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Plasmon-pole approximation for many-body effects in extrinsic graphene
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We develop the plasmon-pole approximation (PPA) theory for calculating the carrier self-energy of extrinsic
graphene as a function of doping density within analytical approximations to the GW random phase approxi-
mation (GW -RPA). Our calculated self-energy shows excellent quantitative agreement with the corresponding
full GW -RPA calculation results in spite of the simplicity of the PPA, establishing the general validity of the
plasmon-pole approximation scheme. We also provide a comparison between the PPA and the hydrodynamic
approximation in graphene, and comment on the experimental implications of our findings.
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I. INTRODUCTION

Graphene many-body effects have been studied exten-
sively, both theoretically and experimentally, for more than 10
years [1–4]. In fact, the theoretical studies [5–7] of graphene
many-body effects predate the actual laboratory realization
of graphene by more than 10 years because of the funda-
mental interest in undoped (or intrinsic) graphene being a
two-dimensional (2D) nonrelativistic solid-state realization of
quantum electrodynamics (QED) with a much larger coupling
constant (α ∼ 1 in graphene, in contrast to QED where the
fine structure constant α ∼ 1

137 ). Theories of graphene QED
have matured during the last 15 years [8] although the strong-
coupling QED aspects of many-body effects in intrinsic un-
doped graphene still pose important puzzles. In particular,
why a single-loop weak-coupling perturbative renormaliza-
tion group (RG) theory seems to work for undoped graphene
with α ∼ 1 remains a mystery since the basic perturbation
expansion breaks down already at the leading order for α ∼
1 in contrast to QED, where the perturbative expansion is
thought to be asymptotic up to 10 000 orders [8]. One possible
reason for the efficacy of a leading-order perturbation theory
in the calculation of graphene many-body effects may be that
the 1

N
-type expansion (with N = 2 for graphene) works here

[9,10] as has been shown by going to the next-to-leading order
in the 1

N
expansion [11] in the theory. The 1

N
expansion in

graphene is essentially equivalent to the random phase ap-
proximation (RPA) of many-body theory, where the perturba-
tion expansion is carried out in the screened interaction rather
than the bare interaction as in the Hartree-Fock (HF) theory.
Denoting bare and screened interactions formally by V and
W , respectively, the leading-order loop expansion (HF theory)
and the leading-order 1

N
expansion (RPA) correspond to GV

and GW approximations, respectively, where W is calculated
from V by using the random phase approximation for dy-
namical screening. The theory of graphene many-body effects
studied as a GW -RPA theory, both in undoped intrinsic and
doped extrinsic situations, has been developed and discussed
earlier in detail in Refs. [10–15]. We mention that,following
Ref. [16], we define intrinsic (extrinsic) graphene as undoped

(doped) materials with the Fermi level being at the Dirac point
(conduction/valence bands for n/p doped extrinsic materials).
In this work, we focus on many-body electron-electron in-
teraction effects in doped graphene at zero temperature as
a function of momentum and energy. This is a problem of
experimental relevance since all experiments are typically
carried out in extrinsic graphene although the very low doping
density limit may be approaching the intrinsic undoped limit.
Indeed, there are many experimental reports of the observation
of many-body effects in doped graphene [17–21] that are often
compared successfully with GW -RPA based theories, and our
work should apply to thesebrk systems.

In the current theoretical work, we simplify the GW -
RPA approximation for doped graphene by developing the
plasmon-pole approximation (PPA) for graphene. PPA is a
well-known and extensively used approximation for calculat-
ing many-body effects in Fermi liquids where the electron-
electron interaction is via the long-range Coulomb interaction.
Thus, PPA is a many-body approximation for effective met-
als, developed originally for simple three-dimensional (3D)
metals [22–24] and later generalized to 2D metals [25,26] and
1D metals [27]. PPA is an extensively used approximation
for including interaction effects in ab initio band structure
calculations where self-consistent LDA theories are routinely
combined with the GW -RPA approximation with the GW

part of the calculation being carried out under PPA rather
than in the full RPA [28–35]. In fact, PPA has been used suc-
cessfully for studying finite-temperature many-body effects in
multicomponent Fermi systems in semiconductor inversion
layers [36–39]. A number of works have also successfully
used ab initio numerical methods employing PPA in graphene
[40,41] and in semiconductors. There has, however, been
some discussion about the accuracy of various varieties of
the PPA as used in numerical work, including generaliza-
tions such as the Hybertsen-Louie and Godby-Needs models,
compared to full GW models [32,34]. In addition, a number
of numerical codes, such as VASP [42] and BERKELEYGW

[43], can perform numerical computations in the full GW -
RPA model as efficiently as PPA-based codes. It would
still be useful, however, to develop PPA as an analytical
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approximation for graphene, and in this work we do exactly
that: We develop the zero-temperature plasmon-pole approx-
imation to calculate graphene many-body effects within the
standard GW -RPA approximation. The goal here is to develop
the analytical graphene PPA theory in detail, emphasizing
several subtle points arising in graphene (but not in ordinary
parabolic metals where the PPA has been extensively studied
in the literature), and to explore how well GW -PPA duplicates
the results of GW -RPA self-energy results in graphene, given
the simplicity of PPA as a many-body approximation. We
find that PPA is remarkably effective in doped graphene and
GW -PPA agrees quantitatively with GW -RPA theories in
graphene, and suggest that future many-body calculations in
graphene can safely be carried out in the technically less
demanding PPA theories than in the full GW -RPA theories,
given the quantitative accuracy of the PPA results we present
in this work. Our work establishes the effectiveness of PPA
independent of the band dispersion or chirality of the system
since PPA works as well in graphene with its linear and chiral
energy-momentum dispersion as it does in ordinary nonchiral
2D and 3D metals with parabolic band dispersions. Thus, PPA
is a quantitatively accurate approximation to the RPA GW

self-energy in all metals or doped semimetals/semiconductors
independent of their band dispersion or chirality.

We emphasize, however, that PPA works only for extrinsic
graphene with finite doping such that the effective Fermi
energy (in the conduction or valence band depending on
whether the doping is n or p type) is much larger than the
temperature EF � kBT . Intrinsic (i.e., undoped) graphene
has no finite carrier density, and EF = 0 (where the energy
zero is taken to be the graphene Dirac point), and PPA is not
a meaningful approximation in this gapless situation since the
Dirac point is a quantum critical point separating an electron
metal for EF > 0 from a hole metal for EF < 0. In particular,
the infinite filled Fermi sea of holes in intrinsic graphene leads
to a fundamental problem since the system is now a non-Fermi
liquid by virtue of the Fermi surface being a point (i.e., a
Fermi point rather than a Fermi surface). Extrinsic graphene
has a finite 2D Fermi surface because of doping, and PPA is a
meaningful approximation for extrinsic graphene as we show
in this work. We restrict ourselves to doped graphene with a
finite Fermi energy in this work.

The rest of this paper is organized as follows. In Sec. II we
develop the basic PPA theory for doped graphene. In Sec. III
we provide the numerical results for the graphene self-energy
calculated within PPA, comparing the PPA results with the
existing literature on the GW -RPA many-body effects. We
conclude in Sec. IV with a summary and possible future
directions. We provide in Appendix A a discussion of the
applicability of the f -sum rule in graphene, which is closely
connected with the basic formalism of the plasmon-pole the-
ory. In Appendix B we provide a comparison between the
hydrodynamic and plasmon-pole approximations.

II. PLASMON-POLE APPROXIMATION FOR
DOPED GRAPHENE

We first develop the PPA formalism for doped graphene.
Before doing so, however, we will first give a brief summary
of the existing PPA for metals [22–24]. We will specifically

consider a 3D metal, although the PPA is by no means re-
stricted to 3D materials. In calculating the electron self-energy
�(�q, ω) within the GW approximation, we obtain

�(�q, ω) = i

∫ ∞

−∞

dν

2π

∫
d3�k

(2π )3
G0(�q − �k, ω − ν)

× 4πe2

κk2

1

ε(�k, ν)
, (1)

where G0(�q, ω) is the bare Green’s function, ε(�q, ω) is the
dynamical dielectric function

ε(�q, ω) = 1 + 4πe2

κq2
�(�q, ω), (2)

κ is the background lattice dielectric constant of the material,
and �(�q, ω) is the electronic polarizability, whose full form
for graphene is shown in Appendix A. Note that V (�q ) = 4πe2

κq2

is simply the 3D Coulomb interaction; in 2D, we would have
V (�q ) = 2πe2

κq
. We may split the self-energy into two terms

�(�q, ω) = �HF(�q, ω) + �C (�q, ω), (3)

where

�HF(�q, ω) = i

∫ ∞

−∞

dν

2π

∫
d3�k

(2π )3
G0(�q − �k, ω − ν)

4πe2

κk2

(4)

is the Hartree-Fock or exchange self-energy, and

�C (�q, ω) = i

∫ ∞

−∞

dν

2π

∫
d3�k

(2π )3
G0(�q − �k, ω − ν)

4πe2

κk2

×
[

1

ε(�k, ν)
− 1

]
(5)

is the correlation part. This second term can be difficult to
calculate, depending on the form of the dielectric function
used. As a result, the PPA was developed to simplify the
calculation of the correlation term [22,23] �C . It consists
of replacing the factor in the integrand dependent on the
dielectric function with an effective single plasmon mode:

1

ε(�q, ω)
− 1 = A(�q )

π (ω2 − ω2
�q − iδ)

, (6)

where A(�q ) and ω�q are determined from the f -sum rule∫ ∞

0
dω ω Im

[
1

ε(�q, ω)
− 1

]
= −π

2
ω2

p, (7)

where ωp is the long-wavelength plasma frequency, and the
zero-frequency Kramers-Kronig relation∫ ∞

0
dω

1

ω
Im

[
1

ε(�q, ω)
− 1

]
= π

2

[
1

ε(�q, 0)
− 1

]
. (8)

Applying these conditions, one finds that

A(�q ) = πω2
p, (9)

ω2
�q = − ω2

p

1/ε(�q, 0) − 1
. (10)
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The correlation term within the PPA is then just

�C,PPA(�q, ω) = i

∫ ∞

−∞

dν

2π

∫
d3�k

(2π )3
G0(�q − �k, ω − ν)

4πe2

κk2

× ω2
p

ω2 − ω2
�q − iδ

. (11)

The great advantage of PPA is that the integral over frequency
in Eq. (11) becomes very simple as it is only an integration
over a pole whereas the original �C in Eq. (5) encloses
a complicated branch cut arising from the complicated fre-
quency dependence of the RPA dielectric function. We show
in Appendix A the full form of the RPA dielectric function
ε(�q, ω) in graphene, emphasizing the complexity of Eq. (5).
In metals, this approximation yields results for the chemical
potential differing by only about 1% from the RPA values
[23]. This has led to the extensive use of PPA in the GW

evaluation of metallic self-energy.
Note that Eqs. (9) and (10) completely fix the functions ω�q

and A(�q ), the so-called plasmon pole and its strength, respec-
tively, so that all quantities in Eq. (11) are explicitly known,
enabling a straightforward evaluation of the self-energy.

If we wish to apply PPA to graphene, however, then we
run into a problem. It turns out that the f -sum rule breaks
down for the low-energy effective theory of graphene that we
will be employing, as shown formally in a previous work by
two of us [44] and explicitly demonstrated in Appendix A
using the full form of the RPA dielectric function. Therefore,
strictly speaking, we cannot use the f sum to fix any of
the constants appearing in the approximate expression for
1/ε(�q, ω) − 1. We thus wish to determine how one can apply
this approximation to graphene.

The Hamiltonian for this system is given by

H = vF

∑
�r,s

�†
s (�r )�σ · �p�s (�r ) +

∑
�r,�r ′

e2n(�r )n(�r ′)
κ|�r − �r ′| , (12)

where the Pauli matrices σ act on the sublattice pseudospin,
s is the actual spin of the electrons, �T

s (�r ) = [as (�r ), bs (�r )] is
the vector of annihilation operators for the electrons, n(�r ) =∑

s �
†
s (�r )�s (�r ), and κ is the dielectric constant of the sur-

rounding medium. Here, vF ≈ 1 × 106 m/s is the graphene
Fermi velocity defining the linear band dispersion E(�k) =
±vF |�q|. Note that we use the effective linear dispersion
model, strictly valid only at low energies, for all energies in
the theory.

Since we can only fix one of A(�q ) and ω�q using the
Kramers-Kronig relation, we will fix A(�q ) and consider three
different models for ω�q :

(1) The static RPA (SRPA) model, which was introduced
by Vinter [25,26] for 2D metals,

ω2
�q = − ω2

p

1/ε(�q, 0) − 1
, (13)

where ωp = ω0
√

q, ω0 =
√

2e2vF

√
πn

κ
, and n is the electron

number density. Here, for ε(�q, 0), we use the (exact) RPA di-
electric function. Note that ωp is the long-wavelength plasma
frequency for graphene.

(2) The Thomas-Fermi (TF) model

ω2
�q = ω2

p

(
1 + q

kT F

)
, (14)

where

kTF = 4e2√πn

κvF

(15)

is the Thomas-Fermi screening wave number.
(3) The hydrodynamic (HD) model,

ω2
�q = ω2

p + v2
F q2. (16)

We now motivate these three approximations. In the standard
3D and 2D PPA for parabolically dispersing metals (with
no Dirac point by definition), the PPA is motivated by the
fact that the effective plasmon-pole frequency ω�q defining
the effective dielectric function (6) should behave as the
long-wavelength plasma frequency ωp and the single-particle

energy dispersion q2

2m
, respectively, in the long-wavelength

(i.e., q → 0) and short-wavelength (i.e., q → ∞) limits. This
is, in fact, guaranteed by Eqs. (7)–(10) combined with Eq. (5)
for a parabolically dispersing electron energy band, where the
PPA has so far been used. This does not, however, happen for
2D graphene as discussed below.

Using Eq. (9) in Eq. (6), we get

εPPA(�q, ω) = ω2 − ω2
�q

ω2 − ω2
�q + ω2

p

, (17)

leading to the εPPA(�q, ω) = 0 simple pole condition being
given by ω = ω�q . Using Eq. (10), we get

ω2
�q = − ω2

p

1/ε(�q, 0) − 1
= − ε(�q, 0)ω2

p

1 − ε(�q, 0)
, (18)

which, when combined with the RPA form for the graphene
static dielectric function, leads to

ω�q ∼ √
q (19)

for both the q → 0 and q → ∞ limits. In obtaining Eq. (19),
we have used the exact form for εRPA(�q ) as given in Ref. [45]
(see Appendix A):

εRPA(�q ) = 1 + 2πe2

κq
�0(�q ), (20)

with

�0(�q )=D(EF )

⎧⎨
⎩1 + πq

8kF

− θ (2kF − q )
πq

8kF

−θ (q−2kF )

⎡
⎣ 1

2

√
1 − 4k2

F

q2
+ q

4kF

arcsin

(
2kF

q

)⎤
⎦
⎫⎬
⎭,

(21)

where

D(EF ) = 2kF

πvF

(22)

is the graphene density of states, and kF = √
πn is the

Fermi wave number. Thus, the incorporation of the static
RPA dielectric function into the PPA leads to an effective
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plasmon-pole frequency ω�q that behaves as the long-
wavelength plasma frequency ∼√

q both in the q → 0 and
q → ∞ limits in contrast to the corresponding parabolic PPA.
This is the approximation defined by Eq. (13) above.

This “problem” is, however, fixed by using the Thomas-
Fermi dielectric function εTF(�q, 0) instead of the exact static
RPA dielectric function in Eq. (10) for ω�q . The Thomas-Fermi
dielectric function is simply the long-wavelength limit of
εRPA(�q ):

εTF(�q ) ≡ εRPA(q → 0), (23)

leading to

εTF(�q ) = 1 + 2πe2

κq
D(EF ) = 1 + kTF

q
, (24)

where kTF = e2

2κ
D(EF ) = 4e2√πn

κvF
is the Thomas-Fermi

screening wave number defined in Eqs. (14) and (15) above.
Putting Eq. (24) for ε(�q, 0) into Eq. (18), we get

ω�q ∼
{√

q, q → 0
vF q, q → ∞.

(25)

Note that Eq. (25) does provide the asymptotic forms for ω�q
going as the plasma frequency and the single-particle fre-
quency in the long- and short-wavelength limits, respectively.

Finally, the hydrodynamic approximation (16) assumes the
following effective hydrodynamic dielectric function:

εHD(�q, ω) = 1 − ω2
p

ω2 − v2
F q2

, (26)

which then leads to the following effective hydrodynamic
plasma frequency [see Eq. (16) above]:

ω2
HD(�q ) = ω2

p + v2
F q2, (27)

where ωHD(�q ) is the solution to the usual εHD(�q, ω) for a
collective mode. Letting ω�q = ωHD(�q ) gives

ω2
�q = ω2

p + v2
F q2 ≡ ω2

HD(�q ), (28)

as in Eq. (16) above, leading to a hydrodynamic PPA dielectric
function. Using Eqs. (6) and (9), we get

1

εHD
PPA(�q, ω)

= 1 + ω2
p

ω2 − ω2
�q

(29)

or

εHD
PPA(�q, ω) = ω2 − ω�q

ω2 − ω2
�q + ω2

p

. (30)

We note that these three approximations, all defined
through the function ω�q as in Eqs. (13)–(16), provide three
different plasmon-pole approximations for the dynamical PPA
dielectric function

εPPA(�q, ω) =
ω2 − ω2

�q
ω2 − ω2

�q + ω2
p

(31)

since, although ω2
p = 2e2vF q

√
πn

κ
, the long-wavelength

graphene plasma frequency is the same in all three
approximations (static RPA, Thomas-Fermi, hydrodynamic),
the effective plasmon-pole frequency ω�q , defined by

0 1 2 3 4 5
q/kF

0

1

2

3

4

5

6

ω
  /

E F

SRPA
TF
HD

vFq

RPA

q

FIG. 1. Plots of the plasmon dispersion as a function of wave
vector from the full RPA dielectric function and from the static RPA
(SRPA), Thomas-Fermi (TF), and hydrodynamic (HD) models.

εPPA(�q, ω�q ) = 0, is diffferent in the three schemes. The
effective ω�q is shown in Fig. 1 as a function of q for the three
approximations compared with the exact RPA result.

As we will show, the PPA self-energies obtained from
the three approximations are very similar in magnitude, all
agreeing well with the RPA self-energy results, thus well jus-
tifying our plasmon-pole approximation scheme in graphene
independent of the precise form of the approximation used
in the theory. We note that the PPA involves a pure pole (at
ω = ω�q) approximation for the dynamical dielectric function
ε(�q, ω) instead of the much more complex pole and branch cut
form for ε(�q, ω) in the full RPA [45]. Using Eq. (11) and the
form of ε(�q, ω) in PPA, we can calculate the imaginary part
of the PPA self-energy by doing the frequency ν integration
in Eq. (11) analytically and then reducing the 2D momentum
integral over �k to a simple 1D integral over the magnitude
k. Then, the real part of the self-energy is easily obtained by
using the Kramers-Kronig relation involving one more fre-
quency integration. This simplification of the self-energy into
simple real integrals, only a 1D real integral for Im �(�q, ω)
and a 2D real integral for Re �(�q, ω), is what makes the
PPA attractive (and much less computationally demanding)
compared with the full RPA.

In Appendix B, we provide a comparative discussion be-
tween the hydrodynamic and plasmon-pole approximations to
the dielectric function since they share the superficial simi-
larity of having just a simple pole describing the frequency
response.

III. NUMERICAL RESULTS

We now present our numerical results. We plot the plas-
mon dispersion relations obtained from the full RPA di-
electric function and from the three models that we just
presented in the context of our plasmon-pole approximation
[Eqs. (13)–(16)] in Fig. 1. We assume throughout that κ =
2.4, corresponding to graphene on a SiO2 substrate, and
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FIG. 2. Plots of the imaginary (top) and real (bottom) parts of the electron self-energy �(�q, ω) within various approximations as functions
of frequency for q = 0 [(a) and (b)], q = 0.5kF [(c) and (d)], q = kF [(e) and (f)], and q = 1.5kF [(g) and (h)].

n = 1012 cm−2. Of course, the qualitative results and the
relative validity of PPA compared with RPA are independent
of the choice of density and background dielectric constant. It
was demonstrated by two of us [45] that the full RPA dielectric
function yields a plasmon frequency that is proportional to

√
q

for q � kF and to q for q � kF . The static RPA model yields
a plasmon frequency that is strictly proportional to

√
q, i.e., it

captures the correct low-energy behavior, but fails to capture
the proper high-energy dependence. The TF model gives the
correct behavior for both the low- and high-energy limits,
but yields the wrong coefficient for the high-energy case.
The hydrodynamic model also gives the correct dependence
in both limits, and even yields the correct coefficient in the
high-energy case, only being offset from the full RPA result
by a constant of α = e2/(κvF ) corresponding to the coupling
constant in graphene. This indicates that for a small coupling
constant (α � 1) the hydrodynamic model gives the plasmon
dispersion predicted by full RPA calculation. Thus, the ef-
fective plasmon-pole frequency ω�q varies among the three
approximation schemes, all of them differing somewhat from
RPA. Since the GW approximation itself is likely to be a good
approximation only for α not too large, one can safely use the
hydrodynamic PPA approximation in carrying out self-energy
calculations for doped graphene. Note that, unlike parabolic
metals, the linear dispersion in graphene with a constant Fermi
velocity makes the coupling constant α independent of carrier
density or doping.

We now turn our attention to the electron self-energy
�(�q, ω). We provide plots of the calculated self-energy for
different values of k as functions of frequency in Fig. 2 for
both the GW -RPA and for the PPA with the three plasmon
dispersions given earlier (see Fig. 1). Here, we consider q =
0, 0.5kF , kF , and 1.5kF . We note that all four approximations
agree very well with each other for the imaginary part of the
self-energy for small frequencies. However, for large ω the
real part of self-energy from PPA is qualitatively different
from that of RPA. The RPA predicts that the real part of
the self-energy increases linearly with ω, but all PPA results

show that the real part of the self-energy saturates in this
region. This linear increase of the real part of self-energy
arises from the single-particle (electron-hole) excitation con-
tribution, which is absent in PPA. However, the important
structures (deep or step increase) in the self-energy arising
from the coupling of plasmon absorption or emission (or
plasmaron production) agree well in all approximations. The
disagreement between RPA and PPA results at large ω (or
large off-shell energy) is not important in the quasiparticle
properties of graphene because the spectral function weight of
the quasiparticles decreases with increasing off-shell energy.
This indicates that the PPA, regardless of the specific model
for ω�q , should reliably predict the quasiparticle spectrum. We
emphasize that the differences with RPA are all quantitative
and not qualitative.

We also provide plots of the spectral function A(�q, ω) in
Fig. 3. Once the self-energy �(�q, ω) is known, the single-
particle spectral function A(�q, ω) can be calculated. The
spectral function contains important dynamical information
about the system and is given by

A(�q, ω) = 2 Im�(�q, ω)

[ω − E0(�q ) − Re�(�q, ω)]2 + [Im�(�q, ω)]2
,

(32)

where E0(�q ) = vF q − EF is the single-particle energy mea-
sured from the Fermi energy. The spectral function A(�q, ω) =
−2 ImG(�q, ω) is simply the imaginary part of the interacting
Green’s function, indicating the spectral weight of the system
in the (�q, ω) space. The noninteracting spectral function is
a δ function at the noninteracting energy vF q, but in the
presence of interaction effects, the finite value of the imagi-
nary part of self-energy Im�(�q, ω) �= 0 broadens the single-
particle δ-function peak except at q = kF and ω = EF , where
Im� = 0. Note that the chemical potential of the interacting
electron gas is determined by setting q = kF and ω = 0 in
the above equation to guarantee a nonzero Fermi surface. As
expected, we find good qualitative agreement among all of
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FIG. 3. Plots of the spectral function A(�q, ω) within various approximations as functions of frequency for (from left to right) q = 0, 0.5kF ,
kF , and 1.5kF .

the approximations except at q = kF , for which the spectral
function behaves differently near the delta function singularity
for the GW -RPA compared with the PPA. For q �= kF , all four
approximations predict two peaks in the spectral function,
corresponding to two excitations. The quasiparticle peaks
occur at ω = E0(�q ) − EF . The other peak is known as a
“plasmaron” mode. These results are also very well known
in 2D and 3D metals [23]. We see this plasmaron peak for
nonzero q as well, though it is much broadened. For q < kF ,
the plasmaron peak appears below the quasiparticle peak. At
q = kF the plasmaron peak does not appear at all, and for q >

kF the plasmaron peak appears above the quasiparticle peak.
For q = 0, the plasmaron peak appears around ω ≈ −1.8EF .
In RPA the plasmaron peak has larger spectral weight than that
of the quasiparticle peak, but for PPA the quasiparticle peak
becomes smaller than that of plasmaron. This trend seems true
for q < kF . However, for q > kF the behavior is reversed. We
should point out, however, that, in more refined approxima-
tions, such as cumulant expansions of the Green’s functions
[46,47], these “plasmaron” peaks are not as pronounced as
they are in our results. The issue of the existence or not of
true plasmaron peaks in electronic spectral function therefore
has remained somewhat controversial. We should, however,
point out that experiments [48,49] claim to have seen such
peaks in graphene, and indeed standard GW -RPA theories
in graphene produce well-defined plasmaron peaks [12–14].
Our work is, however, not aimed at interpreting experimental
data or establishing whether or not plasmaron peaks exist; we
only seek to show that PPA is essentially as good a many-
body approximation in graphene as RPA itself is, which is
manifestly obvious from our Figs. 2 and 3.

The fact that the calculated PPA spectral function (essen-
tially in all three of our PPA schemes) agrees well with the
RPA result is significant since the spectral function determines
the quasiparticle properties as observed in ARPES [21] and
STM [20] measurements. This good agreement for the calcu-
lated graphene spectral function between PPA and RPA indi-
cates that PPA should be a good approximation for calculating
graphene many-body effects in future theoretical works. Since
PPA, with its single-pole description of electronic carrier
response, is substantially easier to implement computationally
than RPA, our explicit validation of PPA with respect to
the calculated spectral function becomes particularly useful.
In this context, we emphasize that we find that all three
PPA schemes, i.e., static RPA [Eq. (13)], the Thomas-Fermi
approximation [Eq. (14)], and the hydrodynamic approxima-
tion [Eq. (16)], work equally well, and hence any of them
should be suitable for future theoretical works on graphene
many-body effects. Since the hydrodynamic approximation
[Eq. (16)] is the simplest one among the three we consider, we
recommend the use of the hydrodynamic PPA [i.e., Eq. (16)]
for future theoretical calculations (see Appendix B in this
context). It is also in some sense the “best” approximation
since it reproduces well the RPA plasmon dispersion (Fig. 1).

Finally, we comment on the well-known “running of
the coupling constant” issue in graphene many-body effects
[6–11]. Since we are considering doped extrinsic graphene
with a fixed density, the ultraviolet divergence associated
with the chiral linear graphene dispersion is simply a weak
logarithmic correction going as 1 + α

4 log ( kc

kF
), where α =

e2

κvF
and kc, the ultraviolet cutoff, is chosen in our calculation
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to be 1
a

where a = 0.246 nm is the graphene lattice constant.
We choose vF = 1 × 106 m/s throughout in our calculation
as the graphene Fermi velocity. Since the Fermi wave number
kF = √

πn is fixed at a fixed carrier density, the ultraviolet
divergence simply represents a constant (and small) shift in
the graphene self-energy which varies slightly as the density
changes. In our theory, this logarithmic self-energy correction
arising from the high momentum cutoff kc is absorbed entirely
into the exchange self-energy or the HF part [i.e., Eq. (4)] as
discussed in detail in Refs. [10,16]. Since the PPA deals with
the infrared divergence arising from the long-range Coulomb
interaction in the correlation self-energy of Eq. (5), the ul-
traviolet divergence of the running of the coupling constant
does not pose any additional problem in the context of using
RPA. Thus, the ultraviolet divergence is already a problem
with intrinsic graphene (i.e., no doping) which we regularize
by having a lattice cutoff whereas our PPA then deals with
the dynamical response of the doped carriers present in the
experimental doped samples. The main goal of this work is
obtaining a good approximation for the wave number and the
frequency dependence of the graphene spectral function at a
fixed doping level (i.e., fixed Fermi energy or wave vector),
and as such the ultraviolet running of the coupling constant
is not germane in our consideration. More details on this
topic may be found in Refs. [10,11,16], and particularly in
Ref. [50]. We emphasize that the logarithmic corrections aris-
ing from the ultraviolet cutoff are fully included in our PPA
theories, but they have no qualitative effect in determining the
momentum- and energy-dependent spectral function at a fixed
carrier density.

IV. CONCLUSION

We have developed the plasmon-pole approximation for
calculating the electron-electron interaction-induced many-
body effects in the spectral function of doped or extrinsic
graphene. Since the single-band effective chiral linear dis-
persion model for graphene does not obey the simple f -sum
rule by virtue of the infinite filled Fermi sea in the valence
band [44], the PPA is not unique as it is in 3D [22–24]
or 2D [25–27] metals. We introduced three distinct approx-
imations for obtaining the effective plasmon-pole frequency
using static RPA, the Thomas-Fermi approximation, and the
hydrodynamic dielectric function, respectively. It turns out
that all three PPA schemes, as we show through explicit
calculations, give many-body renormalization, specifically the
interacting spectral function, very similar to that obtained with
the full GW -RPA theory, thus validating all three approx-
imation schemes more or less equivalently. Given the sim-
plicity of the hydrodynamic PPA, as defined by Eq. (16) for
the effective plasmon-pole frequency, we suggest that future
graphene many-body calculations utilize the hydrodynamic
PPA introduced in this work.

Possible future generalizations of our work could involve
the development of the PPA for 3D Dirac-Weyl materials
where the collective plasmon response has been experimen-
tally observed [51]. We believe that PPA should be valid in
3D Dirac systems as well, but obviously a 3D generalization
of our work is necessary for a definitive conclusion. Another
possible application of our theory could be the development

of PPA for bilayer graphene with its approximately parabolic
band dispersion [52] where a comparison with the existing
RPA many-body results could validate (or not) the plasmon-
pole approximation in bilayer graphene. There is no a priori
reason to expect that a PPA similar to that described in this
work cannot be developed for other systems (e.g., bilayer
graphene); however, any such theory would need to be vali-
dated by showing that it produces results sufficiently close to
those produced by, say, a full RPA calculation.
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APPENDIX A: f -SUM RULE IN GRAPHENE

Here, we will attempt to calculate the f sum for the
polarizability of graphene within RPA. The f -sum rule is
given by

F =
∫ ∞

0
dω ω Im

[
1

ε(�q, ω)
− 1

]
. (A1)

As stated in the main text, the usual f -sum rule states that
this integral should evaluate to −π

2 ω2
p, where ωp is the low-

wavelength plasmon dispersion [53]. In a previous work by
two of us [44], we formally showed that this rule breaks down
when a second, negative-energy, infinitely filled valence band
is present, as is the case in the low-energy effective theory of
graphene employed in this work; here, we will demonstrate
this breakdown explicitly. The dielectric function ε(�q, ω) =
1 + V (�q )�(�q, ω), where V (�q ) = 2πe2

κq
and �(�q, ω) is the

polarizability. We will use the RPA expression found in
Ref. [45], which we state here for convenience. It is inde-
pendent of the direction of �q, so we will write the dielectric
function as ε(q, ω) and the polarizability as �(q, ω) from
this point forward. If we define x = q/kF , ν = ω/EF , and
�̃(x, ν) = �(q, ω)/D0, where D0 = NkF

2πvF
is the density of

states at the Fermi energy and N is the number of Dirac
cones (4 for graphene, including spin and valley), then the
polarizability may be split up into two contributions �+
and �−:

�̃(x, ν) = �̃+(x, ν) + �̃−(x, ν). (A2)

The term �+ divides further into

�̃+(x, ν) = �̃+
1 (x, ν)θ (ν − x) + �̃+

2 (x, ν)θ (x − ν). (A3)

The real and imaginary parts of �̃+
1,2 are then given by

Re �̃+
1 (x, ν) = 1 − 1

8
√

ν2 − x2
{f1(x, ν)θ (|2 + ν| − x)

+ sgn(ν − 2 + x)f1(x,−ν)θ (|2 − ν| − x)

+ f2(x, ν)[θ (x + 2 − ν) + θ (2 − x − ν)]},
(A4)

Im �̃+
1 (x, ν) = − 1

8
√

ν2 − x2
{f3(x,−ν)θ (x − |ν − 2|)

+ 1
2πx2[θ (x + 2 − ν) + θ (2 − x − ν)]},

(A5)
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Re �̃+
2 (x, ν) = 1 − 1

8
√

ν2 − x2

{
f3(x, ν)θ (x − |ν + 2|)

+ f3(x,−ν)θ (x − |ν − 2|)

+ 1

2
πx2[θ (|ν + 2| − x) + θ (|ν − 2| − x)]

}
,

(A6)

Im �̃+
2 (x, ν) = θ (ν − x + 2)

8
√

ν2 − x2
[f4(x, ν)

+ f4(x,−ν)θ (2 − x − ν)], (A7)

where the functions fi (x, ν) are

f1(x, ν) = (2 + ν)
√

(2 + ν)2 − x2

− x2 ln

[√
(2 + ν)2 − x2 + ν + 2

|√ν2 − x2 + ν|

]
, (A8)

f2(x, ν) = x2 ln

(
ν − √

ν2 − x2

x

)
, (A9)

f3(x, ν) = (2 + ν)
√

(2 + ν)2 − x2 + x2 arcsin

(
2 + ν

x

)
,

(A10)

f4(x, ν) = (2 + ν)
√

(2 + ν)2 − x2

− x2 ln

[√
(2 + ν)2 − x2 + ν + 2

x

]
. (A11)

�−, on the other hand, is simply given by

�̃−(x, ν) = πx2

8
√

x2 − ν2
θ (x − ν) + i

πx2

8
√

ν2 − x2
θ (ν − x).

(A12)

The dielectric function can be rewritten in terms of �̃(x, ν) as
follows:

ε(x, ν) = 1 + Nα

x
�̃(x, ν), (A13)

where α = e2

κvF
is the effective fine structure constant. This is

approximately 2.2
κ

for graphene.
We now provide a plot of the integrand in Eq. (A1) for

q = 0.1kF in Fig. 4. In our numerical work we take α ≈
0.9 as appropriate for graphene on SiO2. We see that this
function does not approach zero as ω → ∞, and thus the f

sum diverges. This divergence is a direct consequence of the
infinitely filled Fermi sea in the valence band. We can in fact
obtain an analytic expression for ε in the limit of large ω; we
find that

ε(q, ω) ≈ 1 + i
πNαq

4ω
. (A14)

Note that this is not the expected form,

ε(q, ω) ≈ 1 − ω2
p

ω2
, (A15)

where ωp is the long-wavelength plasmon frequency [45]
ωp ∼ √

q. We see that, not only does the f -sum rule fail, but
that the dielectric function has a nonstandard high-frequency
limit. These seemingly strange results are due to the presence
of an infinite Fermi sea, which would not be present in an

0 2 4 6 8 10

0.25

0.20

0.15

0.10

0.05

0.00

ω/EF

ω
Im

1
(q

,ω
)
−

1

FIG. 4. Plot of the integrand in the f -sum rule, Eq. (A1), as a
function of ω. Here, q = 0.1kF and α ≈ 0.9.

exact theory of graphene [44]. Because of this, interband
scattering is capable of scattering valence electrons from
arbitrarily large negative energies into the conduction band.
To help illustrate this, we will recalculate the RPA dielectric
function, keeping only the contributions from intraband scat-
tering. This corresponds to keeping only the first terms in each
of Eqs. (4) and (5) of Ref. [45], so that

�+
IB (q, ω) = −1

2
Ni

∫
d2�k

(2π )2

f�k,+ − f�k+�q,+
ω + vF k − vF |�k + �q| + iη

×
(

1 +
�k · (�k + �q )

k|�k + �q|

)
, (A16)

�−
IB (q, ω) = −1

2
Ni

∫
d2�k

(2π )2

f�k,− − f�k+�q,−
ω − vF k + vF |�k + �q| + iη

×
(

1 +
�k · (�k + �q )

k|�k + �q|

)
, (A17)

where the f�k,± are the Fermi occupation factors for electrons
in the valence (−) and conduction (+) bands. If we now
determine the resulting dielectric function, we find that the
real and imaginary parts of the polarizability for |ω| � vF q

and q � kF may be written as

Re �IB (q, ω) = NkF

2πvF

xfIB

(
q

kF

,
ω

vF q

)
, (A18)

Im �IB (q, ω) = NkF

2πvF

xgIB

(
q

kF

,
ω

vF q

)
, (A19)

where the functions f (x, ν) and g(x, ν) are given by

fIB (x, ν)

= 1

2π

1√
1 − ν2

×
⎡
⎣∫

ν<|t |�1
dt tanh−1

⎛
⎝
√

1 − ν2

1 − t2

⎞
⎠
√(

2

x
+ t

)
− 1
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+
∫ ν

−ν

dt tanh−1

⎛
⎝
√

1 − t2

1 − ν2

⎞
⎠
√(

2

x
+ t

)
− 1

⎤
⎦,

(A20)

gIB (x, ν)

= 1

8
√

1 − ν2

⎡
⎣(

2

x
+ ν

)√(
2

x
+ ν

)2

− 1

− cosh−1

(
2

x
+ ν

)
−

(
2

x
− ν

)√(
2

x
− ν

)2

− 1

+ cosh−1

(
2

x
− ν

)]
. (A21)

It turns out that the intraband contributions to the imaginary
part are zero for |ω| > vF q, so that we have in fact com-
pletely specified it for all values of ω. We consider only the
expressions for q � kF because we are interested only in the
low-wavelength behavior of the f sum.

We now determine the long-wavelength (i.e., q � kF )
behavior of the f sum. To do this, we first determine the
leading-order behavior of the dielectric function. The leading
terms in f and g are

f (x, ν) ≈ 2

π

1

x
√

1 − ν2

⎡
⎣∫ ν

0
dt tanh−1

⎛
⎝
√

1 − t2

1 − ν2

⎞
⎠

+
∫ 1

ν

dt tanh−1

⎛
⎝
√

1 − ν2

1 − t2

⎞
⎠
⎤
⎦, (A22)

g(x, ν) ≈ ν

x
√

1 − ν2
. (A23)

We see that, at leading order, the dielectric function, as a
function of q

kF
and ω

vF q
, goes as kF

q
.

Because we are able to write the dielectric function as a
function only of q

kF
and ω

vF q
, and because its imaginary part

is nonzero only for |ω| � vF q, we find that the f sum can be
written as

FIB =−v2
F q2

∫ 1

0
dνν

NαgIB (x, ν)

[1 − NαfIB (x, ν)]2 + [NαgIB (x, ν)]2
.

(A24)

If we now substitute the long-wavelength forms of f and g

and perform a residual numerical integration, we find that the
f sum goes as the cube of the wave vector; more precisely, it
is given by

FIB ≈ − 1

3Nα
E2

F

(
q

kF

)3

. (A25)

The coefficient of 1
3 is approximate; we obtained a value of

0.333 333. We provide plots of both the exact and approximate
f sum in Fig. 5; we determined the exact f sum numerically.
We see that, if we only include the intraband scattering con-
tribution to the dielectric function, then the f sum becomes
finite. However, we do not obtain the behavior expected from
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2 F

0.01 0.02 0.05 0.10 0.20 0.50 1.00
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10 6
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10 4
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q/kF

−F
/E

2 F

FIG. 5. Plot of the negative of the f sum, FIB , computed from
the dielectric function including only intraband scattering contribu-
tions, as a function of q for 0 � q � kF , both on linear (left) and
log-log (right) scales. Here, we use α ≈ 0.9 and N = 4.

the f -sum rule stated earlier; if we did, then we should find
that F is linear in q.

We now calculate the f sum with the full RPA dielectric
function (i.e., we now also include interband scattering terms),
but with an energy cutoff �. Because ε only depends on the
dimensionless quantities x = q

kF
and ν = ω

EF
, the f sum may

be rewritten as

F = E2
F

∫ �/EF

0
dν ν Im

[
1

ε(x, ν)
− 1

]
. (A26)

While the f sum for the full RPA dielectric function over
all modes gives an infinite result, we will see that it becomes
finite if an energy cutoff is imposed on the integral. Let us first
determine the contribution from frequencies 0 � ω � vF q

(i.e., the “intraband” contribution as defined in Ref. [54]).
While this integral must be found numerically in general, an
analytic approximation exists for small q. In particular, it can
be shown that, at long wavelengths and with ω

vF q
held constant,

the integrand of the f sum can be approximated as

ν Im

[
1

ε(x, ν)
− 1

]
≈ − ν2

Nαx

√
x2 − ν2. (A27)

The resulting integral can be done analytically, and the
result is

F = − πE2
F

16Nα

(
q

kF

)3

. (A28)

We plot this along with the exact result in Fig. 6.
We now consider the f sum with an energy cutoff � �

EF . We may write this f sum as

F = E2
F

∫ �/EF

0
dν ν Im

[
1

ε(x, ν)
− 1

]
. (A29)

We thus see that the f sum must be a function only of �
EF

and
q

kF
. We provide a plot of the f sum below for � = 10EF in

Fig. 7. One can see that the f sum appears to be linear in q

for small q. We also investigate the dependence of the slope
of this approximate linear dependence as a function of �, and
plot the result in Fig. 8. The relationship between the cutoff
and the slope appears to be linear.

We also considered small cutoffs, equal or close to 2EF .
This is the energy range within which we find the plasmon
modes when we determine them from the real part of the
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FIG. 6. Plot of the exact intraband contribution to the f sum
(black) and the long-wavelength approximation (red), Eq. (A28), as
a function of q for N = 4 and α ≈ 0.9.

dielectric function. If we do this with the energy cutoff � =
2EF , we find that the long-wavelength behavior of the f

sum is quadratic in q. However, if we increase the energy
range even by a very small amount, then we observe a linear
behavior, again for small q. We provide a plot illustrating this
effect in Fig. 9.

Everything that we have presented indicates that, for cut-
offs � > 2EF , the f sum is given by E2

F times a linear
function only of �

EF
times q

kF
. We thus find that its long-

wavelength behavior must be given by

F = −CE2
F

(
�

EF

− 2

)
q

kF

, (A30)
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q/kF

−F
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FIG. 7. Plot of the f sum (black) and its long-wavelength ap-
proximation (red) as a function of q for � = 10EF , N = 4, and
α ≈ 0.9.
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FIG. 8. Plot of the slope of the f sum at long wavelengths as a
function of the energy cutoff � for N = 4 and α ≈ 0.9.

where C ≈ 2.203 81 in the case that N = 4 and α ≈ 0.9. This
may be simplified to

F = −C(� − 2EF )vF q. (A31)

This form does produce a
√

q dependence on q for the long-
wavelength plasmon frequency ωp. Unfortunately, however,
we find an effective plasmon frequency ωp that is independent
of the particle density, contrary to the dependence found from
the dielectric function directly [45]. Note that in develop-
ing the plasmon-pole approximation for graphene in Sec. II
of the main text, we completely avoid the f -sum rule failure
problem by demanding that the long-wavelength behavior of
the effective plasmon-pole frequency ω�q in Eq. (6) go as
ωp, where ωp ∼ √

q is the actual long-wavelength graphene
plasmon frequency.

FIG. 9. Plot of the f sum at long wavelengths as a function of
q for N = 4 and α ≈ 0.9, and for � = 2EF (black) and � = 2.1EF

(red).
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APPENDIX B: HYDRODYNAMIC PLASMON-POLE
APPROXIMATION

Since we have proposed the hydrodynamic plasmon-pole
approximation as the most appropriate, as well as the com-
putationally simplest, model to be used in future graphene
many-body calculations, we provide in this appendix a critical
comparison between the hydrodynamic approximation and
the plasmon-pole approximation for the frequency-dependent
dielectric response. We first define below the hydrodynamic
[Eq. (30)] and plasmon-pole [Eq. (17)] dielectric functions:

εHD(�q, ω) = 1 − ω2
p

ω2 − v2
F q2

= ω2 − ω2
p − v2

F q2

ω2 − v2
F q2

,

(B1)

1

εPPA(�q, ω)
= 1 + ω2

p

ω2 − ω2
�q
, (B2)

or

εPPA(�q, ω) = ω2 − ω2
�q

ω2 − ω2
�q + ω2

p

. (B3)

Here, Eqs. (B1) and (B2) correspond, respectively, to
Eqs. (30) and (6) combined with (9), and Eq. (17).

Now, the hydrodynamic PPA corresponds to [see Eq. (16)]
putting ω2

�q = ω2
p + v2

F q2 into Eqs. (B2) and (B3), leading to

εHD
PPA(�q, ω) = ω2 − ω2

p − v2
F q2

ω2 − v2
F q2

, (B4)

which is identical to the hydrodynamic dielectric function
defined by Eq. (B1). Thus, the hydrodynamic dielectric
function defined by Eq. (B1) exactly defines the hydrody-
namic approximation to the plasmon-pole approximation de-
fined by Eq. (B4).

We emphasize that this identity between the hydrodynamic
dielectric function and the plasmon-pole approximation is
achieved only after we make the hydrodynamic approxima-
tion to PPA [i.e., Eq. (16)]. If we compare the standard
definitions of PPA [Eq. (B2)] and hydrodynamics [Eq. (B1)],

εPPA(�q, ω) = (
ω2 − ω2

�q
)(

ω2 − ω2
�q + ω2

p

)−1
(B5)

and

εHD(�q, ω) = (
ω2 − ω2

p − v2
F q2

)(
ω2 − v2

F q2
)−1

, (B6)

we see that ε(�q, ω̃�q ) = 0 gives the following effective
plasmon-pole frequencies:

ω̃PPA
�q = ω�q, (B7)

ω̃HD
�q =

√
ω2

p + v2
F q2. (B8)

If we think of ω�q as a plasma frequency, then the hydro-
dynamic approximation by virtue of having the vF q term
at second order guarantees that, for large q, the dispersion
of ω̃HD

�q goes as vF q following the graphene single-particle
energy dispersion. This is precisely the reason behind the

hydrodynamic approximation ω�q = ω̃HD
�q =

√
ω2

p + v2
F q2 as

in Eq. (16) providing an excellent description for the ef-
fective plasmon-pole frequency ω�q : for small q, it produces
the correct long-wavelength plasma frequency ωp and, for
large q, it produces the correct graphene linear single-particle
dispersion vF q.
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