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SU(4)-symmetric spin-orbital liquids on the hyperhoneycomb lattice

Willian M. H. Natori,1 Eric C. Andrade,1 and Rodrigo G. Pereira2

1Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, São Carlos, SP, 13560-970, Brazil
2International Institute of Physics and Departamento de Física Teórica e Experimental,

Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil

(Received 6 February 2018; revised manuscript received 12 September 2018; published 13 November 2018)

We study the effective spin-orbital model that describes the magnetism of 4d1 or 5d1 Mott insulators in ideal
tricoordinated lattices. In the limit of vanishing Hund’s coupling, the model has an emergent SU(4) symmetry,
which is made explicit by means of a Klein transformation on pseudospin degrees of freedom. Taking the
hyperhoneycomb lattice as an example, we employ parton constructions with fermionic representations of the
pseudospin operators to investigate possible quantum spin-orbital liquid states. We then use variational Monte
Carlo (VMC) methods to compute the energies of the projected wave functions. Our numerical results show
that the lowest-energy quantum liquid corresponds to a zero-flux state with a Fermi surface of four-color
fermionic partons. In spite of the Fermi surface, we demonstrate that this state is stable against tetramerization.
A combination of linear flavor wave theory and VMC applied to the complete microscopic model also shows
that this liquid state is stable against the formation of collinear long-range order.
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I. INTRODUCTION

The search for unconventional phases induced by the com-
bined effects of strong correlation and spin-orbit coupling has
stimulated the study of transition metal oxides with 4d and 5d

elements [1–4]. Particularly interesting in this context is the
demonstration by Jackeli and Khaliullin [5] that the effective
spin model for Mott insulators with heavy d5 ions in edge-
sharing octahedral geometries contains bond-dependent Ising-
like exchange interactions. Such interactions constitute the
key ingredient of Kitaev’s honeycomb model [6], an exactly
solvable spin-1/2 model with a quantum spin-liquid ground
state [7,8]. Indeed, experiments have shown that Kitaev-type
interactions are relevant for the honeycomb iridates [9–11]
and for α-RuCl3 [12–14], in which the Ir4+ or Ru3+ ions form
j = 1/2 local moments. In addition, the physics of Kitaev
spin liquids has been generalized to tricoordinated three-
dimensional lattices [15–18]. One example is the hyperhon-
eycomb lattice, which is materialized in β-Li2IrO3 [19,20].
However, the realization of quantum spin liquids in the strong
spin-orbit coupling regime has remained a challenge because
more realistic models for these compounds include additional
interactions that tend to drive different kinds of long-range
magnetic order [21–29].

An alternative recipe for quantum spin liquids may come
from substituting the d5 by d1 configuration in the same
octahedral environment. In this case, the single electron in the
open shell occupies a low-energy j = 3/2 quadruplet [30,31].
Despite the larger moment, j = 3/2 systems are not necessar-
ily more classical than their j = 1/2 counterparts since they
can exhibit unexpected continuous symmetries that enhance
quantum fluctuations. For instance, the effective spin model
for heavy-element double perovskites with d1 configuration
contains bond-dependent interactions with a hidden SU(2)
symmetry [32]. This SU(2) symmetry is made explicit when

the model is expressed in terms of pseudospin and pseudo-
orbital operators [33–35], and its effects motivated the pro-
posal of a quantum spin-orbital liquid (QSOL) in double per-
ovskites [33]. Even more surprisingly, it was recently shown
that the spin model for j = 3/2 moments on several tricoor-
dinated lattices, including the hyperhoneycomb, has an emer-
gent SU(4) symmetry [36]. The demonstration of the global
SU(4) symmetry employs SU(4) gauge transformations in the
underlying Hubbard model. This result is remarkable, given
that SU(N ) symmetries with larger values of N are known
to favor quantum disordered states [37–39]. Furthermore, a
previous study showed compelling numerical evidence for a
QSOL state in the SU(4) model on the honeycomb lattice
[40]. However, in contrast with the Kitaev model, where the
fractionalized excitations are Majorana fermions [6], the best
candidate for the ground state of the SU(4) honeycomb model
is a spin-orbital liquid described by a π -flux state of complex
fermions at quarter filling [40].

In this paper, we provide an alternative derivation of the
SU(4)-symmetric spin-orbital model for 4d1 or 5d1 systems
on the hyperhoneycomb lattice. The SU(4) symmetry of
the model is revealed by making use of a Klein transfor-
mation [41,42] on the pseudospins. In addition, we derive
the leading SU(4)-symmetry-breaking perturbations associ-
ated with Hund’s coupling. Second, we investigate candidate
spin-orbital liquid states using parton mean-field theories
based on Majorana fermions or canonical (i.e., complex)
fermions. We use these mean-field theories to construct trial
wave functions, whose energies we evaluate after Gutzwiller
projection using variational Monte Carlo (VMC) [43]. Our
results show that the zero-flux state of complex fermions,
which exhibits a spinon Fermi surface, has the lowest energy
among the quantum spin-orbital liquids we consider. This
contrasts with the result on the honeycomb lattice, where the
π -flux state was energetically favored [40]. Curiously, the
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π -flux state of complex fermions on the hyperhoneycomb
displays three Dirac points. One of them has a spectrum
with linear dispersion along two directions in momentum
space and quadratic dispersion in the third direction. The
other two points display the linear dispersion only along one
direction.

We also investigated possible instabilities of the zero-
flux QSOL using a combination of VMC and linear flavor
wave theory (LFWT). Within the SU(4)-symmetric model,
a possible instability of the spin-orbital liquid is the for-
mation of four-site SU(4) singlets [44]. The possible de-
velopment of a state given by the direct product of four-
site plaquettes, known as tetramerization, was systematically
investigated by Ref. [45] on the honeycomb lattice. In this
paper, we demonstrate the stability of the zero-flux QSOL on
the hyperhoneycomb lattice against tetramerization. We also
studied the possibility of collinear long-range order forma-
tion due to perturbations induced by finite values of Hund’s
coupling. Within this set of ordered states, LFWT [46,47]
indicates that only a stripy ordered phase of j = 3/2 mo-
ments is stable. However, further VMC computations showed
that the QSOL is also stable against the formation of this
order.

The paper is organized as follows. In Sec. II, we derive the
SU(4)-symmetric Hamiltonian from the multiorbital Hubbard
model in the limit of strong spin-orbit coupling. In Sec.
III, we discuss the trial wave functions obtained by parton
representations of the SU(4) generators. The energetics of
these wave functions projected through VMC are presented
in Sec. III B. Section IV studies possible ordered phases
induced by nonzero values of Hund’s coupling. Finally, in
Sec. V we offer some conclusions and suggestions for future
developments. Technical details about the parton mean-field
theories on the hyperhoneycomb lattice and LFWT can be
found in the appendices.

II. EFFECTIVE SPIN-ORBITAL MODEL

We start from a multiorbital Hubbard model for singly-
occupied 4d or 5d orbitals in an octahedral crystal field. We
focus on the case where the edge-sharing octahedra form a
hyperhoneycomb lattice (i.e., the (10, 3)b lattice [18]), but the
derivation can be generalized to other tricoordinated lattices.
We assume that the oxygen or halogen anions surrounding
the d1 ion are in perfect octahedral arrangement. The crys-
tal field splits the d levels into a lower-energy t2g triplet
(|xy〉, |yz〉, |zx〉) and a higher-energy eg doublet. We can
label the t2g orbitals by the axis γ = x, y, z perpendicular
to the crystallographic plane containing them. For instance,
djzσ denotes the annihilation operator for an electron with
spin σ =↑,↓ occupying the xy orbital (γ = z) at site j . The

multi-orbital Hubbard model is written as

HHub = −t
∑

γ

∑
〈ij〉γ

∑
σ

(d†
iασ djβσ + d

†
iβσ djασ + H.c.)

+ 1

2

∑
i

∑
αβα′β ′

∑
σσ ′

Uαβ;α′β ′d
†
iασ d

†
iβσ ′diβ ′σ ′diα′σ . (1)

In the first line of Eq. (1), 〈ij 〉γ stands for a pair of nearest-
neighbor sites connected by a bond in the plane perpendicular
to the γ axis and α, β are the other two spatial directions
in the plane of the bond. This kinetic energy term is bond-
and orbital-dependent and takes into account only electron
hopping via oxygen or halogen sites [5]. In the interaction
term, the parameters Uαβ;α′β ′ depend on matrix elements of the
electrostatic potential between the t2g orbitals. We keep only
the dominant Coulomb terms, with the standard parametriza-
tion Uαα;αα ≡ U and Uαβ;αβ ≡ U − 2JH , where JH > 0 is
Hund’s coupling constant [31].

The magnetism of 4d and 5d compounds is strongly in-
fluenced by the atomic spin-orbit coupling. We then add to
Hamiltonian Eq. (1) the term

HSOC = −λ
∑

j

lj · Sj , (2)

where λ > 0 is the spin-orbit coupling constant, Sj is the
electronic spin at site j , and lj is the effective l = 1 angular
momentum of the t2g orbitals [31]. The spin-orbit coupling
splits the t2g levels into a j = 1/2 doublet and a j = 3/2
quadruplet, where j is the quantum number associated with
J = l + S. The j = 3/2 states have lower energy and are
separated from the j = 1/2 doublet by a gap 3λ/2. In the
limit λ � t , we can truncate the Hilbert space to the set of
j = 3/2 states. It is convenient to represent the four states at
each site in terms of two pseudospins 1/2 as |sz, τ z〉, with
sz, τ z ∈ { 1

2 ,− 1
2 }, where sz is referred to as the pseudospin

eigenvalue and τ z the pseudo-orbital eigenvalue [33]. We use
the following convention for the local basis:∣∣jz = 3

2

〉 = ∣∣− 1
2 , 1

2

〉
,

∣∣jz = 1
2

〉 = −∣∣ 1
2 ,− 1

2

〉
,∣∣jz = − 1

2

〉 = ∣∣− 1
2 ,− 1

2

〉
,

∣∣jz = − 3
2

〉 = −∣∣ 1
2 , 1

2

〉
. (3)

The convention is such that states with the same τ z are
conjugated by time reversal and share the same electronic
density distribution [35,48].

To derive the effective spin-orbital model for the Mott in-
sulating phase with t 
 U , we first consider λ = 0 and apply
perturbation theory to second order in t/U , imposing the
single-occupancy constraint

∑
α,σ d

†
jασ djασ = 1 [30]. Next,

we take the limit of strong spin-orbit coupling by projecting
the Hamiltonian onto j = 3/2 states. The result is of the form
Heff = ∑

〈ij〉γ H
(γ )
ij with

H
(γ )
ij = Ja

[
2
(
2s

γ

i s
γ

j − si · sj

)+ 1

2

][
2
(
2τ

y

i τ
y

j − τ i · τ j

)+ 1

2

]
+ Jb

[
2
(
2s

γ

i s
γ

j − si · sj

)− 1

2

][
2τ i · τ j − 1

2

]

+ Jc

[
Q

αβ

i Q
αβ

j + 2
(
τ

βγ

i τ
γα

j + τ
γα

i τ
βγ

j

)]+ Jc

10

(− 12M
γ

i M
γ

j − 6Mi · Mj + Ta,i · Mj + Mi · Ta,j

− 3T
γ

a,iM
γ

j − 3M
γ

i T
γ

a,j

)+
√

15Jc

30

(
T α

b,iM
α
j + Mα

i T α
b,j − T

β

b,iM
β

j − M
β

i T
β

b,j

)
, (4)
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where the coupling constants are

Ja = t2

3

(
1

U − 3JH

+ 1

U − JH

)
,

Jb = 2t2

9

(
1

U − JH

− 1

U + 2JH

)
, (5)

Jc = 2t2

9

(
1

U − 3JH

− 1

U − JH

)
.

All the operators in Eq. (4) are written in terms of compo-
nents of sj and τ j , which act in the pseudospin and pseudo-
orbital degrees of freedom, respectively, and obey [sα

j , s
β

j ′ ] =
iδjj ′εαβγ s

γ

j , [τα
j , τ

β

j ′ ] = iδjj ′εαβγ τ
γ

j , and [sα
j , τ

β

j ′ ] = 0. The
15 operators {sα, τ β, sατβ} can be regarded as the generators
of the SU(4) group. We define ταβ as [33]

ταβ = u
γ

1 τ z + u
γ

2 τ x,
(6)

τ̄ αβ = v
γ

1 τ z + v
γ

2 τ x,

where εαβγ = 1 and we introduce the vectors uγ ≡
(uγ

1 , u
γ

2 ) and vγ ≡ (vγ

1 , v
γ

2 ) with ux = (− 1
2 ,

√
3

2 ), uy =
(− 1

2 ,−
√

3
2 ), uz = (1, 0), vx = (−

√
3

2 ,− 1
2 ), vy = (

√
3

2 ,− 1
2 ),

and vz = (0, 1). The other operators that appear in Eq. (4) are
given by

Mγ = −sγ (1 + 4ταβ ), (7)

T γ
a = −3sγ (1 − ταβ ), (8)

Qαβ = −2
√

3sγ τ y, (9)

T
γ

b = −3
√

5sγ τ̄ αβ . (10)

The vector M can be identified with the dipole moment
M = J of the j = 3/2 multiplet [32,35]. Similarly, T

γ
a is

an octupole forming a �4 irreducible representation of the
octahedral group. The Qαβ and T

γ

b correspond, respectively,
to quadrupole and octupole moments forming a �5 irreducible
representation.

In general, the effective Hamiltonian Eq. (4) is invariant
under space group transformations (Fddd for the hyperhoney-
comb lattice), but lacks any continuous symmetry, as expected
for spin-orbit-coupled systems. The general result is greatly
simplified if we take the limit of vanishing Hund’s coupling.
Seting JH = 0, we obtain H

(γ )
ij → H̄

(γ )
ij , where

H̄
(γ )
ij = J

∑
〈ij〉γ

[
2
(
2s

γ

i s
γ

j − si · sj

)+ 1

2

]

×
[

2
(
2τ

y

i τ
y

j − τ i · τ j

)+ 1

2

]
, (11)

with J = 2t2/(3U ).
The coupling between pseudospins s in Eq. (11) is rem-

iniscent of a special point of the Kitaev-Heisenberg model
where the ground state is known exactly [21,24,41]. This
observation suggests performing a four-sublattice rotation
on the pseudospins. Such rotations have been called Klein
dualities in Ref. [41] because the set of transformations is

isomorphic to the Klein four-group Z2 × Z2. Conveniently,
the hyperhoneycomb lattice can be viewed as a face-centered
orthorrombic lattice with a four-point basis [20,24]. Let us
denote the sublattices by Ar , with r = 1, . . . , 4. We define the
Klein transformation:

s̃i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

si, i ∈ A1,(−sx
i ,−s

y

i , sz
i

)
, i ∈ A2,(

sx
i ,−s

y

i ,−sz
i

)
, i ∈ A3,(−sx

i , s
y

i ,−sz
i

)
, i ∈ A4.

(12)

This transformation is such that, for any bond 〈ij 〉γ ,

2s
γ

i s
γ

j − si · sj = s̃i · s̃j . (13)

On the other hand, the pseudo-orbital coupling in Eq. (11) is
bond independent. We define

τ̃ i =
{
τ i , i ∈ Ar with r even,(−τ x

i , τ
y

i ,−τ z
i

)
, i ∈ Ar with r odd.

(14)

This is such that, for any bipartite lattice,

2τ
y

i τ
y

j − τ i · τ j = τ̃ i · τ̃ j . (15)

Note that s̃ and τ̃ obey the same algebra as the original s and
τ . Applying the transformations in Eqs. (12) and (14), we find
that the effective Hamiltonian for JH = 0 becomes

H̄eff = J
∑
〈ij〉

(
2s̃i · s̃j + 1

2

)(
2τ̃ i · τ̃ j + 1

2

)
. (16)

This is the familiar form of SU(4)-symmetric spin-orbital
models as studied, for instance, in Refs. [44,45,49–52]. We
stress, however, that these previous studies were motivated
by systems with doubly degenerate orbitals. Here we started
with triply degenerate t2g orbitals and the strong spin-orbit
coupling plays an essential role in the emergence of the SU(4)
symmetry in the j = 3/2 subspace. Moreover, the conserved
quantities are not associated with the total spin and orbital
angular momentum, but rather with the rotated pseudospin
and pseudo-orbital operators

∑
i s̃

α
i ,
∑

i τ̃
β

i ,
∑

i s̃
α
i τ̃

β

i .
One advantage of our derivation based on Klein trans-

formations is that it provides a simple criterion to verify
whether the spin-orbital model on a given lattice presents or
not an emergent SU(4) symmetry. In fact, it has been shown
[41] that if Nx (p), Ny (p), Nz(p) are, respectively, the number
of x, y, z bonds in a given plaquette p of the lattice, the
Klein transformation in Eq. (12) can be defined if and only
if Nx (p), Ny (p), Nz(p) are either all even or all odd for all
plaquettes. In addition, the pseudo-orbital rotation in Eq. (14)
requires that the lattice be bipartite. All the tricoordinated
lattices studied in Ref. [36] satisfy these constraints. By
contrast, the triangular lattice can be built from edge-sharing
octahedra [5], but in this case the model (11) cannot be cast in
the SU(4)-symmetric form of Eq. (16) because the triangular
lattice is not bipartite.

Although the hyperhoneycomb lattice admits a four-
sublattice decomposition, for the purposes of Sec. III it will
be convenient to double the unit cell and consider a base-
centered orthorhombic lattice with an eight-point basis. The
eight sublattices are illustrated in Fig. 1. In this case, we
simply extend Eq. (12) such that the transformation on the
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FIG. 1. Hyperhoneycomb lattice as a base-centered orthorhom-
bic lattice with an eight-point basis. The disks and triangles indi-
cate that the lattice is bipartite, while the different colors represent
the different sublattices r = 1, . . . , 8. The primitive lattice vectors
a1, a2, a3 (see Appendix A) are also shown.

pseudospins on sublattices A5, A6, A7, and A8 correspond
to the transformations on sublattices A2, A1, A4, and A3,
respectively [24]. On the other hand, the pseudo-orbital trans-
formations are still defined by the parity of the sublattices in
accordance to Eq. (15).

Going back to Eq. (4), we can rewrite the complete Hamil-
tonian for JH 
= 0 in terms of the rotated operators. Let us first
define the three auxiliary Hamiltonians:

HSU(4),ij = (
2s̃i · s̃j + 1

2

)(
2τ̃ i · τ̃ j + 1

2

)
, (17)

Hb,ij = 8s̃i · s̃j τ̃
y

i τ̃
y

j + 2
(
τ̃ x
i τ̃ x

j + τ̃ z
i τ̃ z

j

)+ 1
2 , (18)

H(γ )
c,ij = 3s̃

γ

i s̃
γ

j

[
4τ̃

y

i τ̃
y

j + 8τ̃
αβ

i τ̃
αβ

j − 3
(
τ̃

αβ

i − τ̃
αβ

j

)]
− 3s̃

γ

i s̃
γ

j − 8
(
s̃α
i s̃α

j τ̃
βγ

i τ̃
βγ

j + s̃
β

i s̃
β

j τ̃
γ α

i τ̃
γ α

j

)
+ 4

(
s̃α
i s̃α

j + s̃
β

i s̃
β

j − 1
2

)(
τ̃

βγ

i τ̃
γ α

j + τ̃
γ α

i τ̃
βγ

j

)
+

√
3
(
s̃α
i s̃α

j − s̃
β

i s̃
β

j

)(
˜̄ταβ

i − ˜̄ταβ

j

)
(19)

The complete Hamiltonian then reads

H̄
(γ )
ij = (Ja − Jb )HSU(4),ij + Jb Hb,ij + Jc H(γ )

c,ij . (20)

It is then clear that the SU(4) symmetry is lost once Jb and
Jc are nonzero. In Sec. III, we shall focus on the SU(4)-
symmetric model, but we will return to the question about the
effects of finite Hund’s coupling in Sec. IV.

III. CANDIDATE SPIN-LIQUID STATES
AT THE SU(4)-SYMMETRIC POINT

Inspired by the numerical evidence for a QSOL in the
SU(4) model on the honeycomb lattice [40], in this section
we investigate fermionic parton mean-field theories for the
model on the hyperhoneycomb lattice. While we cannot rule
out a symmetry-breaking ground state, the study of quantum
spin-orbital liquids will be justified a posteriori in Sec. III B
by showing that the corresponding variational states for the
hyperhoneycomb model have energies comparable to those
in the honeycomb model and that they are stable against
perturbations such as tetramerization.

A. Parton mean-field theory

We start with the representation that employs canonical
complex fermions [39,44,46]. First, we rewrite the four states
in the local basis |s̃z, τ̃ z〉 as

|1〉 = ∣∣ 1
2 , 1

2

〉
, |2〉 = ∣∣− 1

2 , 1
2

〉
,

|3〉 = ∣∣ 1
2 ,− 1

2

〉
, |4〉 = ∣∣− 1

2 ,− 1
2

〉
. (21)

With this notation, we can define the generators of the SU(4)
group,

Sn
m = |m〉〈n|, m, n = 1 . . . , 4, (22)

which obey the algebra[
Sn

m, Sn′
m′
] = δn,m′Sn′

m − δm,n′Sn
m′ . (23)

On the lattice, we define local generators Sn
m(i) at each site i,

which obey[
Sn

m(i), Sn′
m′ (j )

] = δij δnm′Sn′
m (i) − δij δmn′Sn

m′ (i). (24)

In terms of the local SU(4) generators, the Hamiltonian in
Eq. (16) can be written as

H̄eff = J
∑
〈ij〉

4∑
m,n=1

Sn
m(i)Sm

n (j ). (25)

We now introduce fermion creation operators f
†
m, with four

“colors” m = 1, . . . , 4 [40], by

|m〉 = f †
m|∅〉, (26)

where |∅〉 is the vacuum of the Fock space. The SU(4)
generators for each site j are represented by

Sn
m(j ) = f

†
jmfjn. (27)

The physical states obey the single-occupancy constraint∑
m

f
†
jmfjm = 1 ∀j. (28)

It follows from canonical anticommutation relations,
{fim, f

†
jn} = δij δmn, that the operators in Eq. (27) obey

the algebra in Eq. (24). This provides a fundamental
representation of SU(4) in terms of a four-component
fermionic spinor (fj1, fj2, fj3, fj4)T .

While the Hamiltonian in Eq. (25) is quartic in the fermion
operators, a quadratic Hamiltonian can be obtained using a
decoupling with symmetry-preserving parameters 〈f †

imfjm〉
[8]. We then consider the mean-field Hamiltonian

Hf = −
∑
〈ij〉

4∑
m=1

(χijf
†
imfjm + H.c.), (29)

where χij are the mean-field parameters that specify the spin-
liquid Ansatz. This kind of mean-field decoupling becomes
exact, for instance, in the case of the self-adjoint representa-
tion (with N/2 fermions per site for N even) of SU(N ) in the
limit N → ∞ [37,39]. In this limit, a saddle-point approxima-
tion in the fermionic action is justified and fluctuations of the
emergent gauge field can be neglected, rendering the fermions

195113-4



SU(4)-SYMMETRIC SPIN-ORBITAL LIQUIDS ON THE … PHYSICAL REVIEW B 98, 195113 (2018)

(a) (b)

FIG. 2. Representation of the (a) zero-flux and (b) π -flux states.
Each vertex corresponds to a basis point of the hyperhoneycomb
lattice as labeled in Fig. 1. Solid (dashed) lines represent bonds with
χij = +1 (χij = −1).

noninteracting. The ground state in this limit does not break
the SU(N ) symmetry (as oppposed to Néel-type states) and
can be either a valence bond solid or a quantum spin liquid.
More generally, the mean-field decoupling leading to Eq. (29)
has been used to generate variational wave functions for
SU(N ) models with finite N , for instance for the N = 4
model on the honeycomb lattice [40]. The validity of such
wave functions as approximations for the true ground state
has to be tested numerically by computing their corresponding
energies [53].

The hermiticity of Hf imposes χij = χ∗
ji . Following

Ref. [40], we consider Ansätze that preserve SU(4) as well as
time-reversal and crystalline symmetries and restrict ourselves
to χij ∈ R. Fixing χij = ±1, we can label physical states by
the gauge-invariant fluxes:

ei�(P ) =
∏

〈ij〉∈P

χij , (30)

where P is a ten-site elementary loop on the hyperhoneycomb
lattice (see Fig. 1 and Appendix A). There are two states with
uniform flux through all loops (see Fig. 2). The zero-flux state
[�(P ) = 0 ∀P ] can be described by assigning χij = +1 to all
bonds. The π -flux state [�(P ) = π ∀P ] is obtained by setting
χij = +1 on the bonds represented by solid lines in Fig. 2(b)
and χij = −1 on those represented by dashed lines. While
the zero-flux state could be represented using four sublattices,
the π -flux state requires the eight-sublattice representation
of the hyperhoneycomb lattice.

At the mean-field level, the single-occupancy constraint
is imposed on average,

∑
m〈�MF|f †

imfim|�MF〉 = 1, corre-
sponding to a quarter-filled Fermi sea. We can determine the
mean-field ground state |�MF〉 by diagonalizing the quadratic
Hamiltonian Eq. (29) for both zero-flux and π -flux states. We
obtain

Hf =
∑

k

8∑
λ=1

Eλ(k)f †
kλfkλ, (31)

where λ is the band index and fkλ annihilates a fermion
with momentum k in band λ. For the zero-flux state, we
have analytical expressions for the dispersion relations. They
can be written as E1 = E++

1 , E2 = E+−
1 , E3 = E−+

1 , E4 =
E−−

1 , E5 = E++
2 , E6 = E+−

2 , E7 = E−+
2 , E8 = E−−

2 , where

Epp′
n (k) = p

√
gn(k) + p′√[gn(k)]2 − |hn(k)|2, (32)

(a)

(b)

FIG. 3. Mean-field dispersion of fermions in the (a) zero-flux and
(b) π -flux states. The dashed line marks the Fermi level at quarter
filling. The high symmetry points of the Brillouin zone are specified
in Fig. 4. The energy scale in this plot is set by |χij | = 1.

with n = 1, 2 and p, p′ = ±, and we define the functions

g1(k) = 3 + 2 cos(2kz) cos(kx − ky ),

h1(k) = 2 cos(2kz)ei(kx+ky ) − e−i2(kx+ky ) + ei2kx + ei2ky ,

g2(k) = 3 − 2 cos(2kz) cos(kx − ky ),

h2(k) = 2 cos(2kz)ei(kx+ky ) + e−i2(kx+ky ) − ei2kx − ei2ky .

(33)

For the π -flux state, we were only able to find the dis-
persion relations numerically. More details are provided in
Appendix B. Figure 3 shows the dispersions for both zero-flux
and π -flux states. We note that the dispersions are particle-
hole symmetric, as expected since the lattice is bipartite.

The quarter-filling condition 〈f †
imfim〉 = 1/4 determines

the position of the Fermi level. The zero-flux state displays
a Fermi surface illustrated in Fig. 4. The two pieces of
Fermi surface depicted in yellow are connected by the vector
Q0 = ( π

3 , π
3 , π

3 ). This is a reciprocal lattice vector of the
face-centered orthorrombic lattice, i.e., the Bravais lattice of
the hyperhoneycomb lattice before doubling the unit cell.
Thus, the Fermi surface is not nested and this QSOL is at
least locally stable against (spin) density waves driven by
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FIG. 4. (a) Brillouin zone of the base-centered orthorhombic
lattice. (b) Fermi surface of the zero-flux state inside the Brillouin
zone. Different colors represent different bands in Eq. (32).

interactions beyond the mean-field level. On the other hand,
for the π -flux state, the Fermi level crosses Dirac points at the
high-symmetry points S, Z, and T. Close inspection reveals
that the dispersion in the vicinity of these Dirac points is
anisotropic. The spectrum in the neighborhood of S is linear
along two directions in k space but quadratic in the third
direction. The opposite is verified for the dispersion around
the Z and T points, which is quadratic along two directions
and linear in the third. Similar behavior has been discussed
for Dirac semimetals in two and three dimensions [54–56].

The mean-field ground state |�MF〉 for zero-flux and π -
flux states correspond to occupying all the single-fermion
states with energy Eλ(k) below the Fermi level. We obtain
a variational wave function in the physical Hilbert space by
imposing the local single-occupancy constraint Eq. (28) via
the Gutzwiller projection

|�phys〉 = Pf |�MF〉, (34)

where Pf = ∏
i [ 1

6ni (2 − ni )(3 − ni )(4 − ni )] with ni =∑
m f

†
imfim. In practice, the Gutzwiller projection is imple-

mented numerically on finite lattices using VMC, as we shall
discuss in Sec. III B.

Let us now discuss the parton mean-field theory gener-
ated by a Majorana fermion representation of pseudospin
and pseudo-orbital operators [33,51]. Using SU(4) ∼= SO(6),
we can represent the SU(4) generators using six Majorana
fermions {ηγ , θγ }, with γ = x, y, z, in the form

s̃γ = − i

4
εαβγ ηαηβ, (35)

τ̃ γ = − i

4
εαβγ θαθβ. (36)

The Majorana fermion operators obey the anticommutation
relations {ηα

j , η
β

j ′ } = 2δjj ′δαβ = {θα
j , θ

β

j ′ } and {ηα
j , θ

β

j ′ } = 0.
To deal with the Z2 gauge redundancy of this representation,
we must impose the local constraint

iηx
j η

y

j η
z
j θ

x
j θ

y

j θz
j = 1 ∀j. (37)

It follows from Eq. (37) that s̃α τ̃ β = − i
4ηαθβ . Thus, all the

SU(4) generators are quadratic in Majorana fermions.
It is convenient to construct three complex fermions from

the Majorana fermions as cjγ = (ηγ

j − iθ
γ

j )/2. In terms of
the three-component vector cj = (cjx, cjy, cjz), the model in

Eq. (16) reads [51]

H̄eff = J
∑
〈j l〉

[
1 − 1

2
(ic†j · cl − ic†l · cj )2

]
. (38)

The constraint in Eq. (37) can be written as∏
γ=x,y,z

(1 − 2c
†
jγ cjγ ) = 1 ∀j. (39)

In other words, the physical states are those with an even
number of c fermions at each site. As in the case of complex
fermions, we generate a variational wave function by consid-
ering the ground state of a free-fermion Hamiltonian. In this
case, the mean-field decoupling yields

Hc = − i

2

∑
〈j l〉

ξjl (c
†
j · cl − c†l · cj ). (40)

The values of ξjl are real numbers and must obey the relation
ξjl = −ξlj . Since the lattice is bipartite, we can choose that in
every bond 〈j l〉 the site j belongs to an even sublattice and l to
an odd sublattice. We then perform the gauge transformation
cj = ic̃j and c̃l = c̃l for all j, l. The mean-field Hamiltonian
becomes

Hc = −1

2

∑
〈j l〉

ξjl (c̃
†
j · c̃l + H.c.), (41)

which is formally identical to the mean-field Hamiltonian for
the f fermions in Eq. (29) if χij ∈ R. As a consequence,
the zero-flux and π -flux Ansätze for the Majorana fermion
representation generate the same spectrum as the one shown
in Fig. 3.

However, the enlarged Hilbert space in the Majorana
fermion representation is different. Contrary to the quarter
filling condition for complex f fermions, the average density
of c fermions is not constrained to a specific value. The
mean-field ground state in this parton construction is then
obtained by filling up all the negative-energy states in Fig. 3.
For the zero-flux state, the low-energy spectrum has nodal
lines like the ones in the exactly solvable Kitaev model
on the hyperhoneycomb lattice [15,18,24]. The nodal lines
are illustrated in Fig. 11 in Appendix B. The spectrum of
the π -flux state in Fig. 3(b) also shows nodal lines; in this
case we have observed numerically that there are pairs of
nodal lines connected by half of a reciprocal lattice vector of
the base-centered orthorhombic lattice. Having identified the
mean-field ground state, we obtain a trial wave function in
the physical Hilbert space using a Gutzwiller projector Pc =∏

j [ 1
2 + 1

2

∏
γ (1 − 2c

†
jγ cjγ )] to impose the Z2 constraint in

Eq. (37).

B. Variational Monte Carlo results

To assess the viability of the proposed parton mean-field
theories, we now enforce the local constraints exactly by
considering a Gutzwiller projection of the mean-field wave
functions [43].

For complex fermions, we use the mean-field ground state
from Eq. (29). Both the zero-flux and π -flux states are consid-
ered, see Fig. 2. To enforce the single-occupancy constraint in
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Eq. (28), we generate physically allowed real-space configu-
rations

∣∣{j 1
a

}
,
{
j 2
b

}
,
{
j 3
c

}
,
{
j 4
d

}〉 = 4∏
m=1

N/4∏
rm=1

f †
m(rm)|∅〉, (42)

where jm
a denotes the position, at site j , of the a-th fermion

with color m. The overlap of Eq. (42) with the mean-field
state is

�
({

j 1
a

}
,
{
j 2
b

}
,
{
j 3
c

}
,
{
j 4
d

}) =
4∏

m=1

�[{jm}]. (43)

Here, �[{jm}] is the Slater determinant for one fermion
species

�[{jm}] =

∣∣∣∣∣∣∣
ζ1
(
jm

1

)
ζ2
(
jm

1

) · · · ζN/4
(
jm

1

)
...

...
. . .

...
ζ1
(
jm
N/4

)
ζ2
(
jm
N/4

) · · · ζN/4
(
jm
N/4

)
∣∣∣∣∣∣∣, (44)

and ζν (j ) is the amplitude of the fermion at site j in the
νth eigenfunction of the mean-field Hamiltonian Eq. (29):
ζν (j ) ≡ 〈j |ν〉.

We carry on VMC calculation using this wave function. We
describe the hyperhoneycomb lattice as a base-centered or-
thorhombic lattice with an eight-point basis described in Ap-
pendix A, and thus the number of sites is given by N = 8L3,
with L = 3, 4, 5, and 6. We then randomly place each color
at N/4 sites of our lattice. Our Monte Carlo moves consist of
exchanging a random pair of sites containing distinct colors.
We allow for moves involving sites far away—and which
would not otherwise interact directly via the Hamiltonian—
because this improves the sampling over the space of con-
figurations. We accept or reject these moves according to the
general Metropolis algorithm. The probability of accepting or
rejecting each configuration is proportional to the weight of
the wave function

p{j} ∝
∣∣∣∣∣

4∏
m=1

�[{jm}]
∣∣∣∣∣
2

. (45)

After Nexc of such exchanges attempts, we are said to have
performed a Monte Carlo sweep, and after every sweep, we
compute the ground-state energy E0. Nwarm sweeps are per-
formed before measurements of physical quantities for “ther-
malization” while we consider Nmes measurements sweeps.
We typically use Nexc ∼ 103 and Nwarm = Nmes ∼ 105.

For the Majorana fermion representation of the pseudospin
and pseudo-orbital operators, we consider the mean-field
ground state from Eq. (41), already written in terms of the
three complex c fermions. Again, both the zero-flux and π -
flux states are considered, see Fig. 2. A Gutzwiller projection
of these mean-field states imposes that a site can either have
no c fermions, |∅〉, or two c fermions. For convenience, we
follow Ref. [51] and introduce three states:

|X〉 = c†yc
†
z|∅〉, |Y 〉 = c†zc

†
x |∅〉, |Z〉 = c†xc

†
y |∅〉. (46)

For any given configuration of these states, specified by the
real-space location of the |X〉, |Y 〉, and |Z〉 states (at sites
{xi}, {yj }, and {zm}, respectively), the projected wave function
assigns an amplitude �({xi}, {yj }, {zm}) to it. The locations of

FIG. 5. Variational Monte Carlo ground-state energy, per site
and in units of J , for the different mean-field states as a function
of the inverse of the particle number. The dashed lines are linear
extrapolations to the data.

the |∅〉 states are automatically specified. Once we have con-
structed the mean-field wave function, we generate a random
initial state in which we distribute each state, |X〉, |Y 〉, |Z〉,
and |∅〉, over N/4 distinct sites: {xi} = {x1, x2, . . . , xN/4}, etc.
As in the case of complex fermions, our Monte Carlo moves
consist of exchanging random pair of sites containing distinct
states and the algorithm works in the same way.

Figure 5 shows the VMC results for the ground state
energies of all four considered Ansätze at the different system
sizes. As we can see, the results do not vary much with
the system size and the extrapolated results for N → ∞ are
presented in Table I. The ground-state energies calculated
at the mean-field level are also shown for comparison. As
anticipated in Sec. III, the variational energies for the SU(4)
model on the hyperhoneycomb lattice are comparable with
those of the honeycomb lattice [40], providing support to the
feasibility of a spin-orbital liquid ground state. However, there
are two significant differences: (i) the projected wave func-
tion with the lowest variational energy is the zero-flux state
of complex fermions and (ii) the relative energy difference
between our best variational state and the next candidate, the
π -flux state for complex fermions, is roughly 2%, hinting at a
fiercer competition between the different variational states in
the hyperhoneycomb lattice.

The sizable differences between the energies indicate that
correlation effects beyond the parton mean-field theory are
important to determine the most competitive ground state
from our considered subset. This is equivalent to affirm that
interactions between partons mediated by gauge fields are
very important. However, we stress that strong interactions

TABLE I. Mean-field (EMF) and VMC (E0) ground-state energy,
per site and in units of J , for the different mean-field states.

Ansatz EMF E0/N

Complex fermions zero-flux 0.164 −0.825(1)
Complex fermions π -flux 0.168 −0.806(2)
Majorana fermions zero-flux −0.280 −0.783(1)
Majorana fermions π -flux −0.221 −0.757(1)
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FIG. 6. Graphical representation of a covering of tetramers on
the hyperhoneycomb lattice. Following Eq. (47), the larger magenta
disks indicate the sites in which the chemical potential is modified.
Likewise, the hopping amplitudes are modified on the magenta bonds
and leads to two types of nonequivalent bonds that are labeled
a and b.

do not necessarily mean that the noninteracting trial state is
qualitatively incorrect. One procedure to determine the stabil-
ity of a spin liquid against fluctuations assumes the mean-field
states as starting points, integrates the high-energy fermions,
and analyzes the effective action involving the gauge field
and low-energy fermions. If the resulting perturbations to the
noninteracting action are all irrelevant in the renormalization
group sense, the spin liquid is stable [57]. In the following,
we will study the stability of this QSOL with an alternative
approach, using VMC. We will study the energetics of a
modified wave function that incorporates the order parameter
� of a symmetry-breaking phase [58]. The QSOL will be
regarded as stable against the formation of a certain kind of
order if the minimum variational energy corresponds to the
case in which � = 0.

We will now check the stability of this variational state
against tetramerization [45]. In a tetramerized state, we ob-
serve the formation of four-site singlet plaquettes preserving
the SU(4) symmetry but breaking the translational symmetry
[44,45,59]. A possible tetramer covering of the hyperhoney-
comb lattice is illustrated in Fig. 6. The four-site plaquettes are
centered on sites in sublattices A1 and A6. We have tested the
stability of the zero-flux state against this tetramerization pat-
tern within VMC by considering variational wave functions
generated by the mean-field Hamiltonian

H ′
f = Hf +

∑
i

εif
†
i fi , (47)

where Hf is given by Eq. (29) with modulated order parame-
ters

χij =
{

t, if i ∈ A1 ∪ A6 or j ∈ A1 ∪ A6,

1, otherwise, (48)

and εi are sublattice dependent on-site energies given by

εi =
{
ε, i ∈ A1 ∪ A6

0, otherwise. (49)

Both ε and t are variational parameters. For ε = 0 and t = 1,
the mean-field Hamiltonian reduces to the one in Eq. (29) and
we recover the symmetric zero-flux Ansatz. For t > 1 (t <

1), the ground state of H ′
f corresponds to state with stronger

−0.4 −0.2 0.0 0.2 0.4 0.6

r

−0.83

−0.82

−0.81

−0.80

−0.79

−0.78

−0.77

−0.76

E
0/

N

L = 3

L = 4

FIG. 7. Variational Monte Carlo ground-state energy for the
zero-flux complex fermions Ansatz as a function of the tetrameriza-
tion order parameter r for two different system sizes.

(weaker) bonds inside the plaquettes represented in Fig. 6. In
the limit t → ∞, we would obtain a product state of four-site
singlets.

We compute the energy of the projected wave functions
as a function of ε and t using VMC as described above
for the spin-orbital liquid states. To quantify the degree of
tetramerization of the wave functions, we first define the
permutation operator on the links:

Pij =
4∑

m,n=1

Sn
m(i)Sm

n (j ). (50)

Notice that Eq. (25) implies that H̄eff = J
∑

〈ij〉 Pij . Beyond
the mean-field level, the tetramerization order parameter is
defined by [45]

r = 4
5 (Pa − Pb ), (51)

where Pa and Pb are the ground state expectation values of
Eq. (50) on the inequivalent bonds indicated by a or b in
Fig. 6, respectively. The parameter r = r (ε, t ) is normalized
such that r = 1 in the four-site plaquette product state. For
each value of ε, we select the value of t = tmin(ε) that gives
the lowest energy within VMC and compute the correspond-
ing tetramerization order parameter r = r (ε, tmin(ε)). Figure 7
shows the result for the energy as a function of r . There
is little dependence on the system size N = 8L3 for L = 3
compared to L = 4. The lowest energy is obtained for r = 0,
from which we conclude that the zero-flux state is stable
against tetramerization. The same conclusion was reached for
the π -flux state on the honeycomb lattice [45].

Since the zero-flux state was stable against tetrameriza-
tion, we now discuss its static spin-spin correlation function,
a quantity which we can, in principle, calculate with our
VMC approach through the average of the operator Pij −
1/4 [40]. At the mean-field level, the correlation function
of a three-dimensional system with a Fermi surface displays
the asymptotic behavior 〈Mz

i M
z
j 〉 ∼ |ri − rj |−α with α = 3.

Unfortunately, we were unable to verify corrections to α via
VMC because the sizes of the system we are able to simulate
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are not large enough to accurately evaluate α (this limitation
appears already in two-dimensional lattices [40,51]).

IV. COLOR-ORDERED STATES FOR FINITE
HUND’S COUPLING

Although the results in Sec. III allow us to argue for
a QSOL ground state on the SU(4) symmetric spin-orbital
model, perturbations breaking the SU(4) symmetry can favor
the onset of an ordered state. In this section, we investigate
if the perturbations induced by nonzero Hund’s coupling
(Eq.(20)) stabilize collinear spin-orbital orders on the hyper-
honeycomb lattice through a combination of LFWT and VMC
calculations.

Let us consider product states of the form

|�〉 =
⊗

i

|φi〉i , (52)

where |φi〉i is an arbitrary j = 3/2 state at a site i of the
hyperhoneycomb lattice. Equation (25) implies that the clas-
sical mean-field energy of these states at the SU(4)-symmetric
model is E = J

∑
〈ij〉 |〈φi |φj 〉|2. Therefore, the minimum

classical energy for |�〉 is E = 0 and is obtained for any
configuration in which the states of pairs of nearest-neighbor
spins are orthogonal. This is achieved by taking |φi〉 = |mi〉,
where the set of colors mi = 1, . . . , 4 specifies the classical
configuration and mi 
= mj when i, j are nearest neighbors.
Our study will be restricted to ordered states satisfying this
condition. On the hyperhoneycomb lattice, the colors are
assigned according to the sublattice as follows:

|�({mi})〉 =
8⊗

r=1

⊗
i∈Ar

|mr〉i . (53)

Specifically, we will investigate the simplest ordered states,
which are given by

two-color: {mr} = {a, b, a, b, a, b, a, b} ≡ {a, b}, (54)

four-color: {mr} = {a, b, c, d, b, a, d, c} ≡ {a, b, c, d},
(55)

where a, b, c, and d are mutually distinct colors. The four-
color state described by the color-ordering above is the analog
of the four-color state described on the honeycomb lattice in
Ref. [40].

Although the ordered states are conveniently written in
the rotated frame, their physical interpretation requires their
translation into the original pseudospin and pseudo-orbital
quantum numbers. For example, notice that the two-sublattice
transformation on the pseudo-orbitals in Eq. (15) implies
that the state {a, b} is not equivalent to {b, a}. This point is
illustrated by

{mr} = {1, 3}, {mr} = {2, 4}. (56)

These states represent a ferromagnetic order on s̃z and a
Néel order on τ̃ z. Applying the transformations given by
Eq. (12) and Eq. (15), these states correspond to a stripy
order on the pseudospins sz [24] and a ferromagnetic order on
the pseudo-orbitals, with τ z = +1/2. In terms of the dipoles
given by Eq. (7), {mr} = {1, 3} and {mr} = {2, 4} correspond

FIG. 8. Stripy phase with ordering in Mz = ±3/2. This is the
only collinear ordered state stable at the linear flavor wave theory
level among the two- and four-color ordered states.

to a stripy order with Mz = ±3/2, as represented in Fig. 8.
By contrast, the states {mr} = {3, 1} and {mr} = {4, 2} corre-
spond to stripy ordered states of Mz = ±1/2 dipoles.

We treat quantum fluctuations on top of the color-ordered
states using a Holstein-Primakoff transformation for the gen-
erators of SU(4) [46]. The explicit forms of s̃a, τ̃ b, s̃a τ̃ b in
terms of these generators are given in Appendix C and are
used to rewrite Eq. (20). Next, at each site i in a given
sublattice Ar , with classical state mr , we define three flavors
of bosons birn, n ∈ {1, . . . , 4} \ {mr}, which obey canonical
commutation relations [birn, b

†
jr ′n′] = δij δrr ′δnn′ . The local op-

erators are given by

Smr

mr
(i) = 1 −

∑
n
=mr

b
†
irnbirn, (57)

Smr

n (i) = b
†
irn

√
1 −

∑
l 
=mr

b
†
irlbirl , n 
= mr, (58)

Sl
n(i) = b

†
irnbirl, l, n 
= mr. (59)

With three bosons per site and eight sublattices, we have in
total 24 flavors of bosons.

Within LFWT, we substitute the Holstein-Primakoff trans-
formation into Hamiltonian Eq. (20) and expand the latter
to quadratic order in the bosonic operators. After a Fourier
transform to momentum space, the LFWT Hamiltonian can
be cast in the form

Hf w =
∑

k

(B†
k, B−k )

(H11(k) H12(k)
H†

12(k) H22(k)

)(
Bk

B
†
−k

)

− 3

2
N (Ja + Jb + 5Jc ), (60)

where Bk is the 24-component vector of boson annihilation
operators and Hab, with a, b = 1, 2, are 24 × 24 matrices.
Finally, the Hamiltonian is diagonalized by a Bogoliubov
transformation and we obtain

Hf w = −3

2
N (Ja + Jb + 5Jc ) +

∑
k

24∑
λ=1

�λ(k)

+
24∑

λ=1

∑
k

�λ(k)(�†
kλ�kλ + �

†
kλ�kλ), (61)
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where �λ(k) are the dispersion relations of the “magnons”
created by the operators �

†
kλ and �

†
kλ. It is important to

point out that real values for �λ(k) can be ensured only
if the classical state corresponds to a local minima of the
mean-field theory. Henceforth, only ordered states satisfying
this condition will be regarded as stable.

The four-color states given by Eq. (55) were found to
be unstable at the LFWT approximation, since infinitesimal
values of Hund’s coupling generates imaginary frequencies
in the dispersion �λ(k). Indications of this instability appear
already at the SU(4)-symmetric point, where they display
zero-energy flat bands �λ(k) = 0 for all λ and k that lead
to the zero-point energy E = −1.5NJ . This remarkably low
energy is achieved because Hf w is the sum of two-site dis-
connected clusters throughout the lattice [40,60]. The zero-
point fluctuations are then minimized, ensuring an energy
gain of −J per bond. Such a characteristic of Hf w also
implies that the four-colored states on the hyperhoneycomb
lattice display a degeneracy analogous to the one observed
on the honeycomb lattice [40]. This indicates the absence of
lattice symmetry breaking and contradicts the formation of
an ordered state [40]. Hence, four-colored states are not good
candidates for the ground state of Eq. (20).

Let us now consider the LFWT approximation of the two-
color ordered states starting from the SU(4)-symmetric point.
Using the Holstein-Primakoff transformation on Eq. (18), the
LFWT Hamiltonian will be determined by [40]

HSU(4),ij → Z
†
ij,ms(i),ms(j )

Zij,ms(i),ms(j ) − 1, (62)

where Zij,ms(i),ms(j ) = bj,s(j ),ms(i) + b
†
i,s(i),ms(j )

with s(x) being
the sublattice index of the site x. If we first define

p1(k) = 2 cos(kx − ky ) cos(2kz),

p2(k) = 5 − cos[2(kx − ky )] + 2 cos[2(2kx + ky )]

+ 2 cos[2(kx + 2ky )] − 2 cos(4kz) sin2(kx − ky ),

p3(k) = 8 cos(2kx + ky ) cos(kx + 2ky ) cos(2kz), (63)

the analytical expressions for the flavor-wave dispersion in
this case are

ε1(k) = J

2

√
6 − p1(k) −

√
p2(k) + p3(k),

ε2(k) = J

2

√
6 − p1(k) +

√
p2(k) + p3(k),

ε3(k) = J

2

√
6 + p1(k) −

√
p2(k) − p3(k),

ε4(k) = J

2

√
6 + p1(k) +

√
p2(k) − p3(k). (64)

The bands above are twofold degenerate and are displayed in
Fig. 9(a). The spectrum also presents 16 degenerate flat bands
with zero energy, which will be explained below.

The similar behavior of all two-color states on the SU(4)
symmetric point contrasts with the different ways they are
affected by finite Hund’s coupling perturbations. For η =
JH /U > 0, only the Mz = 3/2 stripy states display real and
non-negative energies �λ(k) for all λ and k up to η ≈ 0.125.
Finite Hund’s coupling also includes flavors on Hf w that

(a)

(b)

FIG. 9. Linear flavor-wave dispersion of the Mz = ±3/2 stripy
phase for (a) η = JH /U = 0 and (b) η = JH /U = 0.1. (a) shows
the spectra of eight bands, 16 degenerate bands with zero energy, and
Goldstone modes at the � point. (b) shows the dispersion of the 24
bands after the inclusion of Hund’s coupling induced perturbations.
The lack of Goldstone modes is due to the absence of continuous
symmetry on the underlying Hamiltonian.

were not explicitly present at the SU(4)-symmetric point. For
example, the Hb,ij given by Eq. (19) for the {1, 3} state gives
rise to

Hb,ij → Z
†
ij,1,3Zij,1,3 − 1 + b

†
i,s(i),4bi,s(i),4 + b

†
j,s(j ),2bj,s(j ),2

− b
†
i,s(i),4bj,s(j ),2 − b

†
j,s(j ),2bi,s(i),4. (65)

The LFWT Hamiltonian of Hc,ij [Eq. (19)] also leads to the
inclusion of other flavors and ensures that the eigenstates of
the complete Hamiltonian are bogolons. Figure 9(b) shows the
24 flavor-wave bands of the stripy state for η = 0.1, in which
the 16 lower-energy bands are nondegenerate. In contrast to
the SU(4)-symmetric case, there is no Goldstone boson at
� for η > 0, since all continuous symmetries are explicitly
broken by Hb,ij and Hc,ij . The widths of the lower-energy
bands vanish in the limit η → 0+ and all these bands become
degenerate at ω = 0, providing an explanation for the flat
bands shown in Fig. 9(a).

The zero-point energy of the stripy state at the LFWT level
is displayed in Fig. 10(a). The energy of the stripy state at
the SU(4) symmetric point is Estripy ≈ −0.3079NJ , close to
the value of E ≈ −0.314NJ found for the two-color ordered
states on the honeycomb lattice [47]. Although this energy is
not variational, it is significantly higher than the ones of the
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FIG. 10. (a) Energy per site of three different states as a function
of the ratio η = JH /U . The energy of the stripy phase was estimated
using linear flavor-wave theory, whereas the energy of the QSOLs
based on complex fermions was evaluated with VMC. (b) VMC
ground-state energy for zero-flux complex fermions in the presence
of a staggered potential favoring stripy order. The four curves corre-
spond to different values of the local moment m.

previously studied QSOLs and indicates that the stripy phase
is not competitive at this point. Nevertheless, the zero-point
energy decreases with increasing values of Hund’s coupling.
This prompted us to calculate the energy of the complex
fermion QSOLs for the perturbed Hamiltonian in Eq. (20)
using VMC. These results are also displayed in Fig. 10(a) and
indicate that the QSOL states remain energetically favored
even in the perturbed model.

Variational results in favor of the QSOL stability against
the formation of the stripy order were also found using VMC.
To include magnetic orders in our variational scheme, we
add a color dependent local site energy ε̃im to the mean-field
Hamiltonian in Eq. (29), which define our trial states:

H′′
f = Hf −

∑
i

4∑
m=1

ε̃imf
†
imfim. (66)

In particular, we consider the stripy order listed in Eq. (54)
on top of the complex fermions zero-flux Ansatz. We do so
by setting ε̃i1(3) = ε̃ in sublattices Aodd (Aeven ), with ε̃i1(3) =
0 otherwise. The local moment associate to this order is
given by

m = 4

N

[∑
i∈Aodd

〈f †
i1fi1〉 +

∑
i∈Aeven

〈f †
i3fi3〉

]
− 1. (67)

We then have that m = 0 for ε̃ = 0 and m → 1 as ε̃ → ∞.
In Fig. 10(b), we show the resulting ground-state energy for
different values of m as a function of η. We clearly see
that states with m > 0, displaying stripy order, have higher
energy than the SU(4)-symmetric QSOL. We thus confirm
the LFWT results showing that this spin-liquid state is not
unstable toward collinear ordering for any value of η.

V. CONCLUSIONS

We have derived an effective model for 4d1 and 5d1 Mott
insulators in tricoordinated lattices in the limit of strong spin-
orbit coupling. For vanishing Hund’s coupling, the model for
j = 3/2 local moments has an SU(4) symmetry which can
be made explicit using a Klein transformation. We then used
fermionic parton mean-field theories to propose QSOL states
on the hyperhoneycomb lattice. VMC simulations showed that
the lowest-energy trial wave function is a Fermi sea of com-
plex fermions at quarter filling with zero gauge flux through
every plaquette. In contrast with the nodal-line spectrum of
the Kitaev model on the hyperhoneycomb lattice, the zero-flux
state of complex fermions has a large Fermi surface. We
could verify that this does not translate into instability against
tetramerization. The simplest ordered states were studied in
the minimal model for arbitrary values of Hund’s coupling
through a combination of LFWT and VMC and we could
confirm that they are energetically uncompetitive. Our present
results do not indicate a transition from a spin-orbital liquid
state to an ordered one through the studied perturbations.

In the j = 1/2 material β-Li2IrO3, sizable Heisenberg
exchange interactions move the system away from the Kitaev
spin-liquid phase and lead to incommensurate noncoplanar
magnetic order [19]. Ab initio studies on this compound in-
dicated that interactions driven by other hopping mechanisms,
longer-range interactions and slight distortions are essential to
understand its ground state [28]. One important open question
is if such perturbations to the SU(4)-symmetric model would
also appear on the hypothetical j = 3/2 counterpart of this
iridate and induce an analog incommensurate spin-orbital
order.

Reference [36] mentions that 4/5d1 materials could be
synthesized from an oxide A2MO3 (M=Nb, Ta) or in the Zr-
and Hf-based metal-organic frameworks. If such a compound
was synthesized with the hyperhoneycomb lattice structure,
one could look for signatures of the zero-flux spin-orbital
liquid in the temperature dependence of the magnetic specific
heat C(T ). The prediction for a Fermi surface of fermionic
partons coupled to a U(1) gauge field is C(T )/T ∼ − ln T

at low temperatures [61,62]. This differs significantly from
the prediction for the Kitaev spin liquid, in which C(T )/T

vanishes linearly with temperature [24].
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APPENDIX A: THE IDEAL HYPERHONEYCOMB
LATTICE

Here we present the description of the hyperhoneycomb
lattice as a base-centered orthorhombic lattice with an eight-
point basis. The position of the basis is given by

M1 = (0, 0, 0), M2 = (1, 1, 0), M3 = (1, 2, 1),

M4 = (2, 3, 1), M5 = (3, 3, 2), M6 = (4, 4, 2),

M7 = (4, 5, 3), M8 = (5, 6, 3). (A1)

We consider the following primitive lattice vectors of the
base-centered orthorhombic lattice:

a1 = (2, 4, 0), a2 = (−2, 2, 0), a3 = (0, 0, 4). (A2)

The corresponding reciprocal lattice vectors are

b1 =
(π

3
,
π

3
, 0
)
, b2 =

(
−2π

3
,
π

3
, 0

)
, b3 =

(
0, 0,

π

2

)
.

(A3)

The high-symmetry points in the first Brillouin zone are given
by

� = (0, 0, 0), X1 =
(

−7π

18
,

π

18
, 0

)
, Y =

(π

6
,
π

6
, 0
)
,

T =
(π

6
,
π

6
,
π

4

)
, A1 =

(
−7π

18
,

π

18
,
π

4

)
,

Z =
(

0, 0,
π

4

)
, S =

(
−π

6
,
π

3
, 0
)
, X =

(
−5π

18
,

5π

18
, 0

)
,

A =
(

−5π

18
,

5π

18
,
π

4

)
, R =

(
−π

6
,
π

3
,
π

4

)
. (A4)

There are four distinct ten-site elementary loops on the
hyperhoneycomb lattice. In terms of the basis points defined
in Eq. (A1), the loops are (see Fig. 1):

P1 : 1 → 2 → 3 → 4 → 5 → 8

→ 7 → 6 → 5 → 4 → 1,

P2 : 1 → 2 → 3 → 6 → 5 → 8

→ 7 → 6 → 3 → 4 → 1,

P3 : 1 → 2 → 7 → 6 → 5 → 4

→ 3 → 6 → 7 → 8 → 1,

P4 : 1 → 2 → 7 → 8 → 5 → 4

→ 3 → 6 → 5 → 8 → 1. (A5)

This can be used to check that the Ansatz in Fig. 2(b) has
gauge flux � = π through all loops.

APPENDIX B: EXPLICIT FORM OF THE MATRICES
GENERATING THE TRIAL WAVE FUNCTIONS

After fixing the bond variables χij in the zero-flux or π -
flux state, we can diagonalize the mean-field Hamiltonian in
Eq. (29) using Fourier transform. Since the four colors are
decoupled at the mean-field level, here we drop the index m =

1, . . . , 4. The Hamiltonian for each color has the form

Hf =
∑

k

8∑
r,r ′=1

f
†
kr [H�(k)]rr ′fkr ′ , (B1)

where k is a vector in the first Brillouin zone of the base-
centered orthorhombic lattice, r, r ′ are the sublattice indices,
and H�(k) are 8 × 8 matrices labeled by the uniform gauge
flux � = 0, π . Here we use the notation

�abc = σa ⊗ σb ⊗ σ c, (B2)

where a, b, c ∈ {0, 1, 2, 3} with σ 0 = I2×2 the identity matrix
and σ 1,2,3 = σx,y,z the Pauli matrices. The Hamiltonian matri-
ces for the zero-flux and π -flux states are given, respectively,
by

H0(k) = − cos(kx + ky )�001 − sin(kx + ky )�002

+ cos kz(− cos ky�
011 + sin ky�

012)

+ sin kz(− cos ky�
021 + sin ky�

022)

+ cos kz(− cos kx�
111 + sin kx�

112)

− sin kz(− cos kx�
121 + sin kx�

122), (B3)

Hπ (k) = − 1
2 [cos(kx + ky )�001 + sin(kx + ky )�002]

+ 1
2 [cos(kx + ky )�031 + sin(kx + ky )�032]

− 1
2 [cos(kx + ky )�301 + sin(kx + ky )�302]

− 1
2 [cos(kx + ky )�331 + sin(kx + ky )�332]

+ sin(kz)(− cos kx�
211 + sin kx�

212)

+ cos(kz)(− cos kx�
221 + sin kx�

222)

− sin(kz)(sin ky�
311 + cos ky�

312)

+ cos(kz)(sin ky�
321 + cos ky�

322). (B4)

Figure 11 shows the nodal line of the zero-flux state. We
note that the nodal line occurs on the boundary of the first
Brillouin zone of the face-centered orthorhombic lattice in the
four-sublattice representation of the hyperhoneycomb lattice,
cf. Ref. [24].

FIG. 11. Nodal line (red) of the zero flux state. The thin black
lines represent the edges of the first Brillouin zone of the base-
centered orthorhombic lattice.

195113-12



SU(4)-SYMMETRIC SPIN-ORBITAL LIQUIDS ON THE … PHYSICAL REVIEW B 98, 195113 (2018)

APPENDIX C: SPIN-ORBITAL OPERATORS
IN TERMS OF SU(4) GENERATORS

Here we present the 15 operators sa, τ b and saτ b in terms
of the SU(4) generators Sn

m defined in Eq. (22):

sx = 1

2

∑
m=1,3

(
Sm+1

m + Sm
m+1

)
, (C1)

sy = 1

2i

∑
m=1,3

(
Sm+1

m − Sm
m+1

)
, (C2)

sz = 1

2

∑
m=1,3

(
Sm

m − Sm+1
m+1

)
, (C3)

τ x = 1

2

∑
n=1,2

(
Sn+2

n + Sn
n+2

)
, (C4)

τ y = 1

2i

∑
n=1,2

(
Sn+2

n − Sn
n+2

)
, (C5)

τ z = 1

2

∑
n=1,2

(
Sn

n − Sn+2
n+2

)
, (C6)

sxτ x = 1

4

(
S4

1 + S3
2 + H.c.

)
, (C7)

sxτ y = 1

4i

(
S4

1 + S3
2

)+ H.c., (C8)

sxτ z = 1

4

(
S2

1 − S4
3 + H.c.

)
, (C9)

syτ x = 1

4i

(
S4

1 − S3
2

)+ H.c., (C10)

syτ y = 1

4

(−S4
1 + S3

2 + H.c.
)
, (C11)

syτ z = 1

4i

(
S2

1 − S4
3

)+ H.c., (C12)

szτ x = 1

4

(
S3

1 − S4
2 + H.c.

)
, (C13)

szτ y = 1

4i

(
S3

1 − S4
2

)+ H.c., (C14)

szτ z = 1

4

(
S1

1 − S2
2 − S3

3 + S4
4

)
. (C15)
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