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Recent studies on fully dielectric multilayered metamaterials have shown that the negligibly small nonlocal
effects (spatial dispersion) typically observed in the limit of deeply subwavelength layers may be significantly
enhanced by peculiar boundary effects occurring in certain critical parameter regimes. These phenomena,
observed so far in periodic and randomly disordered geometries, are manifested as strong differences between the
exact optical response of finite-size metamaterial samples and the prediction from conventional effective-theory-
medium models based on mixing formulas. Here, with specific focus on the Thue-Morse geometry, we make a
first step toward extending the studies above to the middle ground of aperiodically ordered multilayers, lying in
between perfect periodicity and disorder. We show that, also for these geometries, there exist critical parameter
ranges that favor the buildup of boundary effects leading to strong enhancement of the (otherwise negligibly
weak) nonlocality. However, the underlying mechanisms are fundamentally different from those observed in the
periodic case and exhibit typical footprints (e.g., fractal gaps, quasilocalized states) that are distinctive of aperi-
odic order. The outcomes of our study indicate that aperiodic order plays a key role in the buildup of the afore-
mentioned boundary effects and may also find potential applications to optical sensors, absorbers, and lasers.
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I. INTRODUCTION

One key feature that distinguishes optical “metamateri-
als” [1–3] from other artificial materials such as photonic
crystals [4] is the possibility to describe their macroscopic
response in terms of effective parameters (e.g., permittivity
and permeability), along the lines of what is conventionally
done with natural materials. From the mathematical view-
point, rigorous implementations of this modeling process, typ-
ically referred to as “homogenization,” rely on first-principle
concepts such as field averaging [5]. From the experimental
viewpoint, such effective parameters can be retrieved via
suitable measurements of the scattering matrix [6,7].

The basic, intuitive rationale underlying homogenization is
that, as long as the electrical sizes of the material inclusions
are very small on the wavelength scale, and their interactions
are weak, the fast field fluctuations inside the metamaterial
are averaged out, and an electromagnetic wave effectively
“sees” a continuum whose constitutive properties are dic-
tated by mixing formulas [8] which essentially depend on
the inclusions’ material properties, shapes, orientations, and
proportions but not on their sizes and spatial order. To give
an example that is especially relevant for the present study,
in a multilayered metamaterial composed by stacking two
types of deeply subwavelength material layers (with distinct
constitutive properties and thicknesses, labeled, e.g., with “a”
and “b”), the effective parameters should depend on the filling
fractions (i.e., proportions of the a- and b-type constituents in
the mixture) but not on the specific order and/or arrangement
of the layers, so that configurations associated with sequences
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such as abababab, babababa, and abbaabba should all
be effectively equivalent and should all differ from, e.g.,
aaabaaba [8].

The inherent limitations and range of applicability of the
simple “effective-medium theory” (EMT) above are well
known, and more complex extensions have been developed to
capture the spatial-dispersion (nonlocal) effects [9,10] which
may become non-negligible, e.g., in the presence of electri-
cally thick and/or metallic inclusions (see, e.g., Refs. [11–13]
and [14–17] for general and multilayer-specific approaches,
respectively). For instance, in multilayered metamaterials, the
presence of metallic layers (albeit deeply subwavelength) may
induce strong nonlocal effects, due to the coherent interactions
of surface-plasmon-polaritons [18] propagating at the metal-
dielectric interfaces, which can manifest as the appearance of
additional extraordinary waves [19] not predicted by the EMT.

Much less expectable and counterintuitive is the “break-
down” of the EMT in periodic multilayered metamaterials
with fully dielectric, deeply subwavelength layers, which was
recently predicted on theoretical grounds by Herzig Shein-
fux et al. [20] and experimentally observed by Zhukovsky
et al. [21]. Basically, it was shown that, under specific il-
lumination settings, the optical response (transmittance or
reflectance) of finite-thickness samples may exhibit sub-
stantial differences from the EMT prediction, accompanied
by an ultrasensitivity to the spatial arrangement, size, and
termination of the layers. As also elucidated in follow-up
studies [22–26], these phenomena are not manifested in
the bulk (infinite-medium) response and can be interpreted
as boundary effects stemming from the peculiar, interface-
dominated phase-accumulation mechanism in the multilayer,
which may strongly enhance the (otherwise negligibly weak)
nonlocality. These effects can be captured by suitable nonlocal
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FIG. 1. Problem geometry illustrating the ThM multilayered
metamaterial and illumination conditions (details in the text).

extensions [23,26]. Related theoretical [27] and experimen-
tal [28] studies in similar parameter regimes, but characterized
by random spatial disorder, have evidenced the possibility to
attain Anderson localization, likewise in stark contrast with
the EMT prediction, and once again with ultrasensitivity to
changes of features on a deeply subwavelength scale. These
results have sparked considerable interest, both in terms of
implications for the homogenization theory and potential ap-
plications to extreme optical sensing and switching.

Against the background above, this study explores the
possibility to observe similar effects in aperiodically ordered
geometries, i.e., the vast middle ground separating perfect
periodicity and random disorder. Originally inspired by the
concept of “quasicrystals” in solid-state physics [29,30], ape-
riodic order has become increasingly relevant in many fields
of science and technology [31] and, in particular, in optics and
photonics [32] (see also a related perspective in a recent road
map on optical metamaterials [3, Sec. 3]). As a representative
geometry, we consider the Thue-Morse (ThM) sequence [33],
which has been extensively studied in the past in connection
with photonic crystals [34–41] and metallodielectric multilay-
ers [42], but has never been explored in the fully dielectric,
deeply subwavelength regime of interest here.

Accordingly, the paper is structured as follows. In Sec. II,
we introduce the problem geometry and its formulation. In
Sec. III, we describe the modeling tools and related mathe-
matical formalism based on the trace and antitrace maps [43].
In Sec. IV, we discuss some representative results. Finally, in
Sec. V, we draw some conclusions and point to future work.

II. PROBLEM STATEMENT

A. Geometry

The problem geometry is schematized in Fig. 1. We con-
sider a multilayer composed of two types of dielectric layers
(labeled as “a” and “b”), with relative permittivity εa and εb,
and thickness da and db, stacked along the z direction, and
of infinite extent in the x-y plane. The layers are arranged
aperiodically according to the ThM sequence, generated by
assuming the symbol a as an initiator and iteratively applying
the substitution rules [33]

a → ab, b → ba. (1)

The first iterations are therefore a, ab, abba, abbabaab, and
so on, with the generic nth stage of growth containing N =
2n layers. As general, well-known traits of this sequence,
we recall that at any iteration n � 1: (i) the frequency of
occurrence of a- and b-type symbols is identical (and hence

exactly the same as for periodic sequences), (ii) each half of
the sequence corresponds to the “flipped” version of the other
half, and (iii) sequences containing more than two consecutive
symbols (e.g., aaa or bbb) are not possible [33].

In what follows, we consider a generic multilayer at stage
of growth n, with total thickness D = 2n−1d (with d = da +
db denoting the thickness of an ab-type bilayer), embedded in
a homogeneous dielectric medium with relative permittivity
εe. For instance, the case depicted in Fig. 1 corresponds to the
stage of growth n = 4 (i.e., N = 16 layers).

B. Formulation

For illumination, we assume a time-harmonic plane wave,
with suppressed exp (−iωt ) time dependence and transverse-
electric (TE) polarization (y-directed electric field), imping-
ing with an angle θi from the z axis, viz.,

E(i)
y = E0 exp[i(kxx + kzez)], (2)

where E0 denotes a real-valued amplitude, and

kx = k
√

εe sin θi, kze = k
√

εe cos θi (3)

are the transverse (conserved) and longitudinal components,
respectively, of the wave vector ke (see Fig. 1). In Eq. (3),
k = ω/c is the vacuum wave number, with c denoting the
corresponding wave speed. As previously mentioned, we
assume to operate in the deeply subwavelength regime, i.e.,
da, db � λ, with λ = 2π/k denoting the vacuum wavelength.
Under these conditions, the optical response of the multilayer
is generally well captured by an EMT model in terms of
a homogeneous, uniaxially anisotropic slab characterized by
a relative permittivity tensor whose parallel (‖, i.e., x − y)
and orthogonal (⊥, i.e., z) components are given by simple
Maxwell-Garnett-type mixing formulas [8]

ε̄‖ = faεa + fbεb, (4a)

ε̄⊥ = (
faε

−1
a + fbε

−1
b

)−1
, (4b)

with fa = da/d and fb = db/d = 1 − fa denoting the filling
fractions pertaining to a- and b-type constituents, respectively,
and the overbar utilized throughout the paper to indicate EMT-
based quantities. First, we observe that the mixing formulas
in Eqs. (4) are exactly identical with those pertaining to a
conventional periodic multilayer (repetitions of ab-type bi-
layers). This should not be surprising, as we have previously
recalled that, just like the periodic ones, ThM sequences
exhibit the same distribution of a- and b-type symbols and that
EMT models are sensitive to proportions, rather than spatial
arrangement. It is also worth pointing out that, in view of
the assumed TE polarization, only the parallel component in
Eq. (4a) is actually relevant to our study.

Previous studies on ThM-based optical structures have fo-
cused on photonic crystals (i.e., moderately thick layers) [34–
41] and hyperbolic metamaterials (i.e., deeply subwavelength
metallic and dielectric layers) [42], which exhibit a wealth of
interesting effects such as band gaps, resonant transmission,
localization and field enhancement, omnidirectional reflec-
tion, fractal edge states, multistability, and additional extraor-
dinary waves.
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Conversely, in what follows, we deal with ThM-based
metamaterials featuring fully dielectric, deeply subwave-
length layers and study the possible buildup of boundary
effects leading to strong enhancement of the (otherwise neg-
ligibly weak) nonlocality. To this aim, we systematically
compare the exact optical response of structures at various
stages of growth and under different illumination conditions,
with the corresponding EMT-based predictions, in order to
identify critical parameter regimes where nonlocality may be
strongly enhanced. Moreover, to single out behaviors that are
genuinely induced by the underlying aperiodic order, we also
consider the comparison with the well-established periodic-
multilayer case [20–26] which, as observed above, shares the
same EMT model.

III. MODELING TOOLS AND FORMALISM

A. Transfer-matrix model

The optical response of the ThM multilayered metamate-
rial in Fig. 1 can be rigorously calculated by means of the
well-established transfer-matrix method [44, Chap. 1]. Basi-
cally, the transverse field components at the two interfaces of
a generic a- or b-type layer can be related via[

E(L)
y

iZeH
(L)
x

]
= M

ν
·
[

E(R)
y

iZeH
(R)
x

]
, (5)

where the superscripts (L) and (R) denote the left and right
interfaces, respectively,

Ze = ωμ0

kze

(6)

represents the TE wave impedance in the exterior medium
(with μ0 denoting the vacuum magnetic permeability), and

M
ν

=

⎡
⎢⎣ cos (kzνdν )

kze

kzν

sin (kzνdν )

−kzν

kze

sin (kzνdν ) cos (kzνdν )

⎤
⎥⎦ (7)

is a 2 × 2, unimodular, adimensional matrix, where ν = a or
b, and

kzν =
√

k2εν − k2
x = k

√
εν − εe sin2 θi (8)

denote the longitudinal wave numbers in the two correspond-
ing media [44, Chap. 1]. The representation above can readily
be iterated to deal with multiple cascaded layers, via chain
product of the single-layer transfer matrices [44, Chap. 1].
Accordingly, we can relate the fields at the input (z = 0) and
output (z = D) interfaces of a ThM multilayer at stage of
growth n as[

Ey

iZeHx

]∣∣∣∣
z=0

= M(n) ·
[

Ey

iZeHx

]∣∣∣∣
z=D

, (9a)

M(n) =
N=2n∏
j=1

M
ν(j )

=
[
m

(n)
11 m

(n)
12

m
(n)
21 m

(n)
22

]
, (9b)

with ν(j ) = a or b, according to the j th symbol in the ThM
sequence.

Based on the model in Eqs. (9), for a given incident field,
we can rigorously calculate the reflection and transmission co-
efficients, as well as the field distribution inside the multilayer.

B. Trace and antitrace maps

As already pointed out in our previous study dealing with
the periodic case [26], some key observables in the optical
response of a generic multilayer can be calculated without the
need to actually perform the chain matrix product in Eq. (9b),
which, for a large number of layers, may become both compu-
tationally intensive and prone to numerical-error propagation.
For instance, by defining the transmission coefficient

τn =
E(t )

y

∣∣
z=D

E
(i)
y

∣∣
z=0

, (10)

with the superscript (t ) tagging the transmitted field, we
obtain from Eq. (9a) (see Appendix A for details)

τn = 2

m
(n)
11 + m

(n)
22 + i

[
m

(n)
21 − m

(n)
12

]
= 2

Tr[M(n)] + iATr[M(n)]
, (11)

where Tr[·] and ATr[·] denote the conventional matrix trace
and antitrace operators, respectively [45]. Quite remarkably,
similar to the periodic multilayer case [26], also for the
ThM geometry of interest here it is possible to compute
these quantities iteratively via simple polynomial maps. More
specifically, by letting

χn ≡ Tr[M(n)], υn ≡ Atr[M(n)], υ̃n ≡ Atr[M̃(n)
],

(12)

with the tilde denoting a complementary configuration featur-
ing a ThM sequence initiated with a b-type (instead of a-type)
symbol, it can be shown [40,42,43] that the evolution with
respect to the stage of growth n is ruled by the following
intertwined maps

χn+2 = χ2
n (χn+1 − 2) + 2, (13a)

υn+1 = χn−1[(χn − 1)υn−1 + υ̃n−1], (13b)

υ̃n+1 = χn−1[(χn − 1)υ̃n−1 + υn−1], n � 1, (13c)

where χ0 = Tr(M
a
), υ0 = Atr(M

a
) and υ̃0 = Atr(M

b
).

Though directly related to the evolution of the transmis-
sion coefficient [see Eq. (11)], trace and antitrace are not
physically meaningful quantities and hence cannot be used
per se in order to ascertain the enhancement of nonlocality.
Nevertheless, possible departures of the maps in Eqs. (13)
from the corresponding EMT (local) predictions effectively
quantify the degree of nonlocality. Within this framework,
for the periodic multilayer case [26], we showed that the
buildup of boundary effects leading to the enhancement of
nonlocality could be effectively interpreted and parameterized
in closed form in terms of error propagation in the trace and
antitrace maps. In the ThM case of interest here, the trace and
antitrace maps in Eqs. (13) cannot be solved analytically in
closed form. Nevertheless, the interpretation of the boundary
effects in terms of error propagation still holds. It is worth
stressing that the derivation of the trace and antitrace maps
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is exact, and therefore the computation of the transmission
coefficient via Eqs. (11) and (13) is fully equivalent to that
arising from the chain matrix product in Eqs. (9). In addition,
the trace-antitrace-map scheme is also computationally more
effective and robust with respect to roundoff errors, as well as
more insightful.

IV. REPRESENTATIVE RESULTS

A. Parameters and observables

To facilitate comparison with previous studies on peri-
odic and random structures, we consider the same material
parameters as in Refs. [20,24,26,27], for the layers (εa =
1, εb = 5, possibly with some small loss-gain perturbations)
and exterior medium (εe = 4), with identical filling fractions
fa = fb = 0.5 (i.e., da = db = d/2), which correspond to an
EMT relative permittivity ε̄‖ = 3. Likewise, we mainly focus
on parameter configurations where the field is propagating in
the higher-permittivity layers and in the effective medium, and
evanescent in the lower-permittivity ones. This corresponds to
an angular incidence range

θac ≡ arcsin

(√
εa

εe

)
< θi � arcsin

(√
ε̄‖
εe

)
≡ θ̄c. (14)

As for the electrical thickness, we explore the range 0.04 <

d/λ < 0.1, which guarantees that the layers remain deeply
subwavelength. Our parametric studies below consider ThM

multilayers at various stages of growth n, which correspond
to N = 2n layers.

For the lossless scenarios, besides the trace χn and antitrace
υn, we consider as the main physical observables the transmit-
tance

Tn = |τn|2 = 4

|χn + iυn|2
, (15)

and the electric field (magnitude) distribution in the multilayer
[computed by means of the transfer-matrix chain in Eqs. (9)].
For scenarios featuring optical losses or gain, we also consider
the reflectance

Rn = |ρn|2, (16)

computed from the reflection coefficient (see Appendix A for
details)

ρn = E(r )
y

E
(i)
y

∣∣∣∣∣
z=0

= τn

[
m

(n)
11 − im

(n)
12

] − 1, (17)

with the superscript (r ) tagging the reflected field. From
Eq. (17), we observe that, unlike the transmittance, the re-
flectance does not depend solely on the trace and antitrace. We
stress that, in principle, it is possible to derive evolution maps
[formally similar to those in Eqs. (13)] for any of the transfer-
matrix elements [43]. These, however, are not reported here
for brevity.

For lossy scenarios, we also compute the absorbance,
which follows directly from power conservation:

An = 1 − Tn − Rn. (18)
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FIG. 2. (a)–(c) Transmittance [see Eq. (15)] responses pertaining to ThM multilayered metamaterials at stages of growth n = 8 (N = 256
layers), n = 9 (N = 512 layers), and n = 10 (N = 1024 layers), respectively, for εa = 1, εb = 5, fa = fb = 0.5 (i.e., da = db = d/2), and
εe = 4, as a function of the electrical thickness d/λ and incidence angle θi . (d)–(f) Same as above, but EMT predictions (ε̄‖ = 3). (g)–(i) Same
as above, but for periodic arrangements.

195128-4



APERIODIC ORDER INDUCED ENHANCEMENT OF WEAK … PHYSICAL REVIEW B 98, 195128 (2018)

To ascertain the possible enhancement of nonlocal effects,
and the role played by aperiodic order, we also study the
two reference configurations considered in Ref. [26], namely,
a homogeneous slab with relative permittivity ε̄‖ given by
the EMT model in Eq. (4a) and thickness D, and a periodic
multilayer with same type and total number of layers (and
hence thickness D). In both cases, the observables above can
be computed analytically. For the homogeneous EMT slab,
they can be computed from a single transfer matrix as in
Eq. (7) (by assuming εν = ε̄‖, dν = D), while for the periodic
case they readily follow from the closed-form solutions of the
trace and antitrace maps [26, Eqs. (14)].

B. Lossless case

We start considering the lossless scenario (εa = 1, εb =
5). Figure 2 compares the transmittance responses of three
representative ThM configurations at various stages of growth
(n = 8, 9, 10) with the corresponding EMT and periodic
benchmarks, as a function of the electrical thickness d/λ of
the ab-type bilayer (henceforth, simply referred to as “electri-
cal thickness” for compactness) and the incidence direction θi .
This latter, according to Eq. (14), varies within the range θac =
30◦ < θi � θ̄c = 60◦. At a qualitative glance, we observe a
generally good agreement between the EMT [Figs. 2(d)–2(f)]
and periodic [Figs. 2(g)–2(i)] responses, which exhibit the
expectable small-to-moderate Fabry-Pérot-type oscillations of
the transmittance, with the possible exception of the region
nearby the critical angle θ̄c = 60◦, where the field undergoes
a transition from propagating to evanescent in the effective
medium. Conversely, the ThM responses [Figs. 2(a)–2(c)]
exhibit a markedly different behavior also far away from the
critical angle, with much more pronounced (band-gap-like)
oscillations. In what follows, we examine in more detail two
distinctive mechanisms underlying these strong departures.

1. Near-critical incidence

In the periodic-multilayer case [20–26], significant dif-
ferences between the exact optical response and its EMT
prediction were observed in the vicinity of the critical an-
gle for which the field becomes evanescent in the effective
medium (θi � θ̄c). In particular, we showed in Ref. [26] that
the trace and antitrace maps pertaining to the multilayer and
a homogeneous EMT slab periodically depart according to a
two-scale oscillatory law, whose maximum amplitudes may
diverge asymptotically in the antitrace case (together with the
slow scale) as the incidence direction approaches the critical
angle θ̄c.

For the ThM case of interest here, this regime remains
critical, and other interesting effects appear, which have no
counterpart in the periodic scenario. Figure 3(a) shows a
representative transmittance cut from Fig. 2(a) (ThM multi-
layer at stage of growth n = 8, i.e., N = 256 layers), at a
fixed incidence angle θi = 61.85◦ � θ̄c, for which the field
is evanescent in the effective medium. As can be observed,
the transmittance is very low within most of the electrical-
thickness range, but some high-transmittance resonant peaks
appear for d/λ � 0.09. Conversely, the transmittance for the
corresponding EMT and periodic reference configurations
remains always negligibly small (<10−8). Associated with the
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FIG. 3. Parameters as in Fig. 2. (a) Transmittance cut from
Fig. 2(a) [ThM multilayer at stage of growth n = 8 (N = 256
layers)], at θi = 61.85◦. The corresponding EMT and periodic refer-
ence response (not shown), are negligibly small (<10−8). (b) Field
(magnitude) distribution inside the multilayer (normalized by the
incident-field amplitude E0) at d/λ = 0.092. (c) Same as panel (b),
but at stage of growth n = 12 (N = 4096 layers).

high-transmittance peaks are some Fabry-Pérot-type states,
as shown in Fig. 3(b), which can exhibit strong field en-
hancements. Another representative example of such states is
shown in Fig. 3(c), for a higher stage of growth (n = 12, i.e.,
N = 4096 layers).

To gain some insight in this EMT-breakdown mechanism,
which has no counterpart in the periodic case, it is instructive
to look at the trace and antitrace maps. For fixed electrical
thickness and incidence direction [corresponding to the Fabry-
Pérot-type state in Fig. 3(b)], Fig. 4 compares the evolution
of the ThM trace, antitrace, and transmittance, as a function
of the stage of growth n, with those pertaining to the EMT
and periodic configurations. We highlight that, for all three
cases, trace and antitrace start from very similar values at
the initial stage of growth, namely χ1 = 2.028, υ1 = −0.550
for ThM and periodic cases, and χ̄1 = 2.037, ῡ1 = −0.482
in the EMT case, as an effect of the very weak nonlocality.
These values are only slightly beyond the “band-edge” condi-
tion χ = 2 (kz = 0) for Bloch-type terminations [43], which

195128-5



COPPOLARO, CASTALDI, AND GALDI PHYSICAL REVIEW B 98, 195128 (2018)

ThM
EMT
Periodic

No. of layers, N=2n

2 8 32 128 512 2048

Tr
ac

e

−4
−2

0
2
4
6
8

10

(a)

A
nt

itr
ac

e

−30

−20

−10

0

10

(b)

Tr
an

sm
itt

an
ce

0

0.2

0.4

0.6

0.8

1

Stage of growth, n
1 2 3 4 5 6 7 8 9 10 11 12

(c)

FIG. 4. Parameters as in Fig. 2, with d/λ = 0.092 and θi =
61.85◦. (a)–(c) Comparisons between the trace (blue circles), anti-
trace (green triangles), and transmittance (red squares) evolutions
pertaining to ThM, EMT, and periodic configurations, respectively,
as a function of the stage of growth n. The corresponding number of
layers is also shown on the top axis. Continuous curves are guides to
the eye only.

indicates the occurrence of a band gap. As the structure size
increases, the maps pertaining to the EMT and periodic cases
exhibit similar exponentially increasing behaviors, in stark
contrast with those pertaining to the ThM case, which remain
bounded. Interestingly, the corresponding transmittance ini-
tially follows the rapid, monotonic decrease of the EMT and
periodic cases, but then abruptly exhibits a “revival” at higher
stages of growth (n � 8). From the mathematical viewpoint,
these behaviors can be understood in terms of distinctive
properties of the trace and antitrace maps. For the periodic
case, it is clear from the closed form solution in Ref. [26,
Eqs. (14)] that an initial condition |χ1| > 2 (i.e., in a band gap)
will inevitably lead to an exponentially increasing behavior,
which is physically consistent with the evanescent character
of the field. This is not true for the ThM map in Eqs. (13a),
which can oscillate around the band-edge condition |χ | = 2,
thereby allowing a revival of the transmittance at higher stages
of growth. Although the ThM trace and antitrace maps in
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FIG. 5. Parameters as in Fig. 2. (a) Transmittance cuts at θi =
35.35◦ from Fig. 2(a), for ThM multilayers at stages of growth n = 8
(N = 256 layers; blue solid), n = 9 (N = 512 layers; red dashed),
and n = 10 (N = 1024 layers; green dotted). Note the logarithmic
scale and very large dynamics on the vertical axis. (b),(c) Same
as panel (a) but for the corresponding EMT (purple dashed) and
periodic configurations (magenta solid) at stage of growth n = 8 [i.e.,
cuts from Figs. 2(b) and 2(c), respectively]. Note the linear scale and
much smaller dynamics on the vertical axis.

Eqs. (13) may actually exhibit periodic orbits [43], this is not
the case for the parameter configuration in Fig. 4, in spite of
the seeming periodicity (with n) of ThM transmittance. For
instance, no revivals are observed for values 13 � n � 20 (not
shown).

The above mechanism constitutes a first example of how
negligibly weak nonlocality can be enhanced by boundary
effects so as to yield strong departures of the optical response
from the EMT prediction. We stress that, although these ef-
fects are still manifested in the near-critical-incidence regime
θi ≈ θ̄c, they differ fundamentally from those observed in
the periodic-multilayer case [20–26] and can be genuinely
attributed to the ThM aperiodic order.

2. Fractal gaps and quasilocalized states

Away from the near-critical incidence above, there are
other distinctive features that emerge in the ThM optical
response. For a more quantitative assessment of the visual im-
pression from Figs. 2(a)–2(c), Fig. 5(a) shows three represen-
tative cuts at fixed incidence angle (θi = 35.35◦) and different
stages of growth. For increasing size of the multilayer, we
observe the formation of gaps with growing complexity that
resemble fractal-type structures. This is very different from
the behavior of the EMT and periodic reference responses [cf.
Fig. 5(b)], which are in good agreement and exhibit only small
oscillations around a near-unit transmittance.

Fractal gaps are actually a well-known hallmark of ThM-
based structures. Previous studies on photonic crystals [37,46]
have explained the underlying mechanism in terms of
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FIG. 6. Parameters as in Fig. 2. Field (magnitude) distributions
inside the ThM multilayer (normalized by the incident-field
amplitude E0) for representative quasilocalized states. (a)
d/λ = 0.077, θi = 35.35◦, n = 8 (N = 256). (b) d/λ =
0.062, θi = 35.35◦, n = 12 (N = 4096). (c) d/λ = 0.085, θi =
49.6◦, n = 12 (N = 4096).

distinctive interface correlation and have derived the condition
for a fractal gap to occur in terms of a minimal bilayer
electrical thickness √

εada + √
εbdb

λ
= 1

3
, (19)

which, for our assumed parameters, corresponds to d/λ =
0.206. Quite remarkably, we observe similar effects at deeply
subwavelength thicknesses d/λ ≈ 0.06, i.e., by a factor ∼3.5
time smaller than the value in Eq. (19). We also point out
that our propagation regime is fundamentally different from
that considered in Refs. [37,46], which assumes propagating
fields in both types of material layers. Instead, our assumption
in Eq. (14) implies that the field is propagating in the b-type
layers and evanescent in the a-type ones. As a consequence,
the phase accumulation is dominated by discrete jumps at the
interfaces, rather than the propagation across the layers [20].

Figure 6 illustrates an interesting feature that is typically
associated with fractal gaps in ThM optical structures, i.e., the
appearance (at the lower or upper gap edges) of states with
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FIG. 7. Parameters as in Fig. 6(b). (a)–(c) Comparisons between
the trace (blue circles), antitrace (green triangles), and transmittance
(red squares) evolutions pertaining to ThM, EMT, and periodic
configurations, respectively, as a function of the stage of growth n.
The corresponding number of layers is also shown on the top axis.
Continuous curves are guides to the eye only.

hyperexponential localization properties lying somewhere in
between the exponential decay of localized states and the
extended character of Bloch-like gap-edge states in periodic
structures [37,38,46]. More specifically, Figs. 6(a) and 6(b)
show two such states for the parameters as in Fig. 5, at two
representative stages of growth, whereas Fig. 6(c) illustrates
an example at a different incidence angle. Similar to what
was observed in the photonic-crystal regime [37,38,46], for
increasing stages of growth, these “quasilocalized” states tend
to exhibit cluster-periodic distributions with large magnitude
fluctuations and strong field enhancement, and can attain very
large quality factors, of potential interest for applications to
optical cavities.

To give an idea, the EMT prediction for the maximum
field enhancement inside the multilayer can be expressed as
(see Appendix B for details)

γ̄ ≡
max

0<z<D
|Ēy (z)|

E0
= kze

k̄z

=
√

εe cos θi√
ε̄‖ − εe sin2 θi

, (20)
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i.e., losses), n = 8 (i.e., N = 256 layers), and near-critical incidence
θi = 60.35◦. Absorbance as a function of the electrical thickness, for
δ = 10−4 (blue solid) and δ = 10−3 (red dashed). The inset shows the
normalized (magnitude) field distributions of the Fabry-Pérot states
corresponding to the peaks at d/λ = 0.046.

with k̄z = √
k2ε̄‖ − k2

x denoting the longitudinal wave number
in the effective medium. For the parameters as in Figs. 6(a)
and 6(b), the EMT prediction in Eq. (20) yields a very modest
(∼1.26) enhancement, in stark contrast with the actual values
observed (4.3 and 116, respectively).

It is also instructive to look at the trace and antitrace
maps. Figure 7 compares the evolutions of trace, antitrace,
and transmittance for the parameter configuration pertaining
to the quasilocalized state in Fig. 6(b). As can be observed,
the EMT and periodic values maintain a generally good
agreement, with only moderate oscillations in the trace and
antitrace and near-unit transmittance, whereas the ThM ones
exhibit markedly different behaviors for intermediate stages
of growth 7 � n � 10. Qualitatively similar results can be
observed in connection with other quasilocalized states.

The above results are a clear manifestation of a funda-
mentally different type of boundary effects, which can occur
far away from the critical incidence, but are still genuinely
induced by the ThM aperiodic order. In what follows, with a
view towards possible applications to sensing, absorbers, and
lasing, we study the effects of small losses and gain.

C. Small losses or gain

We add a small imaginary part to the permittivity of the
b-type material, i.e., by assuming εb = 5 + iδ, with |δ| �
1; for the assumed time-harmonic convention, positive and
negative values of δ correspond to optical losses and gain,
respectively. Figure 8 shows some representative absorbance
responses for the stage of growth n = 8 (N = 256 layers),
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FIG. 9. Parameters as in Fig. 2, but with εb = 5 + i10−4 (losses).
Absorbance [from Eq. (18)] as a function of the ab-type bilayer
electrical thickness, for (a) n = 9 (N = 512 layers), θi = 50.35◦,
(b) n = 10 (N = 1024 layers), θi = 48.85◦, (c) n = 12 (N = 4096
layers), θi = 40.1◦.

near-critical incidence (θi = 60.35◦), and δ = 10−4 and 10−3

(i.e., losses). As can be observed, there are a series of resonant
peaks, even for electrical thicknesses as small as d/λ =
0.046, with significant values of absorbance (up to nearly
0.5). By contrast, the absorption in the EMT and periodic
counterparts is negligible (on the order of δ), since the field
is evanescent inside the structure and gets almost completely
reflected (R̄n ∼ 0.999). Also shown in the inset are the field
distributions pertaining to the resonant peaks at d/λ = 0.046,
which display the Fabry-Pérot-type structure already observed
in the lossless case.

Figure 9 shows some representative results in the vicin-
ity of fractal gaps, for δ = 10−4 and different stages of
growth. Once again, several sharp peaks are observed, with
absorbance as high as 0.8. For three representative peaks,
the comparison with the EMT and periodic counterparts is
illustrated in Fig. 10 in terms of bar diagrams. In all three
examples, the EMT and periodic look comparable and sub-
stantially different from the ThM counterparts. For instance,
the absorbance in the ThM case is significantly higher (by a
factor 20–50), and also the transmittance is quite different.
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FIG. 10. (a)–(c) Bar diagrams illustrating the absorbance, trans-
mittance, and reflectance at three representative peaks (d/λ =
0.090, 0.086, 0.074, respectively) in the corresponding panels of
Fig. 9.

As can be observed in Fig. 11, the field distributions at
the resonant peaks exhibit the quasilocalized characteristics
typical of fractal-gap-edge states (cf. Fig. 6). We highlight that
the results above pertain to specific parameter values, and in
general the absorbances exhibited by the three configurations
(ThM, periodic, EMT) are comparable.

Next, we consider a scenario featuring small optical gain,
namely, δ = −10−3. Figure 12 shows some representative
transmittance responses in the vicinity of fractal gaps, at
different stages of growth, characterized by the presence of
sharp peaks with very strong amplitudes (up to values of
∼104), which are indicative of lasing conditions. Also in
these cases, as shown in Fig. 13, the corresponding field
distributions resemble quasilocalized states. Similar behaviors
are also observed for the reflectance responses. Conversely,
transmittance and reflectance for the EMT and periodic coun-
terparts remain near-unit and very small, respectively. Qualita-
tively similar results (not shown for brevity) are also observed
in connection with Fabry-Pérot-type resonant modes excited
nearby the critical incidence.

To better illustrate the difference between the observed
response and the EMT prediction, we consider the lasing
condition derived by enforcing a pole in the transmission (or
reflection) coefficient for the EMT case (see Appendix B for
details)

tan(k̄zD) = 2ik̄zkze

k̄2
z + k2

ze

, (21)

which can admit real-frequency solutions in the presence of
gain. To give an idea, for the parameters corresponding to
the resonant peak in Fig. 12(b) (n = 10, θi = 31.6◦, d/λ =
0.061), the EMT prediction in Eq. (21) yields an overall
thickness D ∼ 2000λ, i.e., more than 60 times thicker than
the ThM case. Alternatively, for the same overall thickness
D = 31.23λ as for the ThM case, the EMT prediction yields
a gain coefficient δ = −0.066, i.e., over 60 times larger.
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FIG. 11. (a)–(c) Normalized (magnitude) field distributions of
the quasilocalized states corresponding to the absorbance peaks in
Fig. 10.

The above results indicate that both types of aperiodic-
order-induced nonlocality-enhancement mechanisms exhibit
a remarkably high sensitivity to very small loss-gain values,
which may find potential applications to optical sensing,
absorbers, and low-threshold lasers.

D. Some remarks

A few remarks are in order on the assumptions and re-
strictions of our study. First, one may argue that the ma-
terial parameters considered in the multilayers (especially
εa = 1) are not realistic for an experimental validation. As
previously mentioned, the main motivation behind this pa-
rameter choice was to facilitate direct comparison with the
results in previous studies on periodic and random scenar-
ios [20,24,26,27]. As also demonstrated by the experimental
studies in Refs. [21,28], the phenomena of interest remain
visible when realistic materials (e.g., silica and titania) are
instead utilized. However, the lower the material contrast, the
more difficult the observation. For the periodic multilayer
case, in Ref. [26], we were able to derive analytically the
relationship between the material contrast and the critical size

195128-9



COPPOLARO, CASTALDI, AND GALDI PHYSICAL REVIEW B 98, 195128 (2018)
Tr

an
sm

itt
an

ce

0.01

0.1

1

10

100 (a)

Tr
an

sm
itt

an
ce

0.01

0.1

1

10

100 (b)

Tr
an

sm
itt

an
ce

0.01

0.1

1

10

100

1000

104

d/λ
0.04 0.05 0.06 0.07 0.08 0.09 0.1

(c)

FIG. 12. Parameters as in Fig. 2, but with εb = 5 − i10−3 (gain).
Transmittance as a function of the ab-type bilayer electrical thick-
ness for (a) n = 9 (N = 512 layers), θi = 46.10◦, (b) n = 10 (N =
1024 layers), θi = 31.60◦, (c) n = 12 (N = 4096 layers), θi = 56.1◦.

of the multilayer for which the breakdown phenomena could
be observed. For the ThM case of interest here, an analytic
study is not possible, but similar qualitative conclusions are
expected to hold. Within this framework, another potentially
critical aspect is the exponential increase of the multilayer
size with the stage of growth n. In the examples shown,
for the assumed parameters, the buildup effects leading to
enhanced nonlocality turn out to occur for stages of growth
n � 8. While particularly high values of n would clearly lead
to technologically unfeasible structures, we remark that stages
of growth around the threshold values n = 8 and n = 9 (i.e.,
hundreds of layers) are within reach for current nanofabri-
cation technologies, as demonstrated in recent experimental
studies [28].

Moreover, in connection with our assumption of TE po-
larization, once again to facilitate direct comparison with the
results from previous related studies [20,24,26,27], we note
that enhanced nonlocality generally occurs for the transverse-
magnetic polarization as well [20], although its visibility may
be less pronounced [21].

Finally, we remark that, unlike the periodic-multilayer
case [26], it was not possible here to identify some closed-
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FIG. 13. (a)–(c) Normalized (magnitude) field distributions of
the quasilocalized states associated with representative transmittance
peaks (d/λ = 0.079, 0.061, 0.085, respectively) in the correspond-
ing panels of Fig. 12.

form parameters relating the optical response with the ThM
aperiodic geometry, due to the more complex character of the
arising trace and antitrace maps (not solvable analytically).
Nevertheless, our parametric studies elucidate some represen-
tative mechanisms and effects that are distinctive of the ThM
geometry.

V. CONCLUSIONS AND PERSPECTIVES

To sum up, we have shown that, in aperiodically ordered,
fully dielectric multilayered metamaterials based on the ThM
geometry, the inherently weak nonlocality exhibited in the
deeply subwavelength regime can be substantially enhanced
via the buildup of boundary effects that are fundamentally
different from those observed in the periodic case [20–26].
These effects are manifested as strong departures of the
optical response (reflectance and transmittance, as well as
absorbance or lasing in the presence of small loss or gain,
respectively) from the EMT prediction and periodic coun-
terpart, with distinctive footprints such as fractal gaps and
quasilocalized states.
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We stress, once again, that the comparison with the peri-
odic case is particularly meaningful, since the two geometries
(ThM and periodic) contain exactly the same amounts of
each of the material constituents, the only difference being
the spatial order. This provides further evidence that, even at
deeply subwavelength scales, spatial order may strongly affect
the optical response.

Our outcomes constitute a first step toward extending the
previous studies on periodic [20–26] and randomly disor-
dered [27,28] geometries to the intermediate realm of “orderly
disorder” and, albeit focused on a specific geometry, provide
some generally applicable tools. As shown in Refs. [47,48],
the trace and antitrace map formalism can in principle be
applied to generic aperiodic sequences based on two-symbol
substitution rules. Therefore, among the possible follow-up
studies, it looks very intriguing to explore different aperi-
odically ordered geometries. For instance, it would be very
interesting to explore to what extent some distinctive proper-
ties of the optical response of Fibonacci-type photonic qua-
sicrystals (e.g., self-similarity in the spectrum, critical states
of multifractal nature, etc.) [49] are also observable in the
deeply subwavelength regime. Also of great interest are more
application-oriented studies on the promising potentials that
have emerged in connection with optical sensors, absorbers,
and lasers. Within this framework, we are currently pursuing
a systematic study of the effects of enhanced nonlocality on
the (bulk and surface) optical sensitivity response of ThM
multilayers, which will be the subject of a forthcoming paper.

APPENDIX A: DETAILS ON EQS. (11) AND (17)

In view of Eq. (2) and the definitions of the transmission
and reflection coefficients in Eqs. (10) and (17), respectively,
the total electric fields at the input (z = 0) and output (z = D)
interfaces can be written as

Ey (x, z = 0) = E0(1 + ρn) exp(ikxx), (A1a)

Ey (x, z = D) = E0τn exp(ikxx). (A1b)

By calculating the corresponding tangential magnetic
fields from the relevant Maxwell’s equation, the matrix equa-
tion in Eq. (9a) can be rewritten as[

1 + ρn

−i(1 − ρn)

]
= M(n) ·

[
τn

−iτn

]
, (A2)

from which Eqs. (11) and (17) readily follow by solving
the linear system of equations and exploiting the unimodular
character of the matrix.

APPENDIX B: DETAILS ON EQS. (20) AND (21)

To calculate the EMT predictions, we consider a homo-
geneous slab of thickness D and relative permittivity ε̄‖.
For given incidence conditions, the electric field inside the
structure has the form of a standing wave

Ēy (z) = Ē+ exp[ik̄z(z − D)]{1 + �̄ exp[−2ik̄z(z − D)]},
(B1)

where an irrelevant exp (ikxx) term is omitted, Ē+ is a com-
plex amplitude to be determined,

�̄ = Ze − Z̄

Ze + Z̄
(B2)

is the partial reflection coefficient between the exterior and
effective media, and

Z̄ = ωμ0

k̄z

(B3)

is the TE wave impedance of the effective medium. In the
exterior region z < 0, the total field is obtained by summing
the incident [see Eq. (2)] and reflected contributions, viz.,

Ēy (z) = E0[1 + ρ̄ exp(−2ikzez)], (B4)

where ρ̄ can be obtained from Eq. (17) by assuming a single
layer of thickness D and relative permittivity ε̄‖. By enforcing
the continuity of the electric field at the interface z = 0, after
some algebra, we obtain

Ē+ = 2E0Z̄(Ze + Z̄) exp(−2ik̄zD)

exp(−2ik̄zD)(Ze + Z̄)2 − (Ze − Z̄)2
. (B5)

By recalling that, in view of the assumed parameters, εe > ε̄‖
and hence Ze < Z̄, we observe from Eq. (B2) that �̄ < 0.
Therefore, by assuming the slab thicker than half a wave-
length, it follows from Eq. (B1) that

γ̄ = |Ē+|(1 − �̄)

E0
= 4Z̄2

(Ze + Z̄)2 − (Ze − Z̄)2
= Z̄

Ze

= kze

k̄z

,

(B6)

which corresponds to the result in Eq. (20). Likewise, from
Eq. (11), the EMT prediction of the transmission coefficient
is

τ̄ = 1

cos(k̄zD) − i
(

k̄z

kze
+ kze

k̄z

)
sin(k̄zD)

, (B7)

from which the lasing condition in Eq. (21) directly follows
by zeroing the denominator.
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