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Nonequilibrium thermoelectric transport through vibrating molecular quantum dots

A. Khedri,1,2 T. A. Costi,2 and V. Meden1

1Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA—Fundamentals of Future Information Technology,
52056 Aachen, Germany

2Peter Grünberg Institut and Institute for Advanced Simulation, Research Centre Jülich, 52425 Jülich, Germany

(Received 9 August 2018; revised manuscript received 18 October 2018; published 27 November 2018)

We employ the functional renormalization group to study the effects of phonon-assisted tunneling on the
nonequilibrium steady-state transport through a single level molecular quantum dot coupled to electronic
leads. Within the framework of the spinless Anderson-Holstein model we focus on small to intermediate
electron-phonon couplings and we explore the evolution from the adiabatic to the antiadiabatic limit and also
from the low-temperature nonperturbative regime to the high-temperature perturbative one. We identify the
phononic signatures in the bias-voltage dependence of the electrical current and the differential conductance.
Considering a temperature gradient between the electronic leads we further investigate the interplay between
the transport of charge and heat. Within the linear response regime we compare the temperature dependence
of various thermoelectric coefficients to our earlier results obtained within the numerical renormalization group
[Phys. Rev. B 96, 195156 (2017)]. Beyond the linear response regime in the context of thermoelectric generators
we discuss the influence of molecular vibrations on the output power and the efficiency. We find that in the
antiadiabatic limit the thermoelectric efficiency can be significantly enhanced.
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I. INTRODUCTION

In molecular electronics [1], many-body correlations are
expected to play an important role at low temperatures [2,3].
Transport measurements in such systems can reveal the direct
consequences of the local Coulomb interaction or the local
electron-phonon coupling [4]. Of particular interest is to study
how these interactions modify the interplay between electri-
cal and heat conduction. Such studies can provide guidance
for potential routes towards the use of such nanostructures
for possible applications in on-chip cooling and waste-heat
conversion [5]. Theoretical guidance is needed to properly
interpret experimental results [6]. Improving the theoretical
understanding of thermoelectric transport through vibrating
molecular quantum dots can thus help to address fundamental
questions on the restrictions of the efficiency of molecular
quantum dot–heat engines, and on the role of many-body
effects in coupled irreversible processes (heat and electrical
conduction).

In this work we consider the spinless Anderson-Holstein
model (SAHM) which is a simple model to capture the
effects of local vibrational degrees of freedom in molecular
devices [7]. The electron-phonon interaction results in the
emergence of a low-energy scale �eff which is smaller than
the bare tunneling rate � (see below for exact definitions).
In several studies it was investigated how this low-energy
scale evolves with increasing the electron-phonon coupling,
and the phonon frequency, and a combined polaronic and
x-ray edge like renormalization was found [8–11]. Here our
focus is on correlation effects in the nonlinear thermoelectric
transport properties of the SAHM. In the antiadiabatic limit,
namely when the phonon frequency is much larger than the
bare tunneling rate, the physics is nonperturbative and we

need sophisticated many-body methods. For this purpose, we
use the functional renormalization group (FRG) [12], which
goes well beyond perturbation theory even within its simplest
approximation scheme (first-order truncation).

The FRG approach is a flexible theoretical method to tackle
interacting many-body systems from two- or one-dimensional
interacting fermionic models [12] to quantum impurity sys-
tems [13]. In particular, the effects of the local Coulomb
interaction on the impurity site have been investigated within
the single impurity Anderson model in equilibrium [14],
as well as in the steady-state nonequilibrium [15], and the
influences of the nearest neighbor Coloumb interaction at the
contact point between the impurity and the fermionic leads
has been studied within the interacting resonant level model
(IRLM) both in and out of equilibrium [16]. The interplay
between the local Coulomb interaction (Kondo physics) and
the local electron-phonon coupling (polaron physics) has been
also considered in the framework of the Anderson-Holstein
model within [17] and beyond [18] the linear response regime.
In contrast to previous applications of the FRG method,
for the SAHM the bare interaction is frequency dependent
(stemming from integrating out phonons; see below) resulting
in the frequency dependence of the self-energy even in the
lowest order truncation scheme. In this work we extend our
previous studies of the SAHM [11,19] by setting up the FRG
approach on the Keldysh contour [20,21]. The latter allows
us to compute the spectral function without the need for the
analytic continuation, and hence various linear thermoelec-
tric transport coefficients, as well as to study the nonlinear
bias-voltage and temperature gradient dependence of charge
and energy currents. In the linear response regime we com-
pare the FRG results to those obtained within the numerical
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renormalization group (NRG) approach [19]. As the nonequi-
librium steady-state NRG is a method still in development
[22–24], requiring the solution of the issues with thermaliza-
tion at long times [25,26], we do not employ NRG beyond
the linear response regime. However, see Ref. [27] for recent
progress on overcoming these issues.

Two distinct signatures of phonon-assisted tunneling in
nonequilibrium reported on in several experimental works
[4,28–34] are the blockade of the charge current at small
bias voltages (compared to the gate voltage ε̃0) and the
vibrational excitations appearing as (approximately) equally
spaced peaks in the bias-voltage dependence of the differen-
tial conductance. The first signature, the suppression of the
electrical current for strong electron-phonon couplings, and
for small bias voltages (�max{�eff , |ε̃0|}; see below) has been
theoretically verified for the SAHM [35–38]. In particular, in
Ref. [35], the iterative summation of path integrals (ISPI) has
been used, which is valid for sufficiently high temperatures
or large bias voltages, and in Ref. [36], the scattering-states
numerical renormalization group (SNRG) has been employed,
with the exclusive focus on strongly asymmetric coupling to
different reservoirs. This suppresses the bias-voltage depen-
dency of the spectral function and hence makes the calcula-
tions more feasible. The reduction of current has been denoted
as the Franck-Condon blockade, and was experimentally
observed in suspended carbon nanotube quantum dots with
longitudinal stretching mode (frequency ≈0.5 meV) in which
sizable electron-phonon couplings (of the order of frequency)
can be achieved [34], as well as carbon-based molecular
transistors (e.g., C60, and C140) [28,31]. This blockade is
due to the formation of a massive local polaron and can be
understood in terms of the equilibrium renormalized tunneling
rate �eff. The second vibrational signature is the steplike I -V
characteristic [28,33], resulting in multiple phononic peaks
in the differential conductance [4,32]. This has also been
theoretically clarified for the SAHM in Ref. [37], using an
approach based on the variational Lang-Firsov transforma-
tion, and in Ref. [39], employing a hierarchical quantum
master equation approach. Similar features have been found in
the spinful version of the Anderson-Holstein model [40,41].
For this model the study of the current fluctuations in the
strong Coulomb blockade regime has revealed avalanchelike
transport of electrons for strong electron-phonon couplings
in the weak tunneling limit � � T , resulting in giant Fano
factors [42].

Within the Keldysh FRG approach, besides reproducing
the results from the aforementioned studies, by considering
a finite temperature gradient, we further study the energy
current as a function of arbitrary bias-voltage and temperature.
In our approach the tunneling processes between the dot and
the leads are included to all orders. Being bound to weak
to intermediate electron-phonon coupling, we complement
the recent study in Ref. [43]. We characterize the nonlinear
thermoelectric effects and we further identify situations for
which these nonlinear effects can enhance the efficiency in the
context of thermoelectric generators, converting waste heat
into electrical energy by, i.e., charging a nanoscale battery.
In an earlier study of the IRLM, many-body effects due
to the short-range Coulomb interaction were found to have

nontrivial consequences resulting in the enhancement of the
efficiency [44]. In this paper we analyze the influence of cor-
relation effects induced by the molecular vibrational degrees
of freedom. The latter results in inelastic scattering processes
leading to the dissipation of energy in the molecule, as has
been discussed for the linear response regime, in Ref. [45]
using perturbation theory. We extend such an analysis to the
nonlinear and nonperturbative regime.

We organize this paper as follows. First, in Sec. II, we
briefly introduce the SAHM and the formal details of em-
ploying FRG on the Keldysh contour. Within the first-order
truncation, we obtain a set of coupled differential equations
for various components of the molecular self-energy. Our
results are presented in Sec. III. First, in the absence of a
temperature gradient, we characterize the vibrational features
in the bias-voltage dependency of the charge current and
differential conductance. We further investigate the perfor-
mance of the molecular quantum-dot heat engines. Finally,
in Sec. IV, we present a short summary and perspective. In
the Appendix we discuss the evolution of the nonequilibrium
spectral and distribution function upon increasing the bias
voltage. Furthermore, we compare the FRG results for the
molecular spectral function to the NRG for vanishing bias
voltage.

II. MODEL AND METHOD

The Anderson-Holstein model is defined by the Hamilto-
nian

H =
∑

α=L,R

∑
k

(εk − μα )c†α,kcα,k

+ 1√
Nsites

∑
α=L,R

tα
∑

k

(d†cα,k + H.c.)

+ ε0d
†d + ω0b

†b + λd†d(b† + b). (1)

It features two leads of noninteracting electrons (ladder op-
erators c

(†)
α,k), each of which is characterized by the chemical

potential μα , and is represented by a one-dimensional chain
with Nsites lattice sites and dispersion εk . The leads are coupled
to a localized level (ladder operator d (†)) with energy ε0 via
tunneling processes with amplitude tL/R. The localized level
is also coupled to a local vibrational mode with frequency
ω0. The coupling is such that the occupation of the molecule
leads to a displacement of the oscillator. The strength of this
displacement can be tuned with λ, the electron-phonon cou-
pling. The particle-hole symmetric point of the Hamiltonian is
ε0 = Ep, where Ep = λ2/ω0 is known as the polaronic shift.
Hence the quantity ε̃0 = ε0 − Ep controls the charge on the
molecule and can be regarded as the gate voltage.

Not being interested in band effects, we consider the so-
called wideband limit, where the leads have a constant density
of states ρlead = 1/(2D) in the interval [−D,D] and ρlead = 0
outside this interval. Thereby the bare tunneling rate reads
� = ∑

α=L,R �α , with �α = πρleadt
2
α , which determines the

width of the resonance in single-particle tunneling in the ab-
sence of the electron-phonon coupling. The electron-phonon
coupling suppresses the rate of resonant tunneling and results
in the appearance of phonon side peaks (see the Appendix).
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The former effect can be quantified by �eff defined via �eff =
1/(πχc ), where χc = − dnd (ε̃0 )

dε̃0
|ε̃0=0 is the local T = 0 charge

susceptibility and nd denotes the occupancy of the molecular
level.

A. Transport properties

We assume that at time t < t0 the localized level is decou-
pled from the vibrational degrees of freedom, and also from
the electronic leads, i.e., the system is uncorrelated with a
density operator ρeq = ρL ⊗ ρR ⊗ ρd ⊗ ρb, where ρL(R) rep-
resents the grand canonical density operator of the left(right)
fermionic lead at temperature TL(R), and chemical potential
μL(R), ρb is the density operator of the single-mode bosonic
bath at temperature Tph, and chemical potential μph = 0, and
finally, ρd denotes the dot density operator. At t = t0 the
electron-phonon interaction is turned on, and the molecule
is coupled to the leads. We are generally interested in the
electrical and heat currents passing through the molecule for
t > t0 for a given temperature gradient �T = TR − TL, and
a bias voltage V = (μL − μR)/e, with e being the electric
charge. The charge, energy, and heat currents leaving the
αth reservoir are defined as J c

α = −e〈〈∂t [ĉ
†
α,k (t )ĉα,k (t )]〉〉,

J E
α = 〈〈∂t [

∑
k εkĉ

†
α,k (t )ĉα,k (t )]〉〉, and J Q

α = J E
α + (μα/e)J c

α ,
respectively. As we shall see these currents can be written
in terms of the molecular propagator with the retarded (ad-
vanced) component defined as

GR
mol(t, t

′) = [GA
mol(t, t

′)]∗

= −i�(t − t ′)〈〈{d̂ (t ), d̂†(t ′)}〉〉 (2)

and the Keldysh one as

GK
mol(t, t

′) = −i〈〈[d̂ (t ), d̂†(t ′)]〉〉, (3)

where “ˆ” refers to the Heisenberg picture and 〈〈· · · 〉〉 =
Tr{· · · ρeq}.

Integrating out the structureless leads, and being interested
in the steady-state limit t0 → −∞ (assuming that the limit
exists due to the presence of reservoirs), we can directly work
in (single) frequency space

G
R/A
mol (ω) = [ω − ε0 ± i� − �R/A(ω)]−1 (4)

and

GK
mol(ω) = {�K(ω) − 2i�[1 − 2feff (ω)]}GR

mol(ω)GA
mol(ω),

(5)

with �R/A/K(ω) being the components of the molecular self-
energy resulting from the presence of electron-phonon cou-
pling, feff (ω) = ∑

α=L,R(�α/�)fα (ω), with the Fermi func-
tion fα (ω) = [exp{βα (ω − μα )} + 1]−1 and the inverse tem-
perature βα = 1/(kBTα ), kB being the Boltzmann constant.
The symmetric charge current J c = (�R/�)J c

L − (�L/�)J c
R

reduces to

J c = e

h

4π�L�R

�

∫ ∞

−∞
dω[fL(ω) − fR(ω)]A(ω), (6)

where A(ω) = (−1/π )Im{GR
mol(ω)} represents the spectral

function and h denotes the Planck’s constant. The energy

current entering each reservoir reads

J E
L/R = −4π

h
�L/R

∫ ∞

−∞
dω ω[fL/R(ω) − fNE(ω)]A(ω), (7)

with the nonequilibrium distribution function defined as

fNE(ω) = 1

2

{
1 − GK

mol(ω)

GR
mol(ω) − GA

mol(ω)

}
. (8)

For the symmetric tunneling �R = �L, the difference of the
heat currents entering the left and right leads reduces to

J
Q
R − J

Q
L = −2π�

h

∫ ∞

−∞
dω ω[fR(ω) − fL(ω)]A(ω). (9)

In the absence of a temperature gradient �T = 0, and at
particle-hole symmetry ε̃0 = 0, the integrand is odd and hence
the difference vanishes. In other words, the heat current enters
each reservoir symmetrically J

Q
L = J

Q
R .

In general, as we have an energy-conserving system, it
holds that

〈〈∂t Ĥ (t )〉〉 = J E
R + J E

L + Ėmol = 0, (10)

with the molecular energy dissipation rate

Ėmol ≡ 〈〈∂t [Ĥcoup(t ) + Ĥmol(t )]〉〉, (11)

where Hcoup is the coupling term [the second line of Eq. (1)]
and Hmol is the molecular contribution to the Hamiltonian [the
last line of Eq. (1)]. Equivalently, in terms of the charge and
heat currents, the energy dissipation rate reads

Ėmol = −J
Q
L − J

Q
R + μL − μR

e
J c (12)

= 4π�

h

∫
dω ω[feff (ω) − fNE(ω)]A(ω). (13)

In the absence of electron-phonon coupling, fNE(ω) reduces
to feff (ω) [see Eq. (8)] and hence the molecular dissipation
rate vanishes, i.e., the energy is only being exchanged between
the electronic leads. In other words, the molecular dissipation
rate vanishes in the steady state limit in the absence of a cou-
pling to the phonon mode. However, for λ = 0, inelastic scat-
tering processes (frequency-dependent self-energy) induced
by phonon-assisted tunneling can modify the nonequilibrium
distribution function, potentially implying the dissipation of
energy, i.e., energy can be exchanged not only between the
fermionic leads but also with the phonon bath. Note that
the molecular dissipation rate Ėmol as defined in Eq. (10)
includes any form of energy not being dissipated as heat in the
electronic leads. It contains two contributions: the expectation
value of the molecular Hamiltonian as well as that of the
molecule-lead coupling part [see Eq. (11)].

B. FRG approach to the SAHM

Employing the functional integral formulation, the parti-
tion function of the SAHM is represented by an integral over
both the fermionic and the bosonic fields. However, we can
integrate out the vibrational degrees of freedom (bosons) and
obtain an effective (purely fermionic) action with a local in
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space while nonlocal in time (retarded) two-particle interac-
tion which in the tridiagonal representation [46] takes the form

ũ = λ2

(
DR(t, t ′) DK(t, t ′)

0 DA(t, t ′)

)
, (14)

with the phonon propagator defined via

DR(t, t ′) = [DA(t, t ′)]∗ = −i�(t − t ′)〈〈[Â(t ), Â†(t ′)]〉〉,
(15)

DK(t, t ′) = −i〈〈{Â(t ), Â†(t ′)}〉〉, (16)

with A ≡ b + b†. Therefore, in frequency space we obtain

DR(ω) = [DA(ω)]∗ = 2ω0

(ω + iη)2 − ω2
0

, (17)

DK(ω) = −2πi[1 + 2b(ω0)]
∑
s=±

δ(ω − sω0), (18)

where η → 0+ has been introduced to guarantee convergence
and b(ω) = [exp{βphω} − 1]−1 denotes the Bose distribu-
tion function at temperature Tph = 1/(kBβph). Therefore, the
molecular vibrations result in a frequency-dependent (bare)
interaction in the fermionic action.

In the FRG approach [12], a flow parameter � ∈ [0,∞]
is introduced (in the free molecular propagator) and high-
frequency degrees of freedom (compared to �) are being

integrated out. From this procedure, we can obtain a hierarchy
of differential equations (flow equations) for the one-particle
irreducible vertex functions, e.g., the self-energy, and the
effective two-particle interaction. Truncation schemes are re-
quired to keep the calculations manageable. Here, we focus on
the first-order truncation scheme (controlled for weak to inter-
mediate electron-phonon couplings), i.e., only the self-energy
flows as we change the flow parameter from ∞ to zero. This
scheme has been successfully employed for the IRLM in and
out of equilibrium [16], or even for explicit time dependencies
[47], and also for the SAHM in equilibrium (finding good
agreement with the nonperturbative NRG approach) [11].

To obtain the flow equation for the various components
of the self-energy, we need to specify a scale-dependent
free molecular propagator. We use the reservoir cutoff, as
proposed in Ref. [48], having the advantage of preserving
some symmetries (like causality) even at the lowest order
truncation [49]. In this scheme, one assumes that at each �,
the molecular level is coupled to an auxiliary reservoir with
tunneling rate � and distribution function feff (ω). Hence the
scale-dependent propagator G

�,R/A/K
mol (ω) can be determined

analogous to Eqs. (4) and (5), simply by replacing � by
� + �, and �s (ω) by ��,s(ω) − ε0, with s = R, A, K. In
this way, all energy scales can be addressed, and the infrared
divergences that often show up in perturbation theory can be
regularized. Following the standard procedure, we obtain the
flow equations as

∂���,R/A(ν) = −i
λ2

4π

{
2

ω0

∫ ∞

−∞
dω S�,K(ω) +

∑
s =s ′=R/A,K

∫ ∞

−∞
dω S�,s (ω)Ds ′

(ν − ω)

}
, (19)

∂���,K(ν) = −i
λ2

4π

{
2

ω0

∑
s=R,A

∫ ∞

−∞
dω S�,s (ω) +

∑
s=R,A,K

∫ ∞

−∞
dω S�,s (ω)Ds (ν − ω)

}
, (20)

with single-scale propagator

S�,R(ω) = i
[
G

�,R
mol (ω)

]2 = [S�,A(ω)]∗, (21)

S�,K(ω) = iG
�,R
mol (ω)G�,K

mol (ω) − iG
�,K
mol (ω)G�,A

mol (ω)

+ G
�,R
mol (ω)

[
2i[1 − 2feff (ω)]

]
G

�,A
mol (ω). (22)

One can show that particle-hole symmetry is preserved for
any �. Furthermore, in thermal equilibrium, the fluctuation
dissipation theorem (FDT) is preserved during the flow. We
solve the coupled differential equations (19) and (20) with
initial conditions

��→∞,R/A(ν) − ε0 = Ep, ��→∞,K(ν) = 0, (23)

numerically using standard adaptive routines. We always
checked the convergence of the results with respect to the
frequency grid (technical necessity to solve the differential
equations), and the symmetries such as the particle-hole sym-
metry at ε0 = Ep and the FDT at eV = 0, and �T = 0 has
been numerically verified up to machine precision.

III. RESULTS

Having access to the frequency structure of various com-
ponents of the molecular Green’s functions Eqs. (4) and (5),
in Sec. III A we study the bias-voltage dependence of the
charge current Eq. (6) and the differential conductance at
different gate voltages. In Sec. III B, we discuss the evolution
of electrical current and energy dissipation rate as one enters
the high-temperature regime from the low-temperature one.
Finally, in Sec. III C we study the thermoelectric transport
through a vibrating molecule trapped between leads held at
different temperatures and chemical potentials. In the linear
regime we compare the transport coefficients with NRG,
while in the nonlinear regime we discuss how the efficiency
of a thermoelectric generator can be enhanced by vibrational
degrees of freedom.

A. Bias voltage dependence of the charge current and
the differential conductance

We investigate the current-bias-voltage characteristic of
the SAHM, in the absence of a temperature gradient TL =
TR = Tph = T . At the particle-hole symmetry, we consider
the evolution with increasing the electron-phonon coupling
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FIG. 1. Charge current J c vs bias-voltage V at particle-hole
symmetry ε̃0 = 0, for the listed electron-phonon couplings λ/ω0

(a) in the crossover regime of phonon frequency ω0/� = 1 and
(b) in the antiadiabatic limit ω0/� = 10. Inset to (a): J c vs V

in the adiabatic limit ω0/� = 0.1. Inset to (b): J c vs V at finite
gate voltage ε̃0 = −Ep in the antiadiabatic limit (ω0/� = 10). For
λ/ω0 = 0, 0.5, 1,

√
2, we find �eff/� = 1, 0.92, 0.70, 0.46 for the

crossover regime in (a), while for the antiadiabatic regime in (b), we
find �eff/� = 1, 0.83, 0.45, 0.19. The temperature is kBT/� = 0.1
in all plots.

from the adiabatic limit to the antiadiabatic one. As we
shall see the phonon signatures are more prominent in the
antiadiabatic limit in which the charge fluctuations can ef-
fectively (de)excite the vibrational degrees of freedom (as
the dwell time of electrons on the molecule is larger than
time scale of the molecular vibrations 1/� � 1/ω0). Going
beyond particle-hole symmetry, we further comment on the
bias-voltage dependence of the current and the differential
conductance in the antiadiabatic limit.

We first focus on the particle-hole symmetric case, ε̃0 = 0.
In the adiabatic limit (ω0/� = 0.1) the modification of the
bias-voltage dependence of the charge current for different
electron-phonon couplings is minor; see the inset of Fig. 1(a).
In the crossover regime (ω0 ≈ �eff ), see Fig. 1(a), increasing
the electron-phonon coupling the current is suppressed, and at
eV ≈ ω0 an inflection point starts to form for stronger cou-
plings. In the antiadiabatic limit as illustrated in Fig. 1(b), this
suppression is more pronounced and we see the development
of multiple phonon steps as we approach the strong coupling
regime. The sharp initial step is just a manifestation of the
suppression of the tunneling (�eff as listed in the caption of
Fig. 1; for more see Refs. [10,11]), and the additional steps
reflect the possibility of charge transport through the molecule
via inelastic processes, i.e., the absorption (emission) of one
or multiple phonons. One might compare these results to those
presented in Ref. [37] (qualitatively similar). We may note

that the steps do not occur exactly at integer multiples of
ω0 but at eV/2 � ω0, 2ω0, . . .. This shift can be interpreted
as the renormalization of the phonon frequency, as has been
discussed in Ref. [10]. We conclude that, in the antiadiabatic
limit, the electronic degrees of freedom elevate the frequency
of the molecular vibrations.

Finally, we show the effects of particle-hole asymmetry on
the I -V characteristic for the antiadiabatic case (ω0/� = 10)
in the inset of Fig. 1(b). The main effect is that the current is
blocked at low temperatures eV � max{�eff , ε̃0} for sizable
electron-phonon couplings. Applying larger bias voltages can
eventually lift up the blockade, and phonon steps will appear.

These phononic features have been reported in the ex-
periments performed on suspended carbon nanotubes [33],
appearing as an external structure on top of the Coulomb
diamonds (spin-full version). However, in the mentioned elec-
tronic transport spectroscopy measurements, the vibrational
steps are sometimes accompanied with negative differential
conductance, which does not show up in our calculations for
the SAHM in the parameter regime we have considered.

Figure 2 illustrates the bias-voltage and the gate-voltage
dependence of the differential conductance defined as G =
∂J c

∂V
|�T =0. For the resonant level model (λ = 0), G reads

G = G0

2

∑
s=±

�2

[(seV/2) − ε̃0]2 + �2
, (24)

with G0 = e2/h. Therefore, at a given gate voltage |ε̃0| �
�/

√
3, the differential conductance exhibits two peaks; see

Figs. 2(a) and 2(c). In the presence of molecular vibrations
λ = 0, at low temperatures kBT � �eff and low bias voltages
eV � ω0, we can approximate the differential conductance
analogous to Eq. (24) with replacing � by �eff [= 0.85� for
the chosen parameters in Figs. 2(b) and 2(d)]. This way we
can understand the suppression of the differential conductance
at finite gate voltages; see Fig. 2(b). Close to the particle-hole
symmetric point, we get a shoulder at eV ≈ ω0 [see the curves
corresponding to ε̃0/� = 0, 0.5 in Fig. 2(d)]. For larger bias
voltages eV > ω0 we obtain multiple phonon side peaks as
shown in Figs. 2(b) and 2(d).

B. Evolution with varying the temperature

In this section we elucidate on the modification of the
charge and energy current while increasing the temperature
(TL = TR = Tph = T ). We focus on the particle-hole sym-
metric point for which the energy current enters each lead
symmetrically [see discussion in connection to Eq. (9)]. As
illustrated in Figs. 3(a) and 3(b), for a given bias voltage,
at low temperatures kBT � �eff, both the electrical current
and the molecular energy dissipation rate (which vanishes
for λ = 0) are independent of temperature. This is the so-
called coherent transport regime as discussed in Ref. [1].
However, at higher temperatures kBT > max{�eff, ε̃0}, the
electrical current decreases with increasing temperature; see
Fig. 3(a). At such high bias voltages, there is a competition
between resonant tunneling and phonon-assisted tunneling
(satellite peaks are inside the bias window; see the Appendix).
If we increase the bias voltage further eV > ω0, the molecular
energy dissipation rate exhibits a maximum at temperatures
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FIG. 2. (a), (b) Differential conductance G/G0 as a function of bias voltage and gate voltage (stability diagram) in the antiadiabatic limit
ω0/� = 5, at kBT/� = 0.1, for (a) λ/ω0 = 0 and (b) λ/ω0 = 0.5. (c), (d) The bias-voltage dependence of G for various gate voltages for
λ/ω0 = 0, 0.5, respectively.

related to the phonon frequency, as shown in Fig. 3(b). The
latter indicates that at elevated temperatures (≈ω0/2) the
molecular vibrational degrees of freedom will be excited and
hence the charge fluctuations are suppressed (reduction of
current), while the energy dissipation rate is enhanced. Even-
tually, however, Ėmol monotonically decreases as a function
of temperature for T � �eff .

C. Thermoelectric transport

Finally, we investigate the interplay between transport of
charge and heat in the presence of a temperature gradient as

FIG. 3. (a) Electrical current and (b) molecular dissipation rate
as a function of temperature for varying bias voltage and coupling
λ/ω0 = 0.5, in the antiadiabatic limit ω0/� = 10, and at particle-
hole symmetry ε̃0 = 0.

well as a bias voltage. First within the linear response limit,
we compare the FRG results with the NRG data presented
in Ref. [19]. This confirms that lowest-order FRG provides
reliable results for small to intermediate λ/ω0. Next, going
beyond the linear response regime, we explore the parameter
space to find regimes in which molecular vibrations can
result in the enhancement of the efficiency of thermoelectric
generators operating in the nonlinear regime.

1. Linear thermoelectric transport

In the linear response regime, all the transport coefficients,
i.e., the electrical conductance G(T ) = ∂J c

∂V
|�T =0, the See-

beck coefficient (thermopower) S(T ) = ∂V
∂�T

|J c=0, and the
electronic contribution to the thermal conductance κe(T ) =
∂J

Q
R

∂�T
|J c=0, can be expressed in terms of the moments of the

molecular spectral function which can be accurately com-
puted within the NRG approach. Figure 4 shows the compari-
son of taking the linear response limit of the FRG results (via
calculating currents for eV, kB�T � �eff , kBT ) to the NRG
ones. As shown, they match remarkably well at all tempera-
tures and, only when approaching the strong coupling regime
(λ/ω0 � 1.0), we see a small deviation in the temperature
range 0.1 � kBT/� � 1.0. We may note that the deviation of
the FRG and NRG results for the thermal conductance is more
pronounced for the low-temperature peak (resonant tunnel-
ing). At such low temperatures one requires higher-order trun-
cation schemes to capture the nonperturbative physics prop-
erly for strong electron-phonon couplings. As discussed in our
previous study [19], the enhancement of the Seebeck coeffi-
cient together with the suppression of thermal conductance at
low-temperatures results in a sizable figure of merit ZT0 =
[T G(T )S2(T )]/κe(T ), useful in harvesting waste heat [50].

2. Nonlinear thermoelectric generator

In this section we study the role of molecular vibrations in
the performance of thermoelectric generators in nonequilib-
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FIG. 4. (a) Normalized electrical conductance G/G0, (b) the
Seebeck coefficient S (in units of kB/e), and (c) the normalized
electronic contribution to the thermal conductance κe/� (in units of
k2

B/e2) vs reduced temperature for various electron-phonon coupling
strengths in the antiadiabatic limit (ω0/� = 5.0) and for a fixed gate
voltage ε̃0/� = −1.0. The solid lines represent the NRG data and
the circles are obtained within FRG by calculating the charge and
heat current for an infinitesimal temperature gradient and bias volt-
age (calculating the transport coefficients by taking the derivatives
numerically).

rium scenarios. We assume that the temperature and chemical
potential of each reservoir are held fixed with the aid of some
external energy source. Assuming eV > 0 and TL = Tph =
TR − �T (with �T > 0), we are considering the situation
where the heat leaving the hot reservoir can be used to
transport charge against the bias voltage, namely when the
steady-state electrical and heat currents are J c < 0, and J

Q
R <

0. This way we can convert waste heat into electrical energy,
by charging a battery. In such a setup as shown schematically
in Fig. 5, we can define the output power P and efficiency η

as

P = −J cV, (25)

η = output power

input heat
= P

−J
Q
R

. (26)

In the linear response regime, the output power reads

P = −(eV 2)G(T )[1 + S(T )(�T/(eV ))], (27)

exhibiting a maximum at eV/(kB�T ) = −eS(T )/2. The ef-
ficiency at maximum power is η/ηC = (1/2)ZT0/(ZT0 +
2).Hence, within linear response, the efficiency at maximum
power is bounded above by half of the Carnot efficiency

FIG. 5. Sketch of a molecular quantum dot with vibrational
degrees of freedom trapped between two electronic leads held at
different temperatures and chemical potentials. The dashed lines
indicate the transport of charge against the bias voltage by means
of the temperature gradient, i.e., charging of a battery.

(ηC = �T/TR), with the upper bound being attained in the
ideal situation of ZT0 → ∞ [51,52]. However, beyond linear
response, the efficiency can go beyond this upper bound as has
been shown for the IRLM in Ref. [44], and is illustrated for
a single resonant level model (λ = 0) in the inset to Fig. 6(a).
In this work we are interested in characterizing the parameter
regimes for which the efficiency can be improved merely due
to the presence of the vibrational degrees of freedom.

Beyond linear response, we discuss the evolution of the
output power, and efficiency as a function of bias voltage
as we vary the phonon frequency, and the electron-phonon
coupling. In the adiabatic limit ω0 � �eff (vibrations are

FIG. 6. (a) Output power, (b) rescaled efficiency, and (c) molec-
ular energy dissipation rate as a function bias voltage for various
couplings and phonon frequencies, at temperatures kBTL/� = 0.1
and kBTR/� = 2.1, and for gate voltage ε̃0/� = 2. The inset shows
the efficiency as a function of output power for λ = 0, kBTL/� =
1, kBTR/� = 90, and ε̃0/� = 40.
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slow compared to charge fluctuations) the behavior is very
much similar to the noninteracting case; see Fig. 6(a). As we
increase the phonon frequency further both the output power
and efficiency, at any given bias voltage, exhibit a nonmono-
tonic behavior, i.e., they first decrease and then increase. This
observation can be traced back to the frequency dependence
of the spectral function; see the Appendix. As we progres-
sively enter the antiadiabatic regime, the resonant tunneling
is suppressed due to the finite gate voltage and the inelastic
scattering processes are becoming more relevant. However,
deep in the antiadiabatic limit (ω0/� = 20), the satellite peaks
are pushed outside the transport window and the sharp reso-
nant tunneling not only results in the enhancement of output
power and efficiency but also extends the parameter regime in
which the system can act as a generator. Figures 6(a) and 6(b)
indicate that the mentioned effects (in the antiadiabatic limit)
can be further pronounced if we increase the electron-phonon
coupling. To analyze the underlying physics, we look at the
molecular energy dissipation rate as a function of bias voltage
as shown in Fig. 6(c). While in the absence of electron-
phonon coupling, the molecular dissipation rate vanishes, at
a finite coupling λ = 0 the molecule dissipates energy via
the vibrational degrees of freedom. As shown in Fig. 6(c),
increasing the phonon frequency at the fixed coupling λ/ω0 =
0.5 elevates the molecular dissipation rate. However, as we
approach the antiadiabatic limit Ėmol decreases (compare the
corresponding curve for ω0/� = 2 with the one for ω0/� =
5), and eventually, deep in the antiadiabatic limit, the molec-
ular dissipation rate is quite small and it remains comparably
small when increasing the electron-phonon coupling further.
As the latter implies that less energy is being dissipated in
the phonon bath, we conclude that the suppression of the
molecular dissipation rate in the antiadiabatic limit is crucial
for the observed enhancement of the thermoelectric efficiency.

IV. SUMMARY AND PERSPECTIVE

We applied the FRG method to study the (steady-state)
thermoelectric transport through a vibrating molecular quan-
tum dot in the framework of the spinless Anderson Holstein
model. We presented the technical details of employing FRG
on the Keldysh contour to a retarded two-particle interaction.
In the linear response regime we provided comparisons of the
FRG results to the ones obtained from the NRG approach,
finding good agreement over the whole temperature range for
weak to intermediate electron-phonon couplings. We showed
that the first-order truncated FRG (controlled for weak to
intermediate electron-phonon coupligs) can indeed capture
the distinct signatures of phonon-assisted tunneling in the
current-bias-voltage characteristic beyond linear response. In
particular, we discussed the Franck-Condon blockade and the
phononic steps appearing in the bias voltage dependency of
the electrical current and the differential conductance. Finally,
we specified the parameter regime in which vibrational effects
can be used to enhance the output power, and efficiency, in the
context of thermoelectric generators.

We should emphasize that our study is valid from the low-
temperature limit T � �eff to the high-temperature weak-
coupling one T � �eff . In the latter regime the real time
diagrammatics (RTD) has been applied to study the effects

of the local electron-electron and electron-phonon interaction
in the nonlinear electrical and heat conduction [41,53,54].
Recently, a quantum-dot heat engine operating based on
the thermally driven flow of particles has been experimen-
tally realized [6]. However, it is challenging to measure the
temperatures of the hot/cold electronic leads and different
(dot-lead) tunneling rates. The RTD have been employed to
extract the mentioned parameters for the Coulomb-blockaded
single electron transistor in Ref. [6] and hence to estimate the
thermoelectric efficiency η/ηC ≈ 70% at output power of the
order of a few fW (for � = 5.9 μeV = 68 mK, TR = 1.54 K,
and TL = 0.99 K). According to our study of a molecular
quantum dot with vibrational degrees of freedom, upon using
� = 1 meV, the efficiency at maximum power (≈104 fW) can
be improved up to 40% in the antiadiabatic limit ω0/� = 20
for electron-phonon coupling λ/ω0 = 1, and TL = TR/21 =
1.16 K, as shown in Fig. 6(b).

We focused on small to intermediate electron-phonon cou-
plings (which is a limitation of the first-order truncated FRG),
and other than that there was no particular restriction on the
parameter space in which the system could be tackled. In
this light our study can be employed as a future reference
for the low temperature regime where correlation effects are
more pronounced. The SAHM is a simple model capable of
capturing phonon-assisted tunneling in molecular devices. In
a step to make the model more realistic, one can, in future,
include the short-range Coulomb interaction at the contact
points between the dot and the leads, the electron spin, and
also a local Coulomb repulsion on the molecule.
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APPENDIX: MOLECULAR SPECTRAL AND THE
DISTRIBUTION FUNCTION

We discuss the frequency structure of the molecular spec-
tral and the nonequilibrium distribution function. First, in the
absence of a bias voltage, we compare the FRG results with
the NRG ones. For weak electron-phonon coupling λ/ω0 =
0.5, the two methods agree well for low frequencies ω < ω0,
i.e., for the central quasiparticle peak, and they only deviate
slightly at ω ≈ ω0 for the satellite side peaks; see Fig. 7(a).
Within NRG, the spectral function is obtained from the
Lehmann representation by broadening the discrete spectra
with logarithmic Gaussians [55] and hence the sharpness of
the features depends on the broadening parameter used, as
illustrated in the inset of Fig. 7(a). Therefore, on the one hand,
the features calculated within FRG are sharper which is an
artifact of the first order truncation and, on the other hand,
the spectral features are more smeared within NRG due to the
broadening of the δ functions (which is a technical necessity)
[55]. However, within NRG the linear thermoelectric transport
coefficients at any temperature (kBT � D) can be directly
calculated from the discrete many-body spectrum [56] and
hence are highly accurate, as shown in Fig. 4.
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FIG. 7. (a) Comparison of FRG (dashed lines) and NRG (solid lines) for the frequency dependence of the equilibrium molecular spectral
function for two different coupling strengths in the antiadiabatic limit ω0/� = 10 at kBT/� = 0.1. The inset illustrates π�A(ω) as a function of
ω/� within NRG using two different broadening parameters, for λ/ω0 = 1. (b), (c) The evolution of the frequency dependence of the molecular
spectral function and the nonequilibrium distribution function Eq. (8) as increasing the bias voltage for ω0/� = 10 and kBT/� = 0.1. Note the
logarithmic x axis in (a) and (b). In (b) the curve corresponding to eV/ω0 = 0.5 is almost indistinguishable from the equilibrium case eV = 0,
and also eV = 4.0 from eV/ω0 = 5.0.

Figure 7(b) shows the evolution of the frequency depen-
dence of the nonequilibrium spectral function upon increas-
ing the bias voltage. While the modification of the spectral
function from its equilibrium value is minor for eV � ω0, for
eV > ω0 the height of the central quasiparticle peak decreases
with increasing the bias voltage and the features are becoming
more broadened.

Figure 7(c) shows the variation of the frequency de-
pendence of the nonequilibrium distribution function, as
we increase the bias voltage. It is worth noting that the

modifications are significant for bias voltages eV/2 > ω0

in the transport window ω ∈ [−eV/2, eV/2]. In particu-
lar, at such large bias voltages, we get multiple peaks at
ω ≈ −ω0,−2ω0, . . ., which suggest that the probability of
the states being occupied whenever the energy is suffi-
cient to create one or multiple phonons is enhanced as
compared to the effective distribution feff (ω), and anal-
ogously the probability of finding the states with fre-
quency ω ≈ ω0, 2ω0, . . . to be unoccupied are substantially
decreased.
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