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Repulsive forces between neutral surfaces induced by adatoms
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Charge neutral objects usually attract each other in the nanoscale and it is actually not favorable for nanoscale
manipulation as attractive forces tend to make objects stick together. It would be highly desirable if the sign of
the force between charge neutral objects could be controlled by surface chemical modification. In this work, we
show that the static electric field generated by a submonolayer of chemisorbed adatoms can be used to control the
sign of the forces between neutral surfaces. The local density functional method combined with an electrostatic
stress tensor approach is used to study the forces between tungsten surfaces with stripes of noble metal atoms
adsorbed on top. When the metal substrate is partially covered by the adatom stripes, the electric field generated
by the local variation of the work function can extend into the vacuum, which in turn can attract or repel other
surfaces in close vicinity. Chemisorption may hence offer a good strategy to manipulate nanoscale objects.
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I. INTRODUCTION

When two objects are so close to each other that their
valence electrons start to overlap, their mutual interaction will
be dominated by forces due to chemical bonding. When they
are further separated, charge neutral objects can still attract
each other through quantum fluctuation forces such as van
der Waals and Casimir forces [1–3]. The fact that van der
Waals forces are always attractive may not be optimal for
nanotechnology, as the attraction may make nanomanipulators
or molecular assemblers tend to stick to the nano-objects that
they want to manipulate. It is highly desirable to have surface
modification strategies that can modify the forces between
neutral objects so that they are not always attractive. While
Casimir forces are generally attractive, it has been demon-
strated recently that the Casimir forces between two surfaces
can be made repulsive in some special configurations, such
as by introducing liquids [4,5], creating artificial materials
with unusual effective material dispersions [6–11], or via cor-
rugation [12,13]. More examples of nonattractive dispersive
forces due to materials at the nanoscale or nontrivial boundary
conditions can be found in comprehensive reviews [14,15]. It
has also been shown that the forces between neutral corru-
gated plasmonic surfaces can be either attractive or repulsive
[16], and this type of corrugation-induced force is a geometric
effect related to the ground-state electron distribution, and has
nothing to the fluctuation effects that lead to Casimir or van
der Waals forces.

In this work, we show that change of local work function
induced by a monolayer of adsorbates can also be used to
control the sign of the forces between two surfaces. We will
use the local density functional method [17–21] to study the
forces between tungsten surfaces with stripes of noble metal
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atoms adsorbed on top. The adsorbate atoms modify the local
work function of the substrate and when the metal substrate
is not completely covered, the electric field generated by the
local variation of work function can extend into the vacuum,
which in turn induces forces on surfaces in close vicinity. The
force can be attractive or repulsive and the fact that its sign can
be controlled offers a good strategy to manipulate nanoscale
objects. The paper is organized as follows. In Sec. II, we
show the forces between surfaces can be attractive or repul-
sive, which depends on the details of the adsorbate covering
the substrate. In Sec. III, we demonstrate the robustness of
such repulsive force, including the geometric dependence, the
relaxation effect, and different types of adatoms. Conclusions
are drawn in Sec. IV.

II. REPULSIVE FORCES INDUCED BY ADSORBATE

We will use tungsten (W) as our prototypical substrate
and gold (Au) as the absorbate. Let us start from W(001)
surfaces with stripes of atoms adsorbed on top, as shown in
Figs. 1(a)–1(d), where the black open circles represent W
atoms and the red solid circles represent absorbate atoms. A
seven-layer slab in supercell configuration is used to model
the W(001) surface. The surface is partially covered by stripes
of Au atoms adsorbed on the hollow sites, forming locally
a (1 × 1) Au/W(001) configuration. Previous results show
that the chemisorption can induce significant changes in the
work function, with the sign and magnitude depending on
the adatom [22]. The Au adsorbates aggregate into stripes,
and in the configuration shown in Fig. 1, the stripes cover
half of the W(001) surface area. We use the symbols NW

and NAu to denote, respectively, the number of W atoms in
the uppermost W layer and the number of Au adatoms in the
supercell. The Au stripes on the top and the bottom surfaces
are arranged so that their registry with the W substrate can be
shifted by an amount denoted by Nshift , which is the number
of W lattice constants that the Au stripes on the top are shifted
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FIG. 1. Schematic picture of Au/W slab structure. The solid red circles denote Au atoms and black open circles represent W atoms. The
black dashed lines mark the primitive supercell boundaries in the calculation. The distance between these slabs is �d . The numbers of surface
W atoms and Au adatoms along the x direction are represented by NW = 12 and NAu = 6, respectively. The Nshift = 0, 2, 4, and 6 cases
are shown in panels (a–d), respectively. (e) The electrostatic forces per unit area calculated by the surface integral of the electrostatic stress
tensor for Au/W slab structure with NW = 12, NAu = 6, and �d = 13 Å as a function of Nshift are shown by open black circles. The negative
(positive) number means repulsive (attractive) forces between these slabs. The dotted line is a guide to the eye.

relative to the stripes at the bottom surface. Figures 1 and 2
consider the situation when NW = 12 and NAu = 6. When
Nshift = 0, the Au stripes on the bottom surface are the mirror
images of those on the top with respect to the mirror plane at
the middle of the W slab. In the repeated-slab configuration, as
shown in Fig. 1(a), the Au adatoms on top of one slab will see
the Au atoms on the bottom of an adjacent slab directly above
it, separated by the vacuum in the supercell. When Nshift = 6,
the lateral shift is half a unit cell along the x direction [see
Fig. 1(d)]. In this case, the Au adatoms on the top of one
slab will face bare W substrate across the vacuum in the
repeated-slab configuration. For intermediate values of Nshift ,
the Au atoms on top of one slab will face partly Au atoms and
partly uncovered W surface atoms on the bottom of the slab
above it across the vacuum.

We then calculate the forces between the slabs. For sim-
plicity, we keep the W atoms in their ideal positions. The
experimental lattice constant of W (a = 3.19 Å) is used in
the calculation. We put the Au atoms in the hollow site,
which is the most favorable site for Au adsorption. The
Au-W distance was determined by a (1 × 1) surface unit
cell calculation. We will show (qualitatively similar) results
corresponding to fully relaxed atomic coordinates later, but it
is much easier to explain the physics by keeping the W and
Au top layer “flat” for the moment. We use standard local
density functional procedures to find the electron density that
minimizes the total energy. In the present calculations, the
frozen-core full-potential projector augmented-wave (PAW)

method was used [17], as implemented in the Vienna ab initio
simulation package (VASP) [18–20]. We adopted the Perdew-
Burke-Ernzerhof generalized gradient approximation [21] for
the exchange and correlation energy. The k-point grid is
chosen with spacings that are smaller than 0.023 (2π/Å).
The ground-state electron density gives the corresponding
electrostatic potential which is shown in Fig. 2 for the vacuum
region of interest for various values of Nshift . The zero of
the electrostatic potential is chosen to be the mean value of
the electrostatic potential inside the plot region. The gradient
of the electrostatic potential in the vacuum region gives the
electric field components, as shown by the vector fields in the
right panel of Fig. 2. Using the electric fields in the vacuum
region, the electrostatic forces can be calculated by doing
the surface integral of the electrostatic stress tensor T at the
middle of the vacuum where the electronic charge is zero:

Fα =
∫ ∑

β=x,y,z

Tαβnβ dS, (1)

where α, β denotes the components of certain vectors and
tensors, n is the outward normal to the surface, dS is the
infinitesimal area of the surface, the electrostatic stress tensor
is

Tαβ = ε0

[
EαEβ − 1

2
(E · E)δαβ

]
, (2)
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FIG. 2. The left panels show the electrostatic potential in units of eV (color map) and the corresponding electric field (vector field) for
Nshift = 0, 1, 2, 3, 4, 5, and 6 are shown in the left panel of (a–g), respectively. The zero of the z axis is chosen to be at the middle of the vacuum.
The units in the x axis and z axis are in angstroms. The right panels show the direction and the relative magnitude of the electrostatic force
density calculated at the center of the vacuum gap (z = 0). The system parameters are NW = 12, NAu = 6, and �d = 13 Å. If the force density
vector points up (down), the force between the slabs is attractive (repulsive). Panel (a) shows that for the symmetric Nshift = 0 configuration, the
repulsive force is mainly localized at the edge of the Au stripe. Panel (g) shows that for the asymmetric Nshift = 6 configuration, the attractive
force is strongest in the middle of the stripe.

and E is the electrostatic fields generated by all the charges.
As long as the vacuum is thick enough, the electronic density
at the middle of the vacuum is essentially zero. In that case, the
force calculated using the electrostatic tensor is by definition
an electrostatic force, with no chemical (bonding) or quantum
fluctuation (such as van der Waals or Casimir) effects. In this
case, the vacuum thickness of 13 Å is already thick enough
to ensure that the ground-state electron density is negligibly
small at the integration surface. We purposely change the
electrostatic tensor integration surface 1 Å above and below
the middle of the vacuum, and the forces are found to be same.
More details about the electrostatic stress tensor approach are
given in Appendix A, where we show that doing a boundary
integral for the electrostatic stress tensor to get the total
force is equivalent to doing a volume integration of charge
and field. In principle, the electrostatic forces can also be
extracted directly using a finite difference of the total energies
as the vacuum thickness is varied. As shown in Appendix B,
we show that the electrostatic stress tensor approach is a
more elegant and numerically stable approach to obtain the
electrostatic force due to the field in vacuum.

Figure 1(e) shows the electrostatic forces per unit area that
act between the slabs. A positive (negative) number indicates
attraction (repulsion). When we arrange the patterned W
surfaces so that the Au stripes on one surface directly face the
Au stripes of the other surface (Nshift = 0), the two surfaces
repel each other. When the Au stripes of the surface are in a
staggered formation (Nshift = 6), the force becomes attractive.
It is quite natural that there must be some intermediate value
of Nshift such that the forces becomes zero. The sign of the

forces can be explained when we look at the field distribution,
which is shown in Fig. 2 for various values of Nshift . We see
that when Nshift = 6, the field lines point from the Au adatoms
of one surface to the bare W surface atoms of the other
surface, as shown by vector fields in the left panel of Fig. 2(g).
The “vertical” field lines that connect the two surfaces cause
attraction between them. When Nshift = 0, the field lines point
from the adatoms of one surface to the bare W surface on the
same surface, as shown by vector fields in the left panel of
Fig. 2(a). The “lateral” field lines induce repulsion between
surfaces.

To further understand the sign of the forces, we show the
force distributions in the right panels of Fig. 2, where we plot
the force density defined by

fα =
∑

β=x,y,z

Tαβnβay. (3)

Here, ay is the length of the unit cell along the y direction.
The total force between the slabs is the line integrals of the
force density along the x direction. We use the sign convention
that if fz > 0(fz < 0), it is an attraction (repulsion) between
the surfaces. So, if the arrows point up (fz > 0) in the right
panels, the two surfaces are attracting each other. We note
that only the total force, as defined in Eq. (1), is an exper-
imentally measured quantity but the force density can offer
us an intuitive understanding of the force distribution. Let us
first examine the staggered configuration (Nshift = 6), shown
in the lowest panels [Fig. 2(g)]. The left panel shows that field
lines pointing up/down connecting the Au and W atoms on
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two surfaces causing an attraction are strongest in the interior
of the stripe. However, the fields near the edge of the strip
are not pointing up/down, but are bending over to connect the
edge Au atoms with the exposed substrate W atoms near the
edge. These field lines do not contribute to attraction. This is
consistent with the force density shown on the right panel of
Fig. 2(g). We see that the attractive force density is essentially
zero near the edge, but reaches a maximum near the middle
of the stripe. For the symmetric configuration (Nshift = 0), the
force density pattern is strong only at boundary of the strip
[the right panel in Fig. 2(a)], and it is a repulsive force as the
arrows are pointing down. This is consistent with the electric
field pattern shown in the left panel. For intermediate values
of Nshift , the force density vectors have more complex twisting
patterns [right panels from Fig. 2(b) to 2(f)], and they sum up
to a very small number.

It is quite clear from the results shown in Fig. 2 that
the attractive/repulsive forces originate from the electric field
coming out of the partially exposed W surface. As the elec-
tron affinity of the adsorbed atom is different from that of
the substrate atoms, some charge transfer between adsor-
bate/substrate will be inevitable. If the adsorbates completely
cover the substrate, the adsorption induces a uniform change
of the work function across the surface, for instance, an
increase of 0.7 eV in a (1 × 1) unit cell if we use Au as
adsorbate [22]. In that case, the electric field in the vacuum a
few angstroms from the surface will be essentially zero and
there is no electrostatic force that can be induced between
surfaces. If the adsorbate forms patches or stripes so that the
coverage is incomplete, there must be some electric field in the
vacuum close to the surface. From a macroscopic viewpoint,
the coverage of adsorbed species changes the work function
locally and a local variation of work function causes electric
fields spilling into the vacuum region.

III. ROBUSTNESS OF REPULSIVE FORCES

We have already shown that the sign of electrostatic forces
can be controlled by relative positions of adatoms, which is
a useful way to achieve repulsion between nanoscale neutral
surfaces. Other forces at work in the nanoscale, such as van
der Waals and Casimir forces, tend to be attractive in nature,
and hence achieving repulsion using local variation of work
function is more interesting and more useful than achieving
attraction. In view of this reason, we focus on the robustness
of the repulsive force in the following section.

As the surface covered with stripes of adsorbates is overall
neutral, the patch fields must decay into the vacuum and
hence the electrostatic force due to those fields should be a
short-ranged force. In Fig. 3, we examine the range of this
force by considering the force as a function of the vacuum
thickness �d. The coverage of the stripes is kept at half, i.e.,
NW = 2NAu. We show results of the symmetric (Nshift = 0)
configuration which gives the strongest repulsion for a few
unit cell sizes, corresponding to different widths of the Au
stripes. In Fig. 3(a), the W atomic distances are kept at ideal
bulk values, and in Fig. 3(b) the atomic coordinates are fully
relaxed. The numerical results can be summarized as follows.
Firstly, independent of the width of the Au stripe, the symmet-
ric configuration (Nshift = 0) gives rise to repulsion, and the

FIG. 3. The electrostatic repulsive forces per unit area for the
NAu = 3, NAu = 5, and NAu = 7 slab structures as a function of �d

are shown by black, red, and green lines, respectively, for Nshift = 0.
We fix NW = 2NAu (i.e., half the W surface is covered by Au). The
atomic structure in (a) is chosen at the ideal position and the atomic
structures are fully relaxed in (b). The line between the points is a
guide to the eye.

force per unit cell is generally stronger when the adsorbate
stripe is wider. The magnitude of the force drops off quite
quickly as a function of distance, in agreement with the fact
that the electric field must decay for an overall neutral surface.
If we take the sea-level atmospheric pressure (∼100 kPa) as
a reference, the force per unit area is appreciable at distances
smaller than 20 Å. In Fig. 3(b), we show results corresponding
to fully relaxed atomic coordinates. The overall results are
qualitatively similar to that shown in Fig. 3(a) for unrelaxed
coordinates. After relaxation, the Au adatoms remain in the
hollow sites but there is some buckling of the top layer. We
found that the variation of Au-W atomic distances within the
stripe tend to reduce the field strength in the vacuum, with
the consequences that the attractive/repulsive force becomes
smaller.

We next examine in greater detail the dependence of the
force on the width of the stripe. In Fig. 4(a), the filled and
open black circles represent results for Au/W of unrelaxed
and relaxed atomic coordinates, respectively. We maintain

FIG. 4. (a) The electrostatic repulsive forces per unit area for
Au/W and Ag/W slab structures as a function of NAu(Ag) for the fixed
ratio NW = 2NAu(Ag) are shown by black and red dots, respectively.
(b) The electrostatic forces for the Au/W slab structure for Nw =
12 as a function of NAu are shown by black dots. The filled and
open circles in both figures denote unrelaxed and relaxed results,
respectively. The used parameters are �d = 13 Å and Nshift = 0. The
line between the points is a guide to the eye.
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FIG. 5. Plot of the electrostatic potential in units of eV (color map) and the corresponding electric field (vector field) for NAu = 2, 4, 6,
and 8 are shown in the left panel of (a–d), respectively. The zero of the z axis is chosen to be at the middle of the vacuum. The units in the x

axis and z axis are in angstroms. The right panels show the direction and the relative magnitude of the electrostatic force density calculated at
the center of the vacuum region. The system parameters are NW = 12, Nshift = 0, and �d = 13 Å.

half coverage so that NW = 2NAu. In this case, the force is
repulsive, but the force per unit cell does not change monoton-
ically. It reaches a maximum and then decreases as the stripe
grows wider. We can understand the trend by examining the
electric field and force field patterns, shown in Fig. 2(a). In
the symmetric configuration (Nshift = 0), reflection symmetry
dictates that the electric field at the middle of the vacuum
should be zero for a (1 × 1) configuration. So, if the stripe
is wide enough, surface atoms near the center of the stripe
cannot contribute to the force between different surfaces. Only
the edge can contribute. This shows up quite clearly in the
right panel of Fig. 2(a), which indicates that the force density
is appreciable only near the edge as discussed previously.
When the stripe is too narrow, the edge is not that well defined,
so the force is weak. When the stripe grows wider and wider,
the ratio of the number of edge atoms to the interior atoms
decreases, and the force per unit area should decrease. The
force hence reaches a maximum at some values of the stripe
width in which the edge becomes well defined while the
number of edge atoms is not small compared with the num-
ber of Au adatoms in the interior of the stripe. The results
corresponding to fully relaxed atomic coordinates show that
the repulsive force becomes smaller if the surface layers are
allowed to buckle, which tends to reduce the field in the
vacuum region. The repulsive force per unit area also reaches
a maximum for some intermediate value of the stripe width,
qualitatively similar to the results obtained with unrelaxed
atomic positions.

In Fig. 4(a), we also present the corresponding results with
Ag replacing Au as the adsorbate. The red solid and open
circles represent, respectively, the forces calculated using
unrelaxed and fully relaxed atomic coordinates. The results
are very similar except that the forces are smaller. This can
be explained by the fact that a monolayer of Ag induces a
much smaller change of work function on the W substrate
[an increase of only 0.05 eV in a (1 × 1) unit cell if we
use Ag as adsorbate] [22]. This highlights the fact that the
physics behind the observed effect is rather generic, and a
larger adsorbate-induced change in local work function will
induce a stronger effect.

We now consider the effect of the adsorbate coverage.
In Fig. 4(b), we show results for repulsive forces between

surfaces in the symmetric configuration (Nshift = 0) for var-
ious widths of the Au stripes, with the number of surface W
atoms fixed at NW = 12. The width of the stripe, and hence
the coverage, depends on the number of Au atoms adsorbed.
The NAu = 0 configuration corresponds to a clean W surface
and NAu = 12 means complete coverage by Au [i.e., (1 × 1)
Au/W(100) surface]. For these two extreme cases, the force
should be zero, and indeed the forces are found numerically
to be essentially zero. The force must reach a maximum at
some intermediate values of the stripe width and indeed the
repulsive force is found to be strongest when the stripe covers
approximately half of the surface. This is also because the
repulsive force mainly occurs at the edge between Au covered
surfaces and clean surfaces. Unrelaxed (solid circles) and fully
relaxed (open circles) atomic coordinates give qualitatively
similar results. The surface relaxation tends to reduce the
repulsion but the qualitative behavior is similar. The line
joining the open circles corresponding to relaxed coordinates
is not as smooth as that joining the solid circles as the surface
displacements for intermediate values of coverage are rather
complex.

Figure 5 shows the potential and field distribution (left
panels) and the force density distribution (right panels) for
NAu = 2, 4, 6, and 8 for the configurations corresponding to
data points shown as solid black dots in the Fig. 4(a). We see
that the force density is strongest near the edge and the force
field tends to be stronger when the edges are far away from
each other.

IV. DISCUSSION AND CONCLUSION

In this work, we are calculating ground-state forces (fluc-
tuating forces are consequences of second-order perturbation,
and not a ground-state effect). It would be interesting to
compare the electrostatic force with van der Waals or Casmir
forces for these systems, but these would be challenging
calculations. We note that we cannot just use the Lifshitz-type
formula for Casimir forces to calculate the fluctuation force
for the systems we are working with. The Lifshiftz formula
assumes that the material is described by a dielectric function
and a typical Casmir force calculation will take the bulk di-
electric function documented in handbooks. These nanoscale
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surface systems with submonolayer chemical adatoms cannot
be described by a simple dielectric function, and we need to
consider complications arising from nonlocal effects due to
corrugation and electron spill-out effect that cannot be ignored
in the nanoscale. The Lifshitz-type formula also requires a
geometric boundary, which is not well defined here because
the adatom stripes induce surface corrugation and there is
no well-defined way to draw a geometric boundary between
materials [atoms in local density approximation (LDA) cal-
culations] and vacuum (which contains an electronic charge
close to the surface). A fair comparison would be a van der
Waals force calculation at the DFT level, which will be very
computationally challenging.

In short, we have presented a unique kind of force work-
ing at the nanoscale between surfaces partially covered by
adatoms. Such forces originate from the modulation of local
work functions caused by the adsorbate, leading to electric
fields leaking into the vacuum. The force is strong if the
adatoms can induce a large change in work function. The
forces are obtained numerically using an electrostatic stress
tensor with the electric fields determined using the local
density functional approach. An interesting aspect is that
the force between patterned surfaces can be repulsive in the
range of 10–20 Å. Such forces may offer a good strategy to
manipulate nanoscale objects if the surface can be modified
by chemisorption.
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APPENDIX A: USING ELECTROSTATIC STRESS
TENSOR TO CALCULATE FORCES

The Lagrangian for charges in the electrostatic field is

L = T − U = −ρφ, (A1)

where ρ is the charge distribution, and φ is the Coulombic
potential generated by all the charges (see, for example, the
color map in the left panel of Figs. 2 and 5). By using
the Euler-Lagrangian equation, we get the electrostatic force
density at point ri as

fi = ∂L

∂ri

= −ρ∂iφ = ρEi , (A2)

where i stands for the ith component of the vector. The total
electrostatic force of a particular object can be obtained by
integrating the force density,

F =
∫

�

drρE, (A3)

where � stands for the domain of the object under consider-
ation. In principle, the total electrostatic force of the Au-W
slab in the main text can be obtained by performing the
volume integral (A3) with the charge distribution obtained

using VASP or other methods that can determine the LDA
charge density, but such a procedure may be tedious and
numerically demanding because of the large charge density
background near the atoms. A more elegant way to handle
such a problem is to transform Eq. (A3) into a boundary
integral equation as

F =
∫

�

drρE = ε0

∫
�

dr(∇ · E)E

= ε0

∫
�

dr[∇ · (EE) − (E · ∇)E]

= ε0

∫
�

dr
[
∇ · (EE) − 1

2
∇(E · E)

]

= ε0

∫
�

dr∇ ·
[

EE − 1

2
(E · E)

←→
I

]

=
∫

∂�

T · n dS. (A4)

The last step uses Gauss’s law with the definition of an
electrostatic stress tensor as

T = ε0

[
EE − 1

2
(E · E)

←→
I

]
. (A5)

During the derivations in Eq. (A4), the following identities
have been used:

∇ · (EE) = (∇ · E)E + (E · ∇)E, (A6)

∇(E · E) = 2(E · ∇)E + 2E × (∇ × E), (A7)

∇ · (g
←→

I ) = (∇g) · ←→
I = ∇g. (A8)

Equation (A4) is the stress tensor method used in the main
text. The second term on the right-hand side of Eq. (A7) is
zero because we focus on electrostatics here. Comparing with
Eq. (A7), the major advantage of the stress tensor method
is that we only need to calculate the electrostatic field (the
gradient of Coulombic potential) in the boundary enclosing
the whole slab. We only need to do a boundary integral
instead of a volume integral. The stress tensor method used
in the main text offers a good numerical tool to study the
electrostatic force between different objects.

APPENDIX B: FORCES CALCULATED BY
THE GRADIENT OF ENERGY

The electrostatic force can also be calculated using the
total energy obtained from VASP. Here, we compare the force
between the slabs calculated using the gradient of the energy
from the local density function calculation and that calculated
using the electrostatic stress tensor approach. As an example,
we consider the case of NAu = 5 with NW = 2NAu. We use
3.2 Å as the lattice constant of W, and keep the W and Au
atoms in their ideal positions. From a LDA point of view, we
are actually calculating the electric field energy trapped in the
vacuum region, which is a very small part of the total energy
in the gigantic unit cell. Worse still, we need to compare the
energy of supercells with different sizes as the distance of the
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FIG. 6. The relative total energy (using �d = 20 Å as a reference), relative exchange-correlation energy, relative Coulomb energy, the
force calculated by the gradient of the Coulomb energy, and the force calculated by the surface integral of the electrostatic stress tensor as a
function of interslab distance for Nshift = 5 and Nshift = 0. The system parameters are NAu = 5 and NW = 2NAu.

slab needs to be changed in order to find the gradient of the
energy as a function of the interslab interface. The calculated
total energy is numerically sensitive to the number of grid
points in the fast Fourier transform (FFT) mesh along the
directions of the lattice vectors. The grid points along the z

direction have to have been chosen very carefully to prevent
the numerical noise due to the change of position of the grid
in the slab when we increase the distance between the slabs
(vacuum thickness of the unit cell). We take the number of
grid points along the z direction as two per 0.1 Å. The FFT
mesh (NGX, NGY, and NGZ in VASP) are factors of 2, 3,
and 5 and hence only a few values of interslab distances are
allowed. The grid points in the x-y plane were taken to be
320 × 32 and the k-point sampling was taken to be 4 × 16
× 4. The relative total energy, relative exchange-correlation
energy, relative Coulomb energy, and the force calculated by
the gradient of the NAu = 5 with NW = 2NAu are shown in
Fig. 6. We set the energies to be zero at �d = 20 Å and
use this as the reference. The choice of reference energy will
not affect the calculation of the forces, which is the gradient
of energy. For the case of Nshift = 5, with results marked
by black dots in Fig. 6(a), the total energy increases as the
interslab distance increases, which implies an attractive force
between the slabs. For Nshift = 0, with results marked by red
squares, the total energy decreases as the interslab distance
increases, indicating a repulsive force between the slabs. This
is consistent with the results obtained using the electrostatic
stress tensor approach shown in the main text. The exchange-
correlation energy for various values of interslab distance is
shown in Fig. 6(b). We note that the magnitude of the relative
exchange-correlation energy [Fig. 6(b)] is about 40 times
smaller than that of relative total energy. That is because the
charge density in the vacuum is very small. In Fig. 6(c), we
subtract the small exchange-correlation energy contribution
from the total energy difference to obtain the Coulomb energy
due to the electric field in the vacuum region. We note that
Fig. 6(c) is practically the same as Fig. 6(a). This means that

the change of energy as a function of interslab distance is
essentially due to the electrostatic energy stored in vacuum.
Taking a finite difference of the Coulomb energy shown in
Fig. 6(c), we obtain the electrostatic force and results are
shown as red and black solid symbols in Fig. 6(d) for Nshift =
5 and Nshift = 0, respectively. For completeness, we also show
the force calculated by taking the finite difference of the total
energy, as shown by the open symbols in Fig. 6(d), which are
essentially the same as the solid symbols. For comparison, the
forces calculated using the surface integral of the electrostatic
stress tensor are also shown in Fig. 6(d) as solid black and

FIG. 7. Picture of (a) side view and (b) top view of relaxed Au/W
slab structure with NW = 12, NAu = 6, Nshift = 0, and �d = 9 Å.
The solid red circles denote Au atoms and black solid gray circles
represent W atoms. The black lines mark the primitive supercell
boundaries in the calculation.
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TABLE I. The interatomic distance d (units of angstroms) of
the nearest-neighbor atoms of the relaxed Au/W slab structure with
NW = 12, NAu = 6, Nshift = 0, and �d = 9 Å. d (Au − Au) is the
distance between two Au atoms and d (Au − W) is the distance
between the Au atom and the W atom.

Atom d (Au − Au) d (Au − W)

Au1 (3.190 × 2, 3.239) (2.806 × 2, 2.848 × 2)
Au2 (3.155, 3.190 × 2, 3.239) (2.878 × 2, 2.879 × 2)
Au3 (3.155, 3.190 × 2, 3.260) (2.830 × 2, 2.871 × 2)
Au4 (3.155, 3.190 × 2, 3.260) (2.830 × 2, 2.871 × 2)
Au5 (3.155, 3.190 × 2, 3.239) (2.878 × 2, 2.879 × 2)
Au6 (3.190 × 2, 3.239) (2.806 × 2, 2.848 × 2)

red lines and the results are in agreement with the results
calculated by the gradient of LDA calculated energy. The
forces calculated by the electrostatic stress tensor approach
are smooth and are almost independent of the choice of k

points and FFT mesh. On the other hand, the force calculated
by the gradient of the total energy is numerically noisy and

very sensitive to the sampling of k points and FFT mesh.
The electrostatic stress tensor approach provides a practical
and efficient way to evaluate the electrostatic force due to the
electric field trapped in the vacuum region between the slabs.

APPENDIX C: ATOMIC STRUCTURE OF THE
RELAXED Au/W SLAB STRUCTURE

The relaxed Au/W slab structure with NW = 12, NAu = 6,
Nshift = 0, and �d = 9 Å is shown in Fig. 7. Since we use a
seven-layer slab in the supercell configuration, there are 84
W atoms and 12 Au atoms in the supercell. The Au atoms
adsorbed on the hollow sites of the W(001) surface as shown
in Fig. 7(b). Table I shows the interatomic distances between
the nearest-neighbor atoms of Au atoms. For the Au atoms
at the edge of the Au stripes, there are three nearest-neighbor
Au atoms and four nearest-neighbor W atoms. For the case of
the other Au atoms, there are four nearest-neighbor Au atoms
and four nearest-neighbor W atoms. The interatomic distance
between the Au atom and the W atom is less than 2.9 Å;
therefore, there is strong chemical bonding between the Au
atoms and the W surface atoms.
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