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Nonradiative decay and absorption rates of quantum emitters embedded in metallic systems:
Microscopic description and their determination from electronic transport
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We investigate nonradiative decay and absorption rates of two-level quantum emitters embedded in a metal
at low temperatures. We obtain the expressions for both nonradiative transition rates and identify a unique,
experimentally accessible way to obtain both nonradiative transition rates via electronic transport in the host
metallic system. Our findings not only provide a microscopic description of the nonradiative channels in metals,
but they also allow one to identify, determine, and differentiate them from other decay channels, which is crucial
to the understanding and controlling of the light-matter interactions at the nanoscale.
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I. INTRODUCTION

Controlling and understanding light-matter interactions at
the nanoscale is key for a broad range of applications, in-
cluding biosensing, imaging, and quantum information pro-
cessing. Among the several processes that govern light-matter
interactions, spontaneous emission from quantum emitters
(QE) (atoms, molecules, and quantum dots) is one of the most
important for applications in nanophotonics. This radiative
process strongly depends on the electromagnetic environment
surrounding the QE, as discovered in the pioneering work by
Purcell [1], and it has been extensively investigated in several
photonic systems, such as photonic cavities [2,3], planar
interfaces [4,5], photonic crystals [6,7], metamaterials [8–11],
and waveguides [12,13].

In addition to the radiative relaxation, when the QE is
placed near or inside metallic structures other decay path-
ways are available, see Fig. 1. For instance, the energy of
the QE can be dissipated in a plasmonic channel, as the
proximity of a QE to metal-dielectric interfaces facilitates
the excitation of surface plasmon polaritons, electromagnetic
excitations related to the charge density waves on the surface
of the metallic structure. This mechanism leads to a strong
confinement of the electromagnetic field at metal-dielectric
interfaces, which is the basis of many applications to en-
hance light-matter interactions, such as single optical plasmon
generation [14,15], single molecule detection with surface-
enhanced Raman scattering [16], and nanoantenna modified
spontaneous emission [17].

Nonradiative relaxation is another decay pathway, where
the QE energy can be dissipated via coupling to phonons,
resistive heating, or quenching by other quantum emitters.
Nonradiative relaxation is particularly important in metallic
systems, where emission quenching may occur due to un-
avoidable dissipation even in systems with high spontaneous
emission rate. In many cases of practical interest increasing
the ratio between radiative and nonradiative decay channels
is of great importance since the former actually determines
the efficiencies of photonic devices, such as LEDs [18],

and single-photon sources [19]. In other situations it is very
important to identify the nonradiative mechanism, distin-
guishing it from the plasmonic channel as it is the case of
applications involving the excitation of single plasmon po-
laritons and subsequent controlled coupling between metallic
nanowires [20,21].

In the present paper we identify a unique, experimentally
accessible way to identity the nonradiative contribution to the
total decay of two-level QEs inside metals. By means of a
microscopic, analytical approach, we compute the nonradia-
tive decay channel of a QE embedded in a metal, in which
dissipation is due to inelastic scattering of electrons close
to the Fermi surface, see Fig. 1 [22]. After computing the
transition rates for both nonradiative decay and absorption, we
demonstrate that such quantities can be directly determined by
the knowledge of experimentally accessible transport quan-
tities, such as the optical and ac conductivity, and even the
dc resistivity. This result not only provides a microscopic
description of nonradiative decay channels in metals, but also
allows one to identify and differentiate it to other decay
channels, which is crucial for the development of disruptive
optoelectronic plasmonic applications.

There are many different physical systems of current in-
terest in which QEs are embedded in metallic structures and
hence are directly relevant to the present work. Among them
one can mention: (i) Color centers in halides, oxides, and
perovskites [23]. In this case, radiation-induced, anionic va-
cancies inside the bulk crystal can trap electrons giving rise to
the so called F centers that absorb and emit light in the visible,
thus being excellent candidates for solid state single photon
sources. (ii) Heteroepitaxially grown, nanostructured bulk
materials, such as the organohalide perovskites [24], where
colloidal quantum dots (QDs) are grown inside a methy-
lammonium lead iodide matrix (MAPbI3). Here the unique
combination of the excellent electrical transport properties of
the MAPbI3 matrix and the high radiative efficiency of the
colloidal QDs holds promise for large-scale manufacturing of
infrared optoelectronic devices, such as multijunction solar
cells and blue light-emitting diodes. (iii) Defect dipoles in
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FIG. 1. Possible relaxation mechanisms for a quantum emitter
(QE) bearing an electric dipole moment (thin field lines around the
QE) embedded in a metal. Besides photoemission (left) and decay
into surface plasmon modes (top), electric-dipole transitions in the
QE can also be induced by the inelastic scattering between electronic
states (electrons and holes) close to the Fermi level (right).

perovskites with the ABO3 crystal structure, such as PbZrO3,
PbTiO3, and PbZrxTi1−xO3. These PZT systems exhibit im-
portant antiferroelectric, ferroelectric, piezoelectric, and, most
importantly, photoluminescent properties [25] that make them
useful in a wide range of applications such as, for example,
the fabrication of dynamic random-access memory (DRAM),
nonvolatile ferroelectrics random-access memory (NFRAM)
devices, light emitting devices for displays and communi-
cations, piezoelectric sensors actuators and transducers, and
MEMS devices. In addition to these well-known, established
examples in condensed matter systems, QEs embedded in
metallic systems are of increasing interest for plasmonic and
metamaterials applications [26–28].

This paper is organized as follows. In Sec. II we describe
the methodology to microscopically calculate the transition
rates for both nonradiative decay and absorption. In Sec. III
we discuss and analyze the behavior of the decay rates as a
function of the temperature, whereas Sec. IV is devoted to the
conclusions.

II. METHODOLOGY

The prototypical systems we consider are composed of a
two-level QE, e.g., color (or F , F−) centers, quantum dots,
and dipole defects, created via irradiation, implantation, or
during growth, inside bulk crystals with a robust metallic
phase such as oxides, perovskites with a MAPbI3 matrix, PZT
ferroelectric systems, and many others. In all such cases, an
excited QE will only decay in the visible through a number of
available nonradiative channels, the reason being the inability
of visible light with 1.8 � h̄ω � 3.1 eV to propagate as stand-
ing waves in ordinary metals, because the plasmon frequency

ω2
pl = e2

ε0

( n

m∗
)

(1)

is typically h̄ωpl ∼ 10 eV. Here, as usual, e is the electric
charge, ε0 is the dielectric constant in free space, n is the
electronic density in the metal, and m∗ is the effective mass of
the quasiparticles. In this regime, the dielectric function reads

εr (ω) = 1 − ω2
pl

ω2
, (2)

and metals are strongly absorbing for ω < ωpl, so that the
probability of decay in a radiative channel is very small.

Nevertheless, when a QE is embedded in a metal, relax-
ation can still occur via the inelastic scattering of electrons
close to the Fermi surface, as it is schematically illustrated
on the right side of Fig. 1. In order to adequately model the
coupling between the QE with the band electrons in a metal,
we shall consider the following interaction Hamiltonian:

H = h̄ω0|e〉〈e| +
∑

k

εkc
†
kck + Hint, (3)

where h̄ω0 is the energy splitting between the ground |g〉
and excited |e〉 states of the two-level system, εk is the band
dispersion relation for the electrons in the metal, c

†
k and ck are

creation and annihilation operators such that

ck|FS〉 =
√

f (εk )|hk〉,
c
†
k|FS〉 =

√
1 − f (εk )|pk〉, (4)

with |FS〉 representing the Fermi sea, |hk〉 representing the
hole state, |pk〉 representing the particle state, and with f (εk )
being the Fermi-Dirac occupation probability. For simplicity
we shall omit spin indices since we will be considering solely
spin preserving scattering processes. The interaction part of
the Hamiltonian reads

Hint =
∑

�,m=g,e

∑
k,k′

c
†
k′ckS(k′ − k)Ṽ �m

QD (k′ − k)|�〉〈m|, (5)

and describes the electrostatic interaction between the elec-
tronic charge density of the electron liquid in the metal and the
static impurity potential generated by the two-level system.
The corresponding electric-dipole matrix element reads

Ṽ �m
QD (k′ − k) = − i

V

e

ε0εTF(k − k′)
1

|k − k′| ξ̂k−k′ 〈�| �μ|m〉,
(6)

where V is the volume, �μ is the electric dipole moment of
the emitter, ξ̂k−k′ = (k − k′)/|k − k′| is the longitudinal unit
vector along the direction of k − k′,

εTF(k − k′) = 1 + k2
TF

|k − k′|2 (7)

is the Thomas-Fermi (TF) dielectric function, written in terms
of the TF screening wave vector k2

TF = 3e2n/2ε0εF , for a
Fermi energy εF (obtained from the standard definition of the
longitudinal dielectric function). We have also introduced the
impurity structure factor

S(k′ − k) =
∑
Ri

PRi
ei(k′−k)Ri , (8)

where PRi
gives the probability of having an emitter at Ri .

In what follows we shall be interested in calculating the
nonradiative decay and absorption rates and, for this reason,
we will restrict our calculations to the e → g and g → e

processes only. For future purposes it will also be interesting
to observe that the interacting part of the Hamiltonian has the
general structure

Hint =
∑
k,k′

c
†
k′ckṼ

ge

QD (k′ − k)S(k′ − k)|g〉〈e|. (9)
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Here |g〉〈g| and |e〉〈e| are the projection operators onto the
ground |g〉 and excited |e〉 states, while |e〉〈g| and |g〉〈e|
describe the electronic tunneling between the two levels.
Furthermore, the eigenstates of the free Hamiltonian can be
written in terms of |�〉 and |FS〉 as

|�; FS〉 = |�〉 ⊗ |FS〉, (10)

where |�〉 with � = e, g are the eigenvectors of the TLS
Hamiltonian, and |FS〉 are the eigenvectors of the electron
Hamiltonian in the number operator representation.

III. RESULTS AND DISCUSSIONS

A. General structure for the nonradiative decay rate

In order to calculate the nonradiative decay rate we need
to prepare the QE in the excited state |e〉 and then calculate
the transition amplitude of decay towards the ground state |g〉
with the production of an electron-hole pair close to the Fermi
level. This can be done by using Fermi’s golden rule

�(I → F ) =
(

2π

h̄

)
|〈HIF 〉|2δ(EF − EI ), (11)

with initial and final states corresponding to

I ≡ |e; FS〉 = |e〉 ⊗ |FS〉 → |g; hkpk′ 〉
= |g〉 ⊗ |hkpk′ 〉 ≡ F, (12)

where �,m = g, e, and with energies given by

EI = h̄ω0,

EF = εk′ − εk.

Now the transition amplitude reads

�(k, k′; e, g) =
(

2π

h̄

)∣∣〈F |c†k′ckṼ
ge

QD (k′ − k)|g〉〈e||I 〉∣∣2

×〈S(k′ − k)S(k′ − k)〉δ(EF − EI ),

and can be calculated with the use of the fermionic algebra
(4) and from the fact that 〈S(k′ − k)S(k′ − k)〉 = Nimp, for
a small number of dilute impurities (emitters). We are now
ready to rewrite the transition amplitude in terms of the
initial and final momentum states, |hk〉 representing the hole
state, |pk′ 〉 representing the electron state, and in terms of
the occupation probabilities for the ground ng and excited ne

states in the two-level system (see Appendix)

�(k, k′; e, g) =
(

2π

h̄

)
Nimpf (εk )[1 − f (εk′ )]ne(1 − ng )

× ∣∣Ṽ ge

QD (k′ − k)
∣∣2

δ(εk′ − εk − h̄ω0). (13)

The next step is to calculate the relaxation rates through
summing up transition amplitudes

�e→g
nr (T ) =

∑
k,k′,σ,σ ′

�(k, k′; e, g). (14)

For the nonradiative (nr) decay from the excited to ground
states we found (see Appendix)

�e→g
nr (T ) =

(
2π

h̄

)
N2(εF )Nimpne(1 − ng )

[
1

1 − e−βh̄ω0

]
g2

nr,

(15)

where N (εF ) is the electronic density of states at the Fermi
level and we have defined the quantity

g2
nr = e2

ε2
0

μ2

3

h̄ω0

k2
F

[
1

1 + 2k2
F λ2

TF

+ ln
(
1 + 2k2

F λ2
TF

) − 1

]
,

(16)

in terms of the Thomas-Fermi screening length λTF = k−1
TF

(see Appendix). As expected, the nonradiative decay rate
vanishes at zero temperature, because there are simply
no final electron-hole states available for relaxation, since
fT =0(ε � εF ) = 1 and fT =0(ε > εF ) = 0. As the temper-
ature increases, on the other hand, fT �=0(ε � εF ) < 1 and
fT �=0(ε > εF ) �= 0, and the nonradiative decay rate also in-
creases, even for kBT � h̄ω0, when ground and excited states
reach their maximal allowed values of thermal occupancy,
namely ng (kBT � h̄ω0) = ne(kBT � h̄ω0) = 1/2.

B. General structure for the nonradiative absorption rate

Similarly, in order to calculate the nonradiative absorption
rate we need to prepare the QE in the ground state and then
calculate the transition amplitude towards the excited state
through the absorption of an electron-hole pair close to the
Fermi level. Now the initial and final states are

I ≡ |g; hkpk′ 〉 = |g〉 ⊗ |hkpk′ 〉
→ |e; FS〉 = |e〉 ⊗ |FS〉 ≡ F. (17)

The nonradiative absorption rate is given by

�g→e
nr (T ) =

(
2π

h̄

)
N2(εF )Nimpng (1 − ne )

[
1

eβh̄ω0 − 1

]
g2

nr,

(18)
where ne and ng have been interchanged and the thermal
factor is also different[

1

1 − e−βh̄ω0

]
decay

→
[

1

eβh̄ω0 − 1

]
absorption

, (19)

satisfying detailed balance. As expected, the nonradiative
absorption rate also vanishes at zero temperature, because
there are no available initial electron-hole states for absorp-
tion at T = 0. As the temperature increases, the nonradiative
absorption becomes finite, even for kBT � h̄ω0, when there
are plenty of available electron-hole states for absorption and
when ground and excited states reach their maximal thermal
occupation.

C. Normalized decay and absorption rates

A meaningful quantity to be defined is the nonradiative
decay rate normalized by its saturation value

�sat
nr (h̄ω0  kBT  EF ) =

(
2π

h̄

)
Nimp

1

4
N2(εF )

(
g2

nr

βh̄ω0

)
,

(20)

since, for h̄ω0  kBT  EF , ng → 1/2 and ne → 1/2. With
this definition we arrive at

�
e→g
nr (T )

�sat
nr

= 4 ne(1 − ng )

[
βh̄ω0

1 − e−βh̄ω0

]
, (21)
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FIG. 2. Main panel: Black (solid) curve representing the rela-
tive difference between absorption and decay rates for nonradiative
transitions for an emitter embedded in a low temperature metallic
host. Inset: Red (dotted) curve representing the absorption rate, blue
(dashed) curve representing the decay rate, and black (solid) curve
representing the sum of absorption and decay rates. The curve shown
in the main panel measures the distance between the red (dotted) and
blue (dashed) curves in the inset.

which is a dimensionless number between 0 and 1. The same
is valid for the absorption rate

�
g→e
nr (T )

�sat
nr

= 4 ng (1 − ne )

[
βh̄ω0

eβh̄ω0 − 1

]
. (22)

The results for both nonradiative decay and absorption rates,
as well as their sum, are plotted in the inset of Fig. 2. We can
also study the difference between the nonradiative absorption
and decay rates

��nr ≡ �
g→e
nr (T ) − �

e→g
nr (T )

�sat
nr

, (23)

which is a quantity between 0 and 1 and is plotted as the main
panel in Fig. 2.

D. A mechanism of generation

Figure 2 reveals that the absorption processes, in which a
recombination of a particle and a hole provides energy for
the g → e transition, dominates for kBT  h̄ω0. Absorption
rapidly increases with temperature, but eventually saturates
due to the decrease in the thermal occupation of the ground
state for kBT � h̄ω0. On the other hand, decay processes
in which a particle and a hole are created, receiving energy
from the e → g transition, are less frequent at all tempera-
tures because of the lower thermal occupation in the excited
state of the emitter. Nevertheless, it also increases with the
temperature and also saturates for kBT � h̄ω0.

Remarkably, let us point out that such large difference
between the absorption and decay rates indicates that the phe-
nomenon of generation is occurring at the emitter due to the
inelastic scattering from Fermi surface states at low tempera-
tures. This result suggests a way in which one could prepare
an emitter in its excited state by setting the temperature around
kBT � h̄ω0 where nonradiative absorption is much larger
than decay. The ability to prepare quantum states of an emitter

by varying the temperature is of great importance and may
find many potential applications in quantum nanophotonics.

IV. CONNECTION TO ELECTRONIC TRANSPORT

Having calculated the nonradiative absorption and decay
rates for QEs due to the presence of an electronic, bulk
channel for quantum relaxation, one relevant question to be
asked is: how much of this nonradiative channel is relevant?
Or even better, how could one estimate, determine, or measure
�nr for QEs in metals? These are the questions we will be
addressing below and consist of the main focus of the present
work. Furthermore, these are very important questions to be
asked if one is planning on making predictions and designing
nanophotonic devices because one would like to be able to
precisely determine the contribution of each decay channel to
the total rate. As we are going to show below, for the case
of nonradiative decay in metals the transition rates, either
absorption or decay, can be precisely determined from well
established and controlled transport experiments.

We shall be focused on two specific transport quantities:
(i) we shall first look into the dc transport, with an externally
applied electric field E �= 0, where the resistivity can be
expressed in a Drude-like form

ρ =
(

m∗

ne2

)
1

τtr
. (24)

The quantity of interest will be the inverse transport lifetime
1/τtr, which can be calculated using a variational approach
to the linearized Boltzmann’s transport equations within the
relaxation time approximation [29]. (ii) Next, we shall focus
on the magnetotransport, in applied electric E �= 0, and mag-
netic B �= 0 fields, where the Shubnikov–de-Haas oscillations
[30,31]

�Rxx (ωc ) = 4R0e
−π/ωcτq cos

(
2h̄π2n

m∗ωc

− π

)
χ (T ) (25)

are given in terms of the quantum lifetime τq , with R0 be-
ing the zero field resistance, ωc = eB/m∗ the cyclotron fre-
quency, and χ (T ) = (2π2kBT /h̄ωc ) sinh (2π2kBT /h̄ωc ) the
thermal damping factor. The quantity of interest here is the
inverse quantum lifetime 1/τq , which can also be calculated
using a variational procedure [29]. For both cases (dc and
magnetotransport) we shall explain how the nonradiative tran-
sition rates calculated earlier can be extracted from experi-
ments.

A. Connection to transport lifetime τtr

According to the interaction Hamiltonian (5) there are four
channels for scattering between the emitter and Fermi surface
electrons: two elastic channels g → g and e → e, and two
inelastic channels g → e (absorption) and e → g (decay).
The inverse transport lifetime 1/τtr can thus be calculated
using Mathiessen’s rule

1

τtr
= 1

τgg

+ 1

τge

+ 1

τeg

+ 1

τee

, (26)

in which each individual contribution 1/τ�m to the total in-
verse scattering time can be calculated from a variational
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FIG. 3. Temperature dependence of the dc-resistivity ρ(T ), nor-
malized by its zero temperature value ρ0. Main panel: Inelastic
channels, red (dotted) representing absorption g → e, blue (dashed)
representing decay e → g, and black (solid) representing the sum of
the two inelastic (decay and absorption) contributions. Inset: Elastic
channels, red (dotted) representing e → e processes, blue (dashed)
representing g → g processes, and black (solid) representing the
sum of the two elastic contributions to transport.

principle to the linearized Boltzmann’s equations within the
relaxation time approximation [29]

1

τ�m

= 1

2kBT

∑
k,k′[�u · (�vk − �vk′ )]2P �m

k′,k∑
k (�u · �vk )2

( − ∂fk

∂εk

) , (27)

where �u corresponds to the direction of the applied electric
field, and P �m

k′,k are the scattering amplitudes from k to k′,
between states labeled by �,m = g, e.

The denominator in (27) can be written as∑
k,σ

(�u · �vk )2

(
− ∂fk

∂εk

)
= 1

3π2

vF

h̄
= n

m∗ , (28)

where the factor 1/3 arises from the spherical symmetry of
the problem. As for the numerator in (27) we shall write

〈P �m〉tr = 1

2kBT

∑
k,k′

[�u · (�vk − �vk′ )]2P �m
k′,k, (29)

where the scattering amplitudes are given in the Appendix.
For the two elastic scattering processes we find

〈P gg〉tr =
(

2π

h̄

)
N2(εF )Nimpngg

2
el (30)

and

〈P ee〉tr =
(

2π

h̄

)
N2(εF )Nimpneg

2
el, (31)

where

g2
el = 1

6

e2

ε2
0

(
h̄

m∗

)2 1

k2
F

[
1

1 + 2k2
F λ2

TF

+ ln
(
1 + 2k2

F λ2
TF

) − 1

]
.

(32)

The elastic contributions to the resistivity are shown in the
inset of Fig. 3. As we can see, the sum of the two elas-
tic contributions is temperature independent mostly because

TABLE I. Summary of the results for the nonradiative transition
rates and their relation to the quantum and transport lifetimes ob-
tained from transport. Notice the one-to-one relation between the
NR rates and the quantum lifetimes 1/τq , and the proportionality
relation to the transport lifetimes 1/τtr, a direct consequence of
the suppression of small angle scattering in the calculation of the
Boltzmann transport lifetime resulting in the factor (g2

nr/g
2
in ) < 1.

Nonradiative rates Quantum lifetimes Transport lifetimes

Decay �e→g
nr 1/τ e→g

q 1/τ
e→g
tr

(
g2

nr/g
2
in

)
Absorption �g→e

nr 1/τ g→e
q 1/τ

g→e
tr

(
g2

nr/g
2
in

)

ng + ne = 1 and Ṽ gg = Ṽ ee, even though each of the two
individual scattering channels exhibits a characteristic evolu-
tion with the temperature until saturation at ne = ng = 1/2 for
kBT � h̄ω0. Furthermore, since this contribution has its ori-
gins in elastic processes, 1/τgg and 1/τee do not contain
information about the structure of the emitter, neither through
the electric dipole moment �μ, nor through the characteristic
energy of the emitter h̄ω0. Hence the elastic contributions
to the resistivity have no connection to the transition rates
calculated earlier.

For the two inelastic scattering processes, in turn, we have

〈P ge〉tr =
(

2π

h̄

)
N2(εF )Nimpng (1 − ne )

[
β

eβh̄ω0 − 1

]
g2

in

(33)
and

〈P eg〉tr =
(

2π

h̄

)
N2(εF )Nimpne(1 − ng )

[
β

1 − e−βh̄ω0

]
g2

in,

(34)
where

g2
in = e2

ε2
0

μ2

3

h̄ω0

λ2
TF

(
h̄

m∗

)2

×
[

2k2
F λ2

TF

(
1 + k2

F λ2
TF

)
1 + 2k2

F λ2
TF

− ln
(
1 + 2k2

F λ2
TF

)]
. (35)

The inelastic contributions to the resistivity are shown in the
main panel of Fig. 3. In contrast to the elastic case, both
the individual contributions to the resistivity, as well as their
sum, have a strong temperature dependence that is analogous
to the temperature dependence of the normalized decay and
absorption rates shown in Fig. 2.

Also differently to the elastic case, the inelastic contribu-
tions 1/τeg and 1/τge do carry information about the structure
of the emitter, through both the electric dipole moment �μ
and the characteristic energy h̄ω0. Indeed, it is important to
note the direct connection that exists between the nonradiative
decay rate, given by (15), and the inelastic scattering process
given by (34). Both quantities are proportional to μ2h̄ω0 and
only differ by an overall constant factor, see g2

nr in (16) and
g2

in in (35) (see Table I). By the same token, a similar mapping
exists between the nonradiative absorption rate (18) and the
other inelastic scattering process, given by (33). Again, these
two quantities only differ by a constant factor (see Table I).
Altogether, these findings unveil the relation between nonra-
diative decay and absorption rates and the inelastic scattering
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processes that are summarized in Table I, suggesting that
one can obtain information about nonradiative decay and
absorption rates by means of electronic transport.

B. Connection to quantum lifetime τq

Similar to the case of the dc resistivity, the quantum
lifetime can also be calculated, using Mathiessen’s rule

1

τq

= 1

τgg

+ 1

τge

+ 1

τeg

+ 1

τee

, (36)

where now each contribution corresponds to [29]

1

τ�m

= 1

kBT

∑
k,k′ P

�m
k′,k∑

k

(− ∂fk

∂εk

) . (37)

Again, for the numerator in (37) we define

〈P �m〉q = 1

kBT

∑
k,k′

P �m
k′,k. (38)

For the two inelastic scattering processes we obtain

〈P ge〉q =
(

2π

h̄

)
N2(εF )Nimpng (1 − ne )

[
β

eβh̄ω0 − 1

]
g2

nr

(39)
and

〈P eg〉q =
(

2π

h̄

)
N2(εF )Nimpne(1 − ng )

[
β

1 − e−βh̄ω0

]
g2

nr,

(40)
where

g2
nr = e2

ε2
0

μ2

3

h̄ω0

k2
F

[
1

1 + 2k2
F λ2

TF

+ ln
(
1 + 2k2

F λ2
TF

) − 1

]
.

(41)
Remarkably, we now obtain that for the quantum lifetime

1/τq there exists a one-to-one correspondence between the
nonradiative decay and absorption rates �

e→g
nr and �

g→e
nr , and

the inelastic contributions to electron-impurity scattering pro-
cesses 1/τeg and 1/τge (see Table I). These results confirm our
predictions that one can determine the nonradiative decay and
absorption rates by means of magnetotransport observables
such as, for example, the amplitude of the Shubnikov–de-Haas
oscillations which is given by [32]

�R(ωc ) = 4R0χ (T ) e−π/ωcτq , (42)

which is governed by τq and it is shown in the main panel
of Fig. 4. From such a Dingle plot [32] we see that, al-
ready at small magnetic fields, ω0/ωc � 1, even the smallest
contributions to the quantum lifetime τq from nonradiative
transitions may lead to sizable deviations of the amplitude
of the Shubnikov–de-Haas oscillations from the pure elastic
case at kBT  h̄ω0. If we recall that for kBT � ω0 absorp-
tion processes dominate, as demonstrated in Fig. 2, we can
promptly identify that the deviation of the dashed (blue) curve
from the solid (black) curve in Fig. 4 is predominantly due
to absorption processes �

g→e
nr � �

e→g
nr . On the other hand,

for the dotted (red) curve in Fig. 4, valid for kBT � h̄ω0,
both decay and absorption processes contribute equally, so
that �

g→e
nr ≈ �

e→g
nr . These findings suggest one cannot only

extract nonradiative decay rates from the Shubnikov–de-Haas

FIG. 4. Main panel: Amplitude of the Shubnikov–de-Haas os-
cillations for the case of ω0 < ωc for different temperatures. Solid
(black) line for kBT  h̄ω0; dashed (blue) line for kBT ≈ h̄ω0;
and dotted (red) line for kBT � h̄ω0. Inset: Shubnikov–de-Haas
oscillations at low magnetic fields, for the case of ωc < ω0.

oscillations via the quantum lifetime, but also detect the pres-
ence of the emitters inside a metallic system, as nonradiative
decay rates strongly depend on temperature, as we previously
demonstrate.

V. CONCLUSIONS

In summary, we investigate nonradiative decay and absorp-
tion rates of two-level quantum emitters embedded in a metal
at low temperatures. Using Fermi’s golden rule, we derive
expressions for both nonradiative transition rates, showing
they are intrinsically related to electronic transport in the
host metallic material. Indeed, we demonstrate nonradiative
decay and absorption rates could be directly determined by the
knowledge of experimentally accessible transport quantities,
such as the optical and ac conductivity, and even the dc resis-
tivity. For concreteness, we consider the case of Shubnikov–
de-Haas oscillations, governed by the quantum lifetime,
which we demonstrate to be proportional to the nonradiative
decay and absorption rates. Altogether our results not only
provide a microscopic description of nonradiative decay chan-
nels in metals, but they also allows one to identify and differ-
entiate them to other decay channels, which is crucial to un-
derstand and control light-matter interactions at the nanoscale.
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APPENDIX

1. Occupation probabilities two-level system

The two occupation probabilities ng (kBT ) and ne(kBT )
can be determined from the statistical definition

ni = exp(−βεi )

Z
, (A1)
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where

Z =
∑

i=all-states

exp(−βεi ) (A2)

is the partition function of the two-level system. From this
definition we obtain

ng (kBT ) = exp(−βεg )

exp(−βεg ) + exp(−βεe )
= 1

1 + exp(−βh̄ω0)
(A3)

and

ne(kBT ) = exp(−βεe )

exp(−βεg ) + exp(−βεe )
= 1

1 + exp(βh̄ω0)
.

(A4)
As it is expected, at low temperatures we have

lim
T −→0

ng (kBT ) −→ 1 (A5)

and

lim
T −→0

ne(kBT ) −→ 0, (A6)

while at large temperatures

lim
T −→∞

ng (kBT ) −→ 1
2 (A7)

and

lim
T −→∞

ne(kBT ) −→ 1
2 . (A8)

2. Calculation of decay and absorption transition rates

To sum over transition amplitudes we use the relation∑
k,σ

→ V × 2 ×
∫

dεk

h̄vk

∫
d�k

(2π )3 , (A9)

where the factor 2 accounts for spin degeneracy, vk = h̄k/m∗
is the velocity for a nearly free electron, parabolic band
approximation with effective mass m∗, and

d�k = k2d� = k2 sin ϕdθdϕ. (A10)

The nonradiative (nr) decay from the excited to ground states
is then calculated as

�e→g
nr (T ) =

∑
k,k′,σ,σ ′

�(k, k′; e, g)

= V 2 × 4 ×
(

2π

h̄

)
Nimpne(1 − ng )

×
{∫

dεk

h̄vk

∫
dεk′

h̄vk′
f (εk )[1 − f (εk′ )]

}
×

{∫
d�k

(2π )3

∫
d�k′

(2π )3

∣∣Ṽ ge

QD (k′ − k)
∣∣2

}
=

(
2π

h̄

)(
m∗kF

π2h̄2

)2

Nimpne(1 − ng )

[
h̄ω0

1 − e−βh̄ω0

]

× e2

ε2
0

μ2

3

[∫
d�

4π

∫
d�′

4π

|k − k′|2(|k − k′|2 + λ−2
TF

)2

]
,

and we identify the electronic density of states at the Fermi
level

N (εF ) = m∗kF

π2h̄2 . (A11)

To arrive at the above result we have used that, at low
temperatures, the function

f (εk )[1 − f (εk + h̄ω0)] (A12)

is strongly peaked around the Fermi energy and thus we
projected all states k → kF and k′ → kF . Furthermore, we
calculated∫

dεkf (εk )[1 − f (εk + h̄ω0)] = h̄ω0

1 − e−βh̄ω0
. (A13)

3. Transport and quantum scattering amplitudes

The scattering amplitudes contributing to both the transport
τtr and quantum τq lifetimes are

P
gg

k′,k =
(

2π

h̄

)
Nimp

∣∣Ṽ gg

QD (k′ − k)
∣∣2

δ(εk − εk′ )fk (1 − fk′ )ng,

(A14)

P
eg

k′,k =
(

2π

h̄

)
Nimp

∣∣Ṽ eg

QD (k′ − k)
∣∣2

δ(εk − εk′ − h̄ω0)

× fk (1 − fk′ )ng (1 − ne ), (A15)

P
ge

k′,k =
(

2π

h̄

)
Nimp

∣∣Ṽ ge

QD (k′ − k)
∣∣2

δ(εk′ − εk − h̄ω0)

× fk (1 − fk′ )ne(1 − ng ), (A16)

P ee
k′,k =

(
2π

h̄

)
Nimp

∣∣Ṽ ee
QD (k′ − k)

∣∣2
δ(εk − εk′ )fk (1 − fk′ )ne.

(A17)

a. Transport lifetime

For the calculation of the transport lifetime τtr, the two
elastic scattering processes give

〈P gg〉tr = 4V 2

2kBT

∫
d3k′

(2π )3

∫
d3k

(2π )3
[�u · (�vk − �vk

′ )]2P
gg

k,k′

=
(

2π

h̄

)
N2(εF )Nimpngg

2
el (A18)

and

〈P ee〉tr = 4V 2

2kBT

∫
d3k′

(2π )3

∫
d3k

(2π )3
[�u · (�vk − �vk

′ )]2P ee
k,k′

=
(

2π

h̄

)
N2(εF )Nimpneg

2
el, (A19)

where

g2
el = 1

6

e2

ε2
0

(
h̄

m∗

)2 1

k2
F

[
1

1 + 2k2
F λ2

TF

+ ln
(
1 + 2k2

F λ2
TF

)−1

]
.

(A20)
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For the two inelastic scattering processes we have

〈P ge〉tr = 4V 2

2kBT

∫
d3k′

(2π )3

∫
d3k

(2π )3
[�u · (�vk − �vk

′ )]2P
ge

k,k′

=
(

2π

h̄

)
N2(εF )Nimpng (1 − ne )

[
β

eβh̄ω0 − 1

]
g2

in

(A21)

and

〈P eg〉tr = 4V 2

2kBT

∫
d3k′

(2π )3

∫
d3k

(2π )3
[�u · (�vk − �vk

′ )]2P
eg

k,k′

=
(

2π

h̄

)
N2(εF )Nimpne(1 − ng )

[
β

1 − e−βh̄ω0

]
g2

in,

(A22)

where

g2
in = e2

ε2
0

μ2

3

h̄ω0

λ2
TF

(
h̄

m∗

)2

×
[

2k2
F λ2

TF

(
1 + k2

F λ2
TF

)
1 + 2k2

F λ2
TF

− ln
(
1 + 2k2

F λ2
TF

)]
. (A23)

b. Quantum lifetime

Similarly, for the case of the quantum lifetime τq , the two
contributing inelastic scattering processes are calculated as

〈P ge〉q = 4V 2

kBT

∫
d3k′

(2π )3

∫
d3k

(2π )3
P

ge

k,k′

=
(

2π

h̄

)
N2(εF )Nimpng (1 − ne )

[
β

eβh̄ω0 − 1

]
g2

nr

(A24)

and

〈P eg〉q = 4V 2

kBT

∫
d3k′

(2π )3

∫
d3k

(2π )3
P

eg

k,k′

=
(

2π

h̄

)
N2(εF )Nimpne(1 − ng )

[
β

1 − e−βh̄ω0

]
g2

nr,

(A25)

where

g2
nr = e2

ε2
0

μ2

3

h̄ω0

k2
F

[
1

1 + 2k2
F λ2

TF

+ ln
(
1 + 2k2

F λ2
TF

) − 1

]
.

(A26)
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