x)k0

1 + (c2 − 1)x
. (B16)

Shifting the integral over p0 to one over �0, we have, in the
limit ε, ετ → 0,

I1 = 1

8π2(ε − ετ )

∫ 1

0
dx

(
xc2

1 + (c2 − 1)x
γ0k0 + xγ · k

)

= 1

8π2(ε − ετ )

(
c2(c2 − 1 − ln c2)

(c2 − 1)2
γ0k0 + 1

2
γ · k

)
.

(B17)

We thus obtain

δZ
(d)
1 = − h2f (c2)

2π2(ε − ετ )
, δZ

(d)
2 = − h2

4π2(ε − ετ )
, (B18)

with f (c2) defined in Eq. (43).

3. Boson self-interaction

The relevant diagrams are given in Figs. 3(e)–3(g), where
(e) and (g) are meant to include diagrams in all three (s, t, u)
scattering channels.

For Fig. 3(e), we have

δ�
(e)
div = − 2λ4

∑
a

∫
dDk

(2π )D
(
4|φa|2−k|φa|2k + (

φ∗2
a

)
−k

(
φ2

a

)
k

)

×
∫

dDp

(2π )D
1(

c2p2
0 + p2

)
[c2(p0+k0)2 + ( p + k)2]

.

(B19)

As before, we use Feynman parameters to perform the integral
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over p first, shifting p → p − (1 − x)k,

I2 ≡
∫

dDp

(2π )D
1(

c2p2
0 + p2

)
[c2(p0 + k0)2 + ( p + k)2]

= �(ε/2)

(4π )d/2

∫ 1

0
dx

∫
dετ �0

(2π )ετ

1(
c2�2

0 + Q2
)ε/2 , (B20)

with Q2 = x(1 − x)(c2k2
0 + k2), and we have shifted the

integral over p0 to one over �0 = p0 + (1 − x)k0. Performing
the integrals over �0 and x, we obtain I2 = 1/[8π2(ε − ετ )],
and thus

δZ
(e)
5 = 5λ2

4π2(ε − ετ )
. (B21)

For Fig. 3(f), we have

δ�
(f)
div = 4Nh4

(
4∏

i=1

∫
dDki

(2π )D

)
(2π )Dδ

(
4∑

i=1

ki

)

× φ∗
a (−k1)φ(k2)φ∗

a (−k3)φa (k4)
∫

dDp

(2π )D

× tr
/p(/p − /k1)(/p − /k1 − /k2)(/p + /k4)

p2(p − k1)2(p − k1 − k2)2(p + k4)2
. (B22)

Using four Feynman parameters,

1

A1A2A3A4
= 3!

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

∫ 1

0
dw

× δ(x + y + z + w − 1)

(xA1 + yA2 + zA3 + wA4)4
, (B23)

as well as

tr γμγλγνγρ = 2(δμλδνρ + δλνδμρ − δμνδλρ ), (B24)

to perform the spinor trace, we find that after shifting p ap-
propriately the denominator can be expressed as (p2 + P 2)4,
where P 2 is independent of p and the numerator contains
powers of p ranging from one to four. For D = 4 − (ε − ετ ),
only the term with (p2)2 will give a pole in ε − ετ . Using∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

∫ 1

0
dw δ(x + y + z + w − 1) = 1

3!
,

(B25)

we find

δ�
(f)
div = Nh4

π2(ε − ετ )

∑
a

∫
dDx |φa|4, (B26)

and thus

δZ
(f)
5 = − Nh4λ−2

π2(ε − ετ )
. (B27)

The diagrams with one disorder vertex and one boson self-
interaction vertex contribute to the renormalization of both λ2

[Fig. 3(g)] and � [Fig. 3(h)]. Here we focus only on those
diagrams that contribute to the renormalization of λ2. We have

δ�
(g)
div = 2λ2�

∑
a

∫
dDk

(2π )D

∫
dDq

(2π )D

× (|φa|2−kφ
α
a (k + q )φα

a (−q )

+ 2
(
φα

a φβ
a

)
−k

φα
a (k + q )φβ

a (−q )
)

×
∫

dd p
(2π )d

1(
c2q2

0 + p2
)
[c2(q0 + k0)2 + ( p + k)2]

,

(B28)

denoting φ1
a = Re φa, φ2

a = Im φa , and with sums over re-
peated indices α, β = 1, 2 understood. Denoting m2

1 = c2q2
0

and m2
2 = c2(q0 + k0)2, the loop integral is∫

dd p
(2π )d

1(
p2 + m2

1

)[
( p + k)2 + m2

2

] = 1

8π2ε
, (B29)

using Feynman parameters and shifting p → p − (1 − x)k.
We thus obtain

δ�
(g)
div = 3λ2�

4π2ε

∑
a

∫
dDx |φa|4 (B30)

and

δZ
(g)
5 = − 3�

4π2ε
. (B31)

4. Disorder strength

The two diagrams are Figs. 3(h) and 3(i). For Fig. 3(h), we
have

δ�
(h)
div = 4λ2�

∑
ab

∫
dd k

(2π )d

∫
dετ τ

∫
dετ τ ′|φa|2−k,τ |φb|2k,τ ′

×
∫

dDp

(2π )D
1(

c2p2
0 + p2

)[
c2p2

0 + ( p + k)2
] .

(B32)

The loop integral is the same as I2 in Eq. (B20), but with k0 =
0, which does not change the result I2 = 1/[8π2(ε − ετ )] in
the limit ε, ετ → 0. We thus have

δ�
(h)
div = λ2�

2π2(ε − ετ )

∑
ab

∫
dd x dετ τ dετ τ ′ |φa|2x,τ |φb|2x,τ ′ ,

(B33)

hence

δZ
(h)
7 = λ2

π2(ε − ετ )
. (B34)

Finally, ignoring a term which vanishes in the replica limit,
Fig. 3(i) is given by the sum of two contributions:

δ�
(i,1)
div = − �2

∑
ab

∫
dd k

(2π )d

∫
dετ τ

∫
dDq

(2π )D

× |φa|2−k,τ φ
α
b (k + q, q0)φα

b (−q )

×
∫

dd p
(2π )d

1(
c2q2

0 + p2
)[

c2q2
0 + ( p + k)2

] (B35)

and

δ�
(i,2)
div = − �2

∑
ab

(
4∏

i=1

∫
dd ki

(2π )d

)
(2π )dδ

(
4∑

i=1

ki

)
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×
∫

dετ p0

(2π )ετ

∫
dετ q0

(2π )ετ

× φα
a (k1, p0)φα

a (k4,−p0)φβ

b (k3, q0)φβ

b (k2,−q0)

×
∫

dd p
(2π )d

1(
c2p2

0 + p2
)[

c2q2
0 + ( p + k3 + k4)2

] .

(B36)

Both integrals over the loop momentum p are of the form
(B29), and thus evaluate to 1/(8π2ε). Performing the remain-
ing integrals, we obtain

δ�
(i,1)
div + δ�

(i,2)
div = − �2

4π2ε

∑
ab

∫
dd x dετ τ dετ τ ′

× |φa|2(x, τ )|φb|2(x, τ ′), (B37)

thus

δZ
(i)
7 = − �

2π2ε
. (B38)

Adding up the various contributions and rescaling the cou-
plings λ2, h2, and � by (4π )2, we obtain the renormalization
constants in Eqs. (35)–(42).

APPENDIX C: OSCILLATORY CORRECTIONS
TO SCALING

We derive the existence of oscillatory corrections to scaling
[82] for N � 7 at the DFP 2 due to the presence of a pair of
complex-conjugate eigenvalues of the stability matrix. Pass-
ing over to a Wilsonian description, and ignoring corrections
to the dynamic critical exponent, the two-point function of the
order parameter χ (q ) = 〈φ(q )φ∗(q )〉 obeys the scaling rela-
tion χ (q, r (0)) = e(2−ηφ )�χ (e�q, r (�)), where � is an infrared
scale parameter, r (0) is the bare relevant tuning parameter for
the transition, and r (�) is the renormalized tuning parameter,
which obeys the differential equation

dr (�)

d�
= [2 − γm2 (g(�))]r (�). (C1)

Similarly, g(�) = (c2, h2, λ2,�) is a vector of renormalized
couplings, which obeys the differential equation

d g(�)

d�
= β(g(�)), (C2)

where β = (βc2 , βh2 , βλ2 , β�) is a vector of beta functions
given by Eqs. (45)–(48), but with a minus sign since d� =
−d ln μ. Defining �r such that r (�r ) = r0 for some arbitrary
constant r0, we find that the uniform thermodynamic sus-
ceptibility behaves as χ (q = 0, r ) ∼ e(2−ηφ )�r , where we now
denote r (0) by r for simplicity and �r depends on r in a
manner to be determined. Integrating Eq. (C1) from � = 0 to
� = �r , we find

ln
( r0

r

)
=

∫ �r

0
d� [2 − γm2 (g(�))]. (C3)

Linearizing Eq. (C2) near the fixed point g∗, we have

d

d�
(g(�) − g∗) = M (g(�) − g∗), (C4)

which is solved by diagonalizing M = PDP −1 where D is a
diagonal matrix. Now, γm2 in Eq. (C3) can be read off from
Eq. (49), and is linear in the couplings:

γm2 (g(�)) = a · g(�) = a · g∗ +
∑

i

ui (0)a · vie
−ωi�, (C5)

where the eigenvalues of M are denoted as −ωi, vi are
the respective eigenvectors, and u(0) is a vector of initial
conditions,

u(0) = P −1(g(0) − g∗). (C6)

Substituting into Eq. (C3), we obtain

ln
( r0

r

)
= ν−1�r +

∑
i

ui (0)

ωi

a · vi (e
−ωi�r − 1), (C7)

where ν−1 = 2 − γm2 (g∗). Assuming that the deviation (C6)
from the fixed point is small, we can solve for �r to O(u(0)),

�r = ν ln
( r0

r

)
−

∑
i

νui (0)

ωi

a · vi

[(
r

r0

)νωi

− 1

]

+ O(u(0)2). (C8)

The susceptibility thus becomes

χ ∼ |r|−γ

[
1 −

∑
i

γ ui (0)

ωi

a · vi

(
r

r0

)νωi

+ O(u(0)2)

]
,

(C9)

where γ = (2 − ηφ )ν is the usual susceptibility exponent.
Real (positive) eigenvalues ω ∈ R produce the usual cor-

rections to scaling χ ∼ |r|−γ (1 + C|r|νω + · · · ) [104]. Since
the stability matrix M in Eq. (C4) is real, complex eigenvalues
ω = ω′ + iω′′, if any, must come in complex-conjugate pairs
ω,ω∗. The associated eigenvectors v, v∗ are also complex
conjugates since Mv = −ωv and M is real. Finally, since
the components ui obey the differential equation dui/d� =
−ωiui , the component of u(0) associated with ω∗ must also
be the complex conjugate of the component associated with
ω. As a result the corrections to scaling due to a single pair of
complex-conjugate eigenvalues ω′ ± iω′′ are of the form

χ ∼ |r|−γ

[
1 +

(
1

2
C eiφ

(
r

r0

)ν(ω′+iω′′ )

+ c.c.

)
+ · · ·

]

∼ |r|−γ

[
1 + C

∣∣∣∣ r

r0

∣∣∣∣
νω′

cos

(
νω′′ ln

∣∣∣∣ r

r0

∣∣∣∣ + φ

)
+ · · ·

]
,

(C10)

where C and φ are nonuniversal constants, but the exponents
ω′ and ω′′ (see Fig. 13) are universal.
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