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Transverse shift in crossed Andreev reflection
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Crossed Andreev reflection (CAR) is an intriguing effect that occurs in a normal-superconductor-normal
junction. In CAR, an incoming electron from one terminal is coherently scattered as an outgoing hole into
the other terminal. Here, we reveal that there exists a transverse spatial shift in CAR, i.e., the plane of CAR
for the outgoing hole may have a sizable transverse shift from the plane of incidence for the incoming electron.
We explicitly demonstrate the effect in a model system based on Weyl semimetals. We further show that the
effect is quite general and exists when the terminals have sizable spin-orbit coupling. In addition, we find that
the corresponding shift in the elastic cotunneling process shows different behaviors, and it vanishes when the
two terminals are identical. Based on these findings, we suggest possible experimental setups for detecting the
effect, which may also offer an alternative method for probing CAR.
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I. INTRODUCTION

Andreev reflection is a unique scattering process that oc-
curs at an interface between a normal-metal (or a doped
semiconductor) and a superconductor [1]. During Andreev
reflection, an incoming electron from the normal-metal (N)
side is reflected as a hole at the interface, and the missing
charge of (−2e) is transferred into the superconductor (S) as
a Cooper pair.

Remarkably, the electron-hole conversion process can also
happen nonlocally, giving rise to an intriguing phenomenon
known as crossed Andreev reflection (CAR) [2,3]. It appears
in hybrid normal-superconductor-normal (NSN) structures, as
schematically illustrated in Fig. 1. When the thickness of the
S layer is smaller than or comparable to the superconducting
coherence length, an electron incident from the first N termi-
nal can form a Cooper pair in S with another electron from the
second N terminal, thereby coherently transmitting a hole into
the second N terminal and making a nonlocal charge transport.

CAR has been receiving considerable research interest,
partly because it provides a solution for generating entangle-
ment between electrons in spatially separated regions, which
is needed for quantum computation and quantum information
applications [4,5]. So far, the experimental detection of CAR
has relied mostly on the nonlocal transport measurement of
quantities such as nonlocal voltage or conductance [6–8].
However, such measurement is often complicated by another
competing nonlocal process, namely elastic cotunneling (EC)
[9], during which the incident electron directly tunnels to the

*ying_liu@mymail.sutd.edu.sg
†zhiming_yu@sutd.edu.sg

second terminal, leading to an opposite contribution (with
respect to CAR) to the nonlocal signal. It has been shown that
to the lowest order in the interface transmission, the contribu-
tion from EC exactly cancels that from CAR in the nonlocal
conductance [9], whereas for more transparent junctions, the
EC contribution tends to be dominant [10]. Consequently, the
recent research has mainly been focused on finding ways to
enhance the CAR contribution [11–18] and also on developing
new methods to detect the CAR process [19–21].

In this paper, we investigate a different aspect of CAR.
For an incident electron beam that undergoes CAR, the corre-
sponding trajectory defines two planes: the plane of incidence
for the incident electron and the plane of CAR for the outgoing
hole, as illustrated in Fig. 1. It seems natural that the two
planes should coincide, which was always implicitly assumed.
Here we show that this is not always the case—the plane of
CAR can actually have a sizable transverse spatial shift from
the plane of incidence.

This work is motivated by recent studies that discovered
electronic analogs [22–25] of Imbert-Fedorov shift in geo-
metric optics [26,27] and especially by our recent findings
on the transverse shift in local Andreev reflection [28,29].
Here, using the general quantum-mechanical scattering ap-
proach, we explicitly demonstrate the possible existence of
a transverse spatial shift in CAR. For particular cases in
which rotational symmetry is preserved, we find that the result
can be exactly reproduced via a symmetry argument. We
analyze three concrete model systems. The first has the two
N terminals consisting of a (doped) Weyl semimetal (WSM)
[30,31], where the low-energy carriers are described by Weyl
fermions. We attribute the large anomalous transverse shift
to the strong spin/pseudospin-orbit coupling (SOC) that is
inherent for Weyl fermions. However, the presence of Weyl
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FIG. 1. Schematic figure showing the transverse shift in CAR. In
the hybrid NSN structure, an incident electron from terminal N1 is
coherently scattered as an outgoing hole in terminal N2. There may
exist a transverse shift (δyCAR ) between the two scattering planes.

fermions (or any band crossing) is not a necessary condition
for the shift. We explicitly demonstrate this point using the
second system, where the two N terminal are doped semi-
conductors with SOC. Furthermore, as the third example,
we show that sizable transverse shift can persist for a pSn

junction, where the two terminals are semiconductors doped
into p- and n-type. Such a setup has the advantage that EC can
be completely suppressed for a range of excitation energies,
making the nonlocal transport entirely due to CAR. The
transverse shift in CAR can lead to measurable local signals
on the second N terminal. For certain cases like the second and
the third model systems, the shift gives rise to surface charge
accumulations that can be measured electrically as transverse
voltage signals (for which EC has no contribution). Thus, our
work not only reveals a fundamental physical effect, it may
also offer a promising alternative method for detecting CAR
in experiment.

II. MODEL AND APPROACH

We consider the hybrid NSN structure as illustrated in
Fig. 1. We assume that the system is extended in x and y di-
rections (which amounts to saying that the system dimension
in these two directions is much larger than the quasiparticle
wavelength). The two NS interfaces are perpendicular to the
z direction and are located at z = 0 and z = d, respectively.
The two terminals are denoted as N1 and N2. For studying
the nonlocal scattering process, we take d to be comparable to
the superconducting coherence length ξ for the S layer in the
calculation.

The quasiparticle scattering properties in the structure are
described by the microscopic Bogoliubov–de Gennes (BdG)
equation [32,33]:[

H0 + U (r ) − EF �(r )

�∗(r ) −T H0T −1 − U (r ) + EF

]
ψ = εψ.

(1)

Here, H0 is the electronic Hamiltonian in the normal state,
U (r ) represents a potential energy offset between the different
regions, EF is the Fermi energy, T is the time-reversal opera-
tor, and the excitation energy ε is measured from the Fermi
level. The wave function ψ = (u, v)T is a multicomponent

spinor with u (v) standing for the electron (hole) state. In
Secs. III and IV, we shall assume that the two N terminals
are composed of identical material, hence they share the same
H0, and U (r ) = −U0[�(z) − �(z − d )], where � is the
Heaviside step function. The superconducting pair potential
�(r ) is nonvanishing in the S region. Here, we take the usual
step function model [33] with �(r ) = �0[�(z) − �(z − d )],
which has been shown to be a good approximation to the full
self-consistent solution of the BdG equation for such a hybrid
structure [34,35]. Particularly, it is accurate when there is
large Fermi momentum mismatch across the interfaces (which
effectively reduces the coupling between the layers) [16],
which is the case in which we are interested. The mean-field
requirement for superconductivity is that EF + U0 � �0 in
the S region, meaning that the Fermi wavelength in S should
be much smaller than the coherence length. Meanwhile, the
Fermi wavelength in N is not constrained to be small. Partic-
ularly, when N is of a doped semiconductor or semimetal, we
may have EF comparable to �0, provided that U0 is large.

The scattering properties for the quasiparticles are encoded
in the scattering amplitudes, which are obtained by solving
the scattering states for the BdG equation. The procedure
is standard [33]: one solves the eigenstates for each region
(given by plane waves) and connects them at the interfaces
using proper boundary conditions. For an incident electron
plane wave state ψe+ from N1, there are four scattering
processes: normal reflection (NR) as an electron into N1,
Andreev reflection as a hole into N1, EC as an electron into
N2, and CAR as a hole into N2. In this work, since the focus
is on the transmitted quasiparticles in N2, we will mainly
consider the transmission amplitudes te and th for EC and
CAR processes.

Note that the spatial shift is well defined only for a lat-
erally confined quasiparticle beam. In the standard treatment
[22,28,29,36], the beam � is represented as a superposition
of the partial waves. For example, the incident beam can be
expressed as

�e+(r ) =
∫

dk′ w(k′ − k)ψe+
k′ (r ). (2)

Here w is the beam profile required to be peaked at an
average wave vector k. The specific form of w does not affect
the final result of the spatial shift. In practice, one usually
takes a Gaussian form for w, with w(q ) = �iwi (qi ), where
wi (qi ) = (

√
2πWi )−1 exp[−q2

i /(2W 2
i )], and Wi is the width

for the ith component. The scattering of the beam through the
NSN structure can be studied by analyzing the scattering of
each partial wave component ψe+

k′ , which are described by the
scattering amplitudes. For example, the outgoing hole beam
via CAR is given by

�h+(r ) =
∫

dk′ w(k′ − k)th(k′)ψh+
k′ (r ), (3)

where ψh+ denotes the forward propagating hole eigenstate
in N2. Then, the spatial shift is obtained by comparing the
central positions of the two beams (which define the two
scattering planes). The details of the approach can be found
in the following section for the study of concrete models.

We have a few remarks before proceeding. First, if the
plane of incidence is of the x-z plane (as illustrated in Fig. 1),
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then the transverse shift that we are looking for will be along
the y direction. We note that for systems with non-negligible
anisotropy in the x-y plane, the transverse shift would actually
depend on the orientation of the plane of incidence [29].

Second, the quantum scattering approach that we adopt
here is quite general. Unlike the semiclassical approach,
which requires that the potential variation is slow and smooth
over the quasiparticle wavelength [23], the quantum scattering
approach does not suffer from this constraint. Particularly, it
applies for sharp interfaces and for the case when the N region
is of a doped semiconductor or semimetal with a large Fermi
wavelength [22,28,36].

Third, the approach makes it apparent that the transverse
shift results from a change of interference among the partial
waves during scattering. As observed from Eqs. (2) and (3), a
quasiparticle beam can be regarded as a superposition of the
partial waves (ψe+

k′ or ψh+
k′ ), and its trajectory is determined by

the interference between these partial waves. In the scattering,
each partial wave ψe+

k′ is scattered to ψh+
k′ with the scattering

amplitude th. When the scattering amplitudes are different
for different partial waves, the interference pattern between
the partial waves could be altered, leading to a change in the
trajectory for the scattered beam. In the following section, we
shall see that this happens when the quasiparticles in N have
a strong SOC.

III. MODEL I: WSM/S/WSM JUNCTION

In the first model, we consider that the two N terminals
are identical and are made of a doped WSM. WSM is a type
of topological material, in which the conduction and valence
bands touch at isolated points in the momentum space called
the Weyl points [37]. The low-energy carriers around the Weyl
points are described by the Weyl equation. Then for electrons
near a Weyl point (at K 0), the corresponding H0 in Eq. (1)
may be expressed as (set h̄ = 1)

H0 = −iχ
∑

i

viσi∂i, (4)

where χ = ± stands for the chirality of the Weyl electrons,
σ ’s are Pauli matrices, v’s are the Fermi velocities, and the
subscript i denotes the three spatial dimensions. The σ in the
model may stand for the real spin or a kind of pseudospin.
Here, for concreteness, we let it be the real spin. The model
intrinsically has a strong SOC, which is a crucial point that
we will analyze later. In addition, a Weyl semimetal requires
the breaking of the inversion symmetry P or the time-reversal
symmetry T [37]. In this model, we assume that P is broken
while T is preserved, then each time-reversal pair of Weyl
points will share the same chirality and be described by the
same H0.

For the ease of analytical calculation, we take for the S
region the same H0 in Eq. (4). However, this region needs
to be heavily doped (with large U0) to satisfy the mean-field
requirement for superconductivity, as we discussed in Sec. II.
Later, we shall see that this choice of heavily doped Weyl
model for the S region actually does not affect the key result.

In Figs. 2(a) and 2(b), we show the schematic plot for the
BdG spectrum and the equienergy contours for the N region.
The possible incoming electron and outgoing hole states

FIG. 2. (a) BdG spectrum for the two N terminals in Model I at a
fixed kx [marked by the dashed line in (b)]. The small gap appearing
in the spectrum is due to the finite value of kx . (b) Equienergy
contours at a fixed excitation energy ε. The solid (open) sphere
denotes the incident electron (outgoing hole) state. The arrows in (b)
denote the spin polarization directions. (c)–(e) Probabilities for CAR
and EC vs (c) the width of the S region, (d) the excitation energy,
and (e) the incident angle. (f) Transverse shift for CAR (red) and
EC (blue) vs the incident angle. The shaded regions in (d)–(f) mark
the parameter ranges where CAR is forbidden. In the calculation,
we choose U0 = 451 meV, EF = 40 meV, �0 = 5 meV (coherence
length ξ = 63 nm), vx = vy = vz = 1.5 × 106 m/s. In (c) and (d),
we set θe = 7π/25; in (d)–(f), we set d = 109.6 nm; and in (c), (e),
and (f), we take ε = 2 meV.

are marked. Note that the transverse wave-vector component
k‖ = (kx, ky ), which is parallel to the interface, must be
conserved during scattering. As a result, for a finite excitation
energy ε, there exists a critical incident angle θc, beyond
which there is no propagating hole state for CAR (and also
for local Andreev reflection). If the plane of incidence is the
xz plane, then the critical angle is given by

θc = arctan

(
vz|EF − ε|
2vx

√
EF ε

)
. (5)

Here, EF is measured from the Weyl point. For incident angle
|θe| > θc, an incident electron from N1 cannot be transmitted
as a hole in N2, and CAR does not occur.

We proceed to solve the scattering states for the
BdG equation. Under T , the electrons in the K 0

valley are coupled to the holes in the −K 0 valley,
so the eigenstate has a four-component spinor form
ψ ≡ (ψK 0,↑, ψK 0,↓, ψ∗

−K 0,↓,−ψ∗
−K 0,↑)T , where the first two
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components are the electron spinor in the K 0 valley, and the
latter two are the hole spinor in the −K 0 valley.

A scattering state takes the following form in each region:

ψk(r ) =

⎧⎪⎪⎨
⎪⎪⎩

ψe+
k + reψ

e−
k + rhψ

h−
k , z < 0,

aψ ′+
S + bψ ′−

S + cψ ′′+
S + dψ ′′+

S , 0 < z < d,

teψ
e+
k + thψ

h+
k , z > d,

(6)

where re(h) is the amplitude for the normal (Andreev) reflec-
tion, ψ ′±

S and ψ ′′±
S are the basis states for the S region, and a,

b, c, and d are the corresponding amplitudes.
The basis states for the N region (including both N1 and

N2) can be explicitly written down as

ψe+
k = 1√

1 − η2
e

⎡
⎢⎣

e−iα/2

ηee
iα/2

0
0

⎤
⎥⎦eikxx+ikyy+ikez, (7)

ψe−
k = 1√

1 − η2
e

⎡
⎢⎣

ηee
−iα/2

eiα/2

0
0

⎤
⎥⎦eikxx+ikyy−ikez, (8)

ψh+
k = 1√

1 − η2
h

⎡
⎢⎣

0
0

e−iα/2

ηhe
iα/2

⎤
⎥⎦eikxx+ikyy−ikhz, (9)

ψh−
k = 1√

1 − η2
h

⎡
⎢⎣

0
0

ηhe
−iα/2

eiα/2

⎤
⎥⎦eikxx+ikyy+ikhz. (10)

Here, we have ηe(h) = χ sgn(EF ± ε)
√

EF ±ε−χvzke(h)

EF ±ε+χvzke(h)
, ke(h) =

v−1
z sgn(EF ± ε)

√
(EF ± ε)2 − v2

xk
2
x − v2

yk
2
y , and α =

arctan (vyky/vxkx ). The normalization factor 1/

√
1 − η2

e(h) is

added to ensure that every propagating state carries the same
particle current. Similarly, the basis states for the S region can
be written down. Their explicit expressions are presented in
the Appendix.

The boundary conditions at the two interfaces are

ψk|0− = ψk|0+, ψk|d− = ψk|d+, (11)

from which the four scattering amplitudes re(h), te(h) can be
solved. The calculation is straightforward, and the explicit
results are given in the Appendix. It should be noted that
at a given energy, the scattering amplitudes are functions of
the incident wave-vector component k‖ that is parallel to the
interface.

As our focus is on the nonlocal processes CAR and EC,
in Fig. 2(c) we plot the probabilities for the two processes
(Te(h) = |te(h)|2) as functions of the width d of the S region.
One observes that both curves exhibit typical Fabry-Pérot-
type oscillations with d, resulting from the interference be-
tween scattering processes at the two interfaces. Ignoring the
oscillation, the averaged values for the two decrease toward
zero at large d, as expected. One observes that their values

are still sizable at two to three times the coherence length,
which is similar to the case of Dirac fermions in graphene
[15]. For small d of the order of the coherence length, EC
tends to dominate over CAR. In Figs. 2(d) and 2(e), we plot
the two probabilities versus the excitation energy and the
incident angle, respectively. One observes that for a fixed d,
Th tends to reach the maximum at ε ∼ �0, where it may
dominate over the EC process. With respect to the incident
angle θe, CAR is totally suppressed at perpendicular incidence
(θe = 0), because then the transmitted hole has a spin opposite
to that of the incident electron.

To calculate the transverse shift in CAR, we expand th(k′)
in the expression for �h+ in Eq. (3) to first order around
the central wave vector k [22,28]. Note that �h+ has two
nonzero spinor components �h+

3 and �h+
4 . Assuming that k

is in the x-z plane, regarding the transverse shift that is in the
y direction, we have

�h+
3,4 ∝ e

−W 2
y [y∓ 1

2
∂α

∂k′
y
+ ∂

∂k′
y

arg(th )]2
k‖ /2

, (12)

where the two signs ∓ correspond to �h+
3 and �h+

4 , respec-
tively, and k‖ = (kx, 0) by the geometry that we specify. Here,
α and th are functions of k′, which is the wave vector labeling
the partial waves as in Eq. (3). This is to be compared with the

incident beam with �e+
1,2 ∝ e

−W 2
y [y∓ 1

2
∂α

∂k′
y

]2
k‖ /2

. Then, weighted
by the nonzero spinor components for each beam, we can
obtain the relative shift between the two along the transverse
(y) direction, given by

δyCAR = −
[

1

2

(
1 − η2

e

1 + η2
e

+ 1 − η2
h

1 + η2
h

)
∂α

∂k′
y

+ ∂

∂k′
y

arg(th)

]
k‖

.

(13)

In a similar way, the transverse shift in EC can also be
obtained, which is

δyEC = − ∂

∂k′
y

arg(te )
∣∣∣

k‖
. (14)

Now we substitute the expressions for α and th(e) into the
above formulas. After simplification, we find a nice result
given by

δyCAR = −χ

2

vzvy

vx

(
cot θe

EF + ε
+ cot θh

EF − ε

)
,

δyEC = 0. (15)

Here, the angles θe(h) = arctan(kx/ke(h) ). One observes that
for this model, the transverse shift is zero for EC, but it is
nonzero for CAR. Importantly, the shift in CAR depends on
the chirality of the Weyl fermions. Furthermore, the result is
surprising in that δyCAR has no dependence on the parameters
of the S region, such as the pair potential and the band-energy
offset.

To understand this striking feature and to give an intuitive
physical picture for the transverse shift, we show that the
result can be reproduced via a symmetry argument. We note
that when vx = vy , the system has an emergent rotational
symmetry such that

[HBdG, Ĵz] = 0, (16)
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where HBdG is the BdG Hamiltonian in Eq. (1), and

Ĵz = (r̂ × k̂)z + 1
2τ0 ⊗ σz, (17)

where τ0 is the identity matrix in Nambu space. Ĵz represents
the total angular momentum along z. When evaluated for
the quasiparticle beam, we should have Jz = 〈�|Ĵz|�〉 to be
conserved during scattering. For this model,

Jz = (r × k)z + 1
2 (n)z, (18)

where n is the spin polarization direction. For inci-
dent as well as transmitted electrons, we have ne =
(vxkx, vyky, vzke )/(EF + ε), whereas for the transmitted hole
we have nh = (vxkx, vyky, vzkh)/(EF − ε). Clearly, the spin
angular momentum changes during CAR [see Fig. 2(b)],
which must require a change in the orbital part for compen-
sation. It follows that there must be a shift perpendicular to
the incident plane given by

δyCAR = χ

2kx

(
nh

z − ne
z

) = −χ

2
vz

(
cot θe

EF + ε
+ cot θh

EF − ε

)
,

(19)

which exactly recovers the result derived using the scattering
approach when vx = vy . On the other hand, for EC there is no
change in the spin direction, hence the transverse shift δyEC

should vanish.
The symmetry argument also helps to reveal the role of

SOC behind the effect. It is because the orbital motion is
coupled to the spin that once the spin state is changed in scat-
tering (here in CAR), the orbital motion of the quasiparticle
must also be changed. This is also the reason why we choose
the model with the WSM terminals: the Weyl fermions in a
sense have the strongest SOC. In addition, when the symmetry
argument holds, [38] we see that the transverse shift would
only depend on the initial and final spin states in CAR, which
are determined by the two N terminals and by the energy
and the transverse momentum conservation laws. Hence, the
detailed (z) variation of the pair potential and the band-energy
offset, as well as the details of the S region (including the layer
thickness), do not affect the shift. This makes the transverse
shift a robust physical effect.

In Fig. 2(f), we plot δyCAR and δyEC as functions of
the incident angle. δyEC vanishes identically, while δyCAR

is an odd function of the incident angle. δyCAR becomes
divergently large when approaching the perpendicular inci-
dence, due to the small value of kx in Eq. (19). Physically,
the shift cannot diverge. There are two factors that regu-
late this diverging behavior. First, the probability for CAR
is completely suppressed at perpendicular incidence, so the
seemingly diverging shift at perpendicular incidence cannot
manifest in the measurement. Second, due to the uncertainty
principle, a confined beam must have a finite spread in
the wave-vector (and hence the incident angle) distribution
for the partial waves. When approaching perpendicular in-
cidence, the diverging behavior indicates that the different
partial waves would scatter in drastically different ways, such
that the scattered beam would no longer be confined and the
shift would become ill-defined. Thus, the diverging shift for
the perpendicular incidence would not occur in reality.

When θe approaches the critical angle θc, δyCAR does not
vanish, but it approaches a finite value. This nonzero value
can be directly seen from the symmetry argument (because the
spins for the incident and the scattered states are in different
directions) and obtained, e.g., from Eq. (19) by setting |θe| =
θc. Beyond the critical angle, δyCAR is no longer defined,
because the CAR process does not occur in that regime.

Comparing Figs. 2(e) and 2(f), one observes that when θe

is small, the shift for CAR is large but the probability for
CAR is small, while at large θe the probability becomes large
but the shift is small. This kind of behavior can be explained
by noticing the two quantities’ different dependence on the
change in spin state during scattering. Nevertheless, both can
be sizable in the intermediate range, where δyCAR can reach
tens of nm. Here, the plot is made for carriers with positive
chirality (left-handed). The result for negative chirality would
have a reversed sign. The drastic difference between δyEC

and δyCAR would make it possible to spatially separate the
transmitted electrons and holes, which we will further discuss
in Sec. VI.

IV. MODEL II: SOC-METAL/S/SOC-METAL JUNCTION

In the preceding section, we have demonstrated the exis-
tence of a sizable transverse shift in CAR using a junction
model based on WSMs. It leaves the following questions to be
addressed. (i) Is the presence of Weyl points necessary for a
finite shift? More generally, does the shift require any form of
band crossing points? (ii) We have pointed out the importance
of SOC in the N terminals, but how about the S region? Is it
necessary to have SOC in S? Part of the answers can already
be inferred from the symmetry argument we have presented;
however, it is preferable to have an explicit demonstration.

To this end, we consider the following model. The two
N terminals are assumed to be identical and described by a
model for a spin-orbit-coupled metal (SOC-metal), with

H0 = 1

2mN
(−∇2 + M )σz − ivσx∂x − ivσy∂y, (20)

where mN is the effective mass. This model has the advantage
that it can describe two distinct phases depending on the value
of the parameter M . If M < 0, it is a WSM with one pair of
Weyl points on the kz axis at kz = ±√−M . These two Weyl
points are of opposite chirality, hence the model breaks T . On
the other hand, if M > 0, the conduction band and the valence
band are fully separated by a gap, and it is metallic when
EF > M/2mN (for EF close to the conduction-band bottom,
it represents a doped semiconductor). The energy spectra for
the two phases are schematically illustrated in Figs. 3(a) and
4(a), respectively.

Regarding the S region, we use the simplest quadratic
model without SOC. The corresponding BdG Hamiltonian
takes the form of

HS =
[(

− 1

2mS
∇2 − U0 − EF

)
τz + �0τx

]
⊗ σ0, (21)

where mS is the effective mass in S, τi’s are the Pauli matrices
acting on Nambu space, and σ0 is the identity matrix in spin
space.
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FIG. 3. (a) BdG spectrum and (b) its equienergy contours for
Model II when M < 0. The solid (open) sphere denotes the relevant
electron (hole) states, assuming the incident electron corresponds to
the rightmost state marked in (b). There exist both intravalley and
intervalley scattering processes for transmission. The arrows repre-
sent the spin polarization directions for the states. (c,d) Transverse
shifts vs the incident angle for (c) the two intravalley processes
and (d) the two intervalley processes. In (c) and (d), the curves are
obtained from the symmetry argument, while the data points are from
the numerical solution using the scattering approach. Here, we take
U0 = 154 meV, EF = 40 meV, v = 1.5 × 106 m/s, �0 = 5 meV,
ε = 3 meV, mN = 0.05me (me is the free-electron mass), M/mN =
−0.5 eV, and d = 25 nm.

In the following, we consider the two phases one by one.
For each case, we investigate using the two approaches dis-
cussed in Sec. III. For the scattering approach, fully analytical
results are difficult to obtain for this model, so we proceed
with numerical solutions.

A. Case with M < 0

As we have mentioned, when M < 0, the model for N
terminals has two Weyl points located at kz = ±√−M . At
low energy, with |EF + ε| � |M/2mN |, the quasiparticles are
described by the Weyl model

H± = −ivσx∂x − ivσy∂y ∓ ivzσz∂z, (22)

where vz = √−M/mN, and the subscript “±” refers to the
two valleys (and corresponds to the chirality χ ). Hence, one
may follow a similar procedure to that in Sec. III to do the
calculation. However, two differences should be noted. First,
here the Weyl electron and its time-reversal partner have op-
posite chiralities, due to the broken T . This affects the change
in spin state during scattering. Second, when θe is small, there
are four possible transmitted states: besides the intravalley
scattering, there also exist two intervalley scattering processes
[see Figs. 3(a) and 3(b)]. The scattering probabilities for the
four processes depend on the detailed system parameters.
Generally, if the two valleys are well separated in k space
and if the interfaces are not so sharp, the intravalley processes
would be dominating, since the intervalley ones require a large
momentum transfer.

In Figs. 3(c) and 3(d), we plot the results for the transverse
shifts in the four scattering processes. Here, the data points are

FIG. 4. (a) BdG spectrum and (b) its equienergy contours for
Model II when M > 0. The solid (open) sphere denotes the incident
electron (outgoing hole) state. The arrows in (b) denote the spin
polarization directions. (c) Probabilities for EC and CAR vs the
incident angle. (d) Transverse shifts for CAR and EC. In (d), the
solid curves are obtained from the symmetry argument, while
the data points are from the numerical solution using the scattering
approach. Here, we set ε = 0.1 meV, U0 = 118 meV, EF = 50 meV,
mN = 0.05me, v = 1.5 × 106 m/s, �0 = 5 meV, M/mN = 80 meV,
and d = 40 nm.

calculated numerically using the full model in Eq. (20). One
observes that the shifts for the two intravalley processes are
much smaller than those for the intervalley processes.

To understand this difference, we resort to the symmetry
argument, for which we use the effective (Weyl) model in
Eq. (22). The spin directions for the scattered states are
illustrated in Fig. 3(b). One can observe that the z component
of the spin has only small change for the intravalley processes
(no change for intravalley EC), while it gets reversed for
the intervalley processes. Thus, according to the symmetry
argument, the transverse shift in intervalley processes should
be larger. More explicitly, following a similar analysis to that
in the previous section, we find that

δy
(1)
CAR = χ

2
vz

(
cot θh

EF − ε
− cot θe

EF + ε

)
, (23)

δy
(1)
EC = 0 (24)

for the intravalley CAR and EC processes, while

δy
(2)
CAR = −χ

2
vz

(
cot θh

EF − ε
+ cot θe

EF + ε

)
, (25)

δy
(2)
EC = −χvz

cot θe

EF + ε
(26)

for the intervalley processes. These results are plotted as
solid and dashed curves in Figs. 3(c) and 3(d). One observes
that the results from the symmetry argument agree very well
with the numerical results from the scattering approach based
on the full model in Eq. (20).
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B. Case with M > 0

When M > 0, the two bands in the model Eq. (20) are fully
separated with a gap of |M/mN|. Here, we consider the n-
doped case, with EF > M/2mN > 0. Then, there is a single
Fermi surface for the N region, as illustrated in Fig. 4(b).

In Fig. 4(c), we plot the probabilities for CAR and EC
as functions of θe. One finds that EC dominates over CAR
at small angles. At perpendicular incidence, CAR is com-
pletely suppressed, because the spin of the transmitted hole
is opposite to that of the incident electron. Nevertheless, the
probability for CAR can be sizable or even larger than EC at
a finite θe [see Fig. 4(c)].

We have calculated the transverse shifts numerically via the
scattering approach. The results are plotted as the data points
in Fig. 4(d). One observes that while the shift in EC is zero, the
shift in CAR has a finite value and becomes divergently large
when θe → 0. Again, since the model preserves the rotational
symmetry along z, we can derive the shift using the symmetry
argument. For CAR, we have

δyCAR = 1

2kx

(
nh

z − ne
z

)
, (27)

with

ne/h
z = ±

[
(EF ± ε)2 − v2k2

x

]1/2

EF ± ε
. (28)

For EC, one finds that nz does not change in the process, thus

δyEC = 0. (29)

In Fig. 4(d), we plot the results (27) and (29) by solid curves.
One observes that they agree perfectly with the numerical
results obtained from the scattering approach.

Based on the above results, we can now answer the ques-
tions raised at the beginning of this section. More specifically,
we have demonstrated the following points. First, the Weyl
point or any type of band crossing (in either N or S) is not
necessary for the existence of a transverse shift in CAR.
Second, in the first and second models, SOC in N is crucial,
but it is not necessary to have SOC for the S region (although
it does affect the probabilities for the scattering processes).
Here, S only plays the role of a channel for the electron-hole
conversion. In addition, in the second model with M > 0, the
transmitted electrons do not have a transverse shift, while the
transmitted holes have a finite shift. Around a finite incident
angle, the shift has a definite sign, which would lead to a
charge flow in the transverse direction.

V. MODEL III: P/S/N JUNCTION

In the previous two models and in most NSN structures,
the EC process makes a non-negligible contribution to the
nonlocal transport, although in some small parameter ranges
CAR may become dominant. As we mentioned in the In-
troduction, there has been continuous effort in enhancing
the CAR contribution and suppressing the EC. One simple
proposal was put forward by Veldhorst and Brinkman [16],
in which the EC is suppressed by the energy filtering enforced
by the band structure of the two terminals. This is achieved by
making one N terminal a p-type semiconductor and the other

FIG. 5. (a) Schematic energy diagram for a pSn junction. The
lower panel shows the equienergy contours at an excitation energy
where only electron states exist for N1 and only hole states exist
for N2. (b) Probabilities for CAR and EC vs the excitation energy.
(c) Probabilities for CAR and normal reflection (NR) vs the incident
angle. (d) Transverse shift for CAR vs the incident angle. Here, we
take d = 30 nm, mN = 0.05me, EF = 40 meV, v = 1.5 × 106 m/s,
M/mN = 7.2 meV, �0 = 5 meV, U0 = 261 meV, Un = 37 meV, and
Up = 44 meV. In (b), we take θe = π/8. In (c) and (d), we take ε =
2 meV.

N terminal an n-type semiconductor. The corresponding struc-
ture is termed a “pSn” junction. As illustrated in Fig. 5(a),
such band alignment allows only a CAR contribution in N2,
when the excitation energy is beyond the band edge. In the
following, we investigate whether the transverse shift can still
exist for a pSn junction.

Here, we adopt the SOC-metal model in Eq. (20). The p-
and n-type doping for the two terminals can be described by
U (r ), which now takes the profile of

U (r ) =

⎧⎪⎨
⎪⎩

Un, z < 0,

−U0, 0 < z < d,

Up, z > d

(30)

such that (M/2mN + Un) < EF < (−M/2mN + Up ). Then,
EC is completely suppressed when ε > (−M/2mN + Up ) −
EF .

In Fig. 5(b), we plot the probabilities for CAR and EC
as functions of ε, which indeed shows that EC becomes
completely suppressed and only CAR exists when ε is above
a threshold value. Figure 5(c) shows the dependence of the
CAR probability on the incident angle in the regime where
EC vanishes. For this model, the probability is maximum
at perpendicular incidence. It is also noted that when ε >

EF − (M/2mN + Un), the local Andreev reflection would
also be suppressed, so only normal reflection and CAR are
the possible processes and |re|2 + |th|2 = 1. This is the case
for Fig. 5(c).
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To calculate the transverse shift in CAR, we again use the
two approaches discussed before. Via the quantum scattering
approach, we have numerically calculated the shift. The result
is plotted as the data points in Fig. 5(d). Indeed, a finite
transverse shift can still exist and is an odd function of
the incident angle. The result can also be derived using the
symmetry argument, since we still have rotational symmetry
along z. One readily finds that

δyCAR = 1

2kx

(
nh2

z − ne1
z

)
, (31)

where ne1
z = [(EF − Un + ε)2 − v2k2

x]1/2/(EF − Un + ε)
and nh2

z = [(EF − Up − ε)2 − v2k2
x]1/2/(EF − Up − ε). The

analytical formula is plotted as the solid curve in Fig. 5(d),
which agrees perfectly with the data points from numerical
calculations. The symmetry argument also explains why the
shift vanishes at perpendicular incidence. It is because the
spin states for the incident and the CAR states are parallel,
both pointing to the +z direction.

VI. DISCUSSION AND CONCLUSION

The main achievement of this work is that we reveal the
general existence of a transverse spatial shift in the process of
CAR. The shift can be sizable, with a magnitude much larger
than the atomic scale, and it may exist for a wide range of
parameters.

We have a few remarks before closing. First, we have ob-
tained the same result via two different approaches. The first
approach—the quantum scattering approach—is very general
and applies without any constraint on the model parameters.
The second approach based on the symmetry argument, al-
though applicable only in the presence of rotational symmetry,
offers a deep insight into the effect. Particularly, when the
symmetry argument holds, the resulting shift only depends
on the initial and final states in scattering, independent of the
details of the interfaces as well as the S region, leading to
a universal type of behavior. For instance, the effects from
possible interfacial barriers and/or variation of the pair poten-
tial beyond the step-function model may affect the scattering
probabilities. However, as long as they preserve the symmetry,
the transverse shift for each scattering process will not be
affected.

Second, the symmetry argument also makes it clear that the
SOC in the N terminals is the key ingredient for the transverse
shift studied here. The value of the shift depends on the SOC
strength. For the Weyl model, the SOC strength is given by the
Fermi velocities, which directly enter into the expression for
the shift. For the SOC-metal model, the SOC strength is given
by the coefficients for the three terms in Eq. (20) (containing
parameters v, M , and mN ).

Third, in this work we have chosen the S layer to be a
conventional s-wave superconductor. In principle, it may also
be an unconventional superconductor with an unconventional
type of pair potential. In the case of local Andreev reflec-
tion, Yu et al. [29] have shown that unconventional pairings
can also induce anomalous transverse shifts with interesting
features. Whether such shifts also exist for CAR will be an
interesting question to explore in future studies.

FIG. 6. A possible setup for detecting the transverse shift in
CAR. (a) Top view of the junction. The electron flow is scattered
at the interface with a finite average incident angle. (b) For systems
described by Model II with M > 0 or Model III (the pSn junction),
the transverse shift in CAR leads to a surface charge accumulation,
which can be detected as a voltage difference between the top and
bottom surfaces of N2 near the interface.

Fourth, for the first two models studied here, the shift in
EC vanishes. This is due to the fact that the two N terminals
are taken to be identical. If the two terminals are different,
e.g., with different doping levels or with different materials,
then there could in principle be a nonzero transverse shift
also in EC. (For Weyl electrons, this is similar to the effect
studied in Refs. [22,23].) Nevertheless, the value of the shift
in EC should generally be different from that in CAR. This
difference in the transverse shift would provide a possible way
to spatially separate the transmitted holes and electrons.

Finally, for experimental detection, the most direct way
is to engineer a collimated electron beam and inject it into
the NSN structure just like in Fig. 1, then detect the shifted
outgoing hole beam on the other side by using a collector.
Although somewhat challenging, the technique for producing
a collimated electron beam has actually been developed in
the field of electron optics [39–41]. Another more practical
method is to use a setup as illustrated in Fig. 6. Here, the
geometry for the NSN junction is designed such that the
incident electrons that hit the NS interface have a finite aver-
age incident angle. Hence, the average shift for the outgoing
holes in CAR have a definite sign. With such geometry, for
the WSM/S/WSM model in Sec. III, the transverse shift in
CAR leads to a chirality accumulation on the top and bottom
surfaces of N2, which can be detected by the imbalanced
absorbance of the left and right circularly polarized light
[42,43]. For the SOC-metal model in Sec. IV and the pSn

model in Sec. V, the shift leads to a net charge accumulation
on the surface, which can be electrically detected as a voltage
signal as illustrated in Fig. 6(b). In these systems, the shift and
the voltage signal are purely associated with CAR (note that
the bulk anomalous Hall effect does not contribute when the
system has a twofold rotational axis along z), hence the effect
also provides a possible all-electrical method for detecting
CAR.

In conclusion, we discover the existence of a transverse
spatial shift in CAR. We explicitly demonstrate the effect in
three model systems. We show that the shift arises as a result
of the SOC in the normal terminals. When there is an emergent
rotational symmetry, the shift in CAR would have a universal
behavior that it only depends on the initial and final states in
CAR, independent of other system details. When the two N
terminals are identical, the shift in EC vanishes, but the shift in
CAR can be sizable. We propose possible setups for detecting
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the effect with optical or electrical signals. This also provides
a promising alternative way for detecting CAR in experiment.
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APPENDIX: ANALYTIC SOLUTION FOR SCATTERING
AMPLITUDES FOR MODEL I

The basis states for the S region in the WSM/S/WSM
model can be obtained as

ψ ′+
S =

⎡
⎢⎢⎣

χe−iα/2

γ eiα/2

χe−iα/2e−iχβ

γ eiα/2eiχβ

⎤
⎥⎥⎦eikxx+ikyy+ik0z−κz, (A1)

ψ ′−
S =

⎡
⎢⎢⎣

γχe−iα/2

eiα/2

γχe−iα/2eiχβ

eiα/2e−iχβ

⎤
⎥⎥⎦eikxx+ikyy−ik0z+κz, (A2)

ψ ′′+
S =

⎡
⎢⎢⎣

χe−iα/2

γ eiα/2

χe−iα/2e−iχβ

γ eiα/2eiχβ

⎤
⎥⎥⎦eikxx+ikyy+ik0z+κz, (A3)

ψ ′′−
S =

⎡
⎢⎢⎣

γχe−iα/2

eiα/2

γχe−iα/2eiχβ

eiα/2e−iχβ

⎤
⎥⎥⎦eikxx+ikyy−ik0z−κz. (A4)

Here we have k0 = v−1
z

√
(EF + U0)2 − v2

xk
2
x − v2

yk
2
y , γ =√

EF +ε−χvzk0

EF +ε+χvzk0
, and κ = �0 sin β/vz. The parameter β =

arccos(ε/�0) when ε < �0, and β = −i cosh−1(ε/�0) when

ε > �0. One observes that due to the superconducting pair
potential, the basis states are mixtures with both electron and
hole components.

Using the boundary conditions in Eq. (11) to connect the
wave function in the three regions, we can obtain the four
scattering amplitudes. Straightforward calculation gives the
following analytical results:

re = 2N−1
[
ηe(�e

+ + i�e
−) − ηh

(
1 + η2

e

)
sinh2(κd )

]
,

(A5)

rh = −2N−1 sinh(κd )
√(

1 − η2
e

)(
1 − η2

h

)
(�h

− + i�h
+),

(A6)

where �e
+ ≡ (1 + η2

h){cos2 β sinh2(κd ) + sin2 β[cos(2k0d )
− cosh2(κd )]}, �e

− ≡ (1 − η2
h) sin β[cos β sinh(2κd ) + sin β

sin(2k0d )], �h
+ ≡ (1 + ηeηh) sin β cosh(κd ), and �h

− ≡
(1 − ηeηh) cos β sinh(κd ).

The transmission amplitudes are given by

te = N−1(1 − η2
e

)
sin βe−iked (�e

+ + i�e
−), (A7)

th = −2N−1eikhd

√(
1 − η2

e

)(
1 − η2

h

)
sin β

× sinh(κd )(�h
− + i�h

+), (A8)

where �e
+ ≡ (1 + η2

h)[eκd cos(k0d + β ) − e−κd cos(k0d −
β )], �e

− ≡ (1 − η2
h)[eκd sin(k0d + β ) − e−κd sin(k0d − β )],

�h
+ ≡ (ηe + ηh) cos(k0d ), and �h

− ≡ (ηe − ηh) sin(k0d ).
These functions are real when ε < �0. The factor
N is defined as N ≡ 4ηeηh sinh2(κd ) − 2(1 +
η2

eη
2
h)[cos2 β sinh2(κd ) − sin2 β cosh2(κd )] − 2(η2

e + η2
h)

cos(2k0d ) sin2 β − i[(1 − η2
eη

2
h) sin(2β ) sinh(2κd ) + 2(η2

e −
η2

h) sin(2k0d ) sin2 β].
One can check that the above results satisfy the relation

|re|2 + |rh|2 + |te|2 + |th|2 = 1 when ε < �0 and |θi | < θc, as
required by the quasiparticle conservation.
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