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We introduce a method to carry out zero-temperature calculations within density functional theory (DFT)
but without relying on the Born-Oppenheimer (BO) approximation for the ionic motion. Our approach is
based on the finite-temperature many-body path-integral formulation of quantum mechanics by taking the
zero-temperature limit and treating the imaginary-time propagation of the electronic variables in the context
of DFT. This goes beyond the familiar BO approximation and is limited from being an exact treatment of both
electrons and ions only by the approximations involved in the DFT component. We test our method in two simple
molecules, H2 and benzene. We demonstrate that the method produces a difference from the results of the BO
approximation which is significant for many physical systems, especially those containing light atoms such as
hydrogen; in these cases, we find that the fluctuations of the distance from its equilibrium position, due to the
zero-point motion, is comparable to the interatomic distances. The method is suitable for use with conventional
condensed-matter approaches and currently is implemented on top of the periodic pseudopotential code SIESTA.
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I. INTRODUCTION

The physical properties of solids and molecules can be
determined computationally by generating many realizations
of the system, described by its electronic and ionic degrees
of freedom, and sampling the quantities of interest during the
numerical simulation. A common approach is to separate the
electronic and ionic motion, known as the Born-Oppenheimer
(BO) approximation, justified by the large mass difference
between electrons and ions and the large separation between
electronic energy eigenvalues. Within the BO approximation,
the ions may be treated as classical or quantum-mechanical
particles; in either case, an effective interaction potential be-
tween ions can be obtained by solving the electronic problem
for each instantaneous ionic configuration, and then using
molecular dynamics [1,2] or Monte Carlo simulations to
generate configurations for sampling the system’s properties.

In several situations, a quantum-mechanical treatment of
the ionic degrees of freedom is mandatory. A case in point
is that of liquid and solid helium [3], 4He, or helium films
on various substrates [4]. In these situations, there are several
approaches for capturing the effect of ionic motion by path-
integral Monte Carlo (PIMC), with the electronic degrees of
freedom integrated out through the effective interaction they
produce between ions within the BO approximation. One can
then sample the atomic configurations using PIMC, as in the
original work of Pollock and Ceperley [5]. In the case of 4He
it has been deemed reasonable to ignore the electronic degrees
of freedom altogether at very low temperature, because 4He is
a closed-shell atom in which the first excited atomic state is
several eV above the ground state. At low temperature, where
the average kinetic energy of the atoms due to their zero-point

motion (ZPM) is of order 10−3 eV per atom, they behave
as “elementary” particles, that is, they do not exhibit their
internal structure as it is extremely unlikely to become excited
through such low-energy collisions. The effective interatomic
potential in this case can be simply modeled by a Lennard-
Jones-type interaction. Similar empirical-potential and tight-
binding path-integral approaches have been applied in solids
[6–10]. In more general situations, the disentanglement of the
electronic and ionic degrees of freedom might not be possible
[11–16] and accurate approaches have been developed to treat
the full electron-ion problem [17–25]. With these approaches,
however, it is presently difficult to go beyond smaller systems.
A recent development is a multicomponent extension of the
density functional theory [26] (DFT) which treats both elec-
tronic and nuclei degrees of freedom in the density functional
[27,28]. The construction of the electron-ion density func-
tional is a difficult problem, however, and approximations,
including the BO approximation, are employed in practice
[29,30].

A useful and general approach, which has proven quite
satisfactory in many applications, is to treat only the electrons
within DFT. This approach can serve as the basis for path-
integral simulations of ionic motion, where the problem of
a quantum-mechanical treatment of ions maps to a classical
problem of ring polymers [31,32] interacting by means of the
electronic stationary-state energy for the instantaneous atomic
configuration of each bead of the ring polymer [33–43]. This
formulation is within the BO approximation and ignores the
role of the electronic excitations for a given ring-polymer con-
figuration which contributes to the path integral over atomic
coordinates.
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Here, working in the zero-temperature limit, we introduce
an approach that goes beyond the BO approximation and is ex-
act in the context of the method chosen to solve the electronic
problem. We choose DFT for handling the electronic degrees
of freedom, although any other approximation with a tractable
time evolution of the electronic wave functions can also be
implemented in our method. As far as including the quantum
fluctuations of the atomic positions is concerned, we use
the path-integral formulation. In particular, we find the exact
eigenstate of the electronic evolution operator of the entire
effective ring polymer which represents the atomic space-time
path in imaginary time. This becomes possible because we
use the evolution operator within the DFT formulation that
reduces to an effective single-particle-like evolution, which
has to be solved self-consistently. This yields a self-consistent
space-time electronic density, thus incorporating “exactly”
within DFT the imaginary-time correlations of the density. As
a result, our method introduces the concept of an electronic
super wave function which is a space-time-correlated state of
the electrons in the entire pseudo-ring-polymer representing
the space-time Feynman path of the atomic configuration in
Euclidean (imaginary) time. Thus, our choices allow us to
effectively include the contribution of all virtual electronic
excitations. Finally, as in other quantum simulation methods,
our method employs a periodic supercell which includes all
the atoms for single molecules while in the case of crystalline
solids it must involve a large enough number of primitive unit
cells to limit the role of finite-size effects.

To test the method, we apply it to two model systems,
the hydrogen and the benzene molecules. We find that the
size of the root-mean-square (rms) radius due to the ZPM
of the hydrogen atom is comparable to typical interatomic
distances. In this case, we expect that the evolution of the
electronic states and the ionic motion should be correlated.
We also find that the energy difference between our method
and BO approximation-based approaches to this problem is
approximately 5 meV per atom even in the hydrogen molecule
that has a wide energy gap between occupied and unoccupied
electronic states. An energy difference on this scale can be
important in properly describing low-temperature properties
and phases of materials, such as the determination of a charge
density wave or solidification of a system which contains
hydrogen or other light atoms. Furthermore, since life is
a subtle phenomenon which is severely affected when the
average energy per atom of the biological system is raised by
∼1 meV (∼10 K), 5 meV per atom is an energy scale which
may have dramatic effects in living matter. Since biological
systems contain plenty of hydrogen atoms that participate
in important hydrogen-bonded structures, their microscopic
treatment might benefit from the method presented here.

The paper is organized as follows. In the following section
we present the method and in Sec. III its implementation.
In Sec. IV we apply the method to two prototypical small
systems, the H2 and the benzene molecules, and present our
conclusions based on these results in Sec. V.

II. DESCRIPTION OF THE METHOD

The method is described in three steps: first, the propaga-
tion in imaginary time within the DFT Hamiltonian, next the

many-body path integral form of the partition function within
the DFT treatment of the electronic degrees of freedom, and
finally the extraction of the exact ground state of the combined
ion-electron system within the DFT scheme.

A. DFT imaginary-time propagation

In real-time time-dependent DFT (TDDFT) the time-
dependent electronic density is obtained as the solution to the
equation:

Ĥsp

{ �R}[n(t ), �r]|ψl (t )〉 = ih̄∂t |ψl (t )〉, (1)

starting from a given initial set of orbitals |ψn(0)〉. Here,
for simplicity, the adiabatic approximation is used, that
is, the electronic single-particle Hamiltonian Ĥsp

{ �R} is a

functional of the instantaneous electronic density n(�r, t ) =∑
l ψ

∗
l (�r, t )ψl (�r, t ). Namely, the single-particle Hamiltonian

consists of the kinetic energy, the external potential for the
electrons Vext (�r − �RI ), the Hartree potential VH [n, �r], and the
exchange-correlation potential Vxc[n, �r] terms:

Ĥsp

{ �R}[n, �r] = − h̄2

2me

∇2
�r +

Nion∑
I=1

Vext (�r − �RI )

+VH [n, �r] + Vxc[n, �r], (2)

VH [n, �r] = e2
∫

n(�r ′)
|�r − �r ′|d

3r ′. (3)

The dependence of the Hamiltonian on ionic coordinates,
collectively denoted by { �R}, is indicated by the subscript.
The iterative solution to the analytically continued TDDFT
equations to imaginary time

Ĥsp

{ �R}[n(τ ), �r]|ψl (τ )〉 = −∂τ |ψl (τ )〉, (4)

where τ = it/h̄, can be formally written as

|ψl (τ )〉 = T̂ exp

[
−

∫ τ

0
Ĥsp

{ �R}[n(τ ′), �r]dτ ′
]
|ψl (0)〉, (5)

where T̂ is the time-ordering operator. It is straightforward
to show that starting from a complete and orthonormal set
of initial states |ψl (0)〉, after infinite imaginary-time τ (in
practice longer than h̄/�ε, where �ε is the minimum energy-
level spacing) the solutions to these equations are the correct
static DFT eigenstates [44,45]. The evolution under imagi-
nary time projects the lowest energy eigenstate which is not
orthogonal to the initial state. Since we start from a state
characterized by definite quantum numbers, which include the
wave vector �k and band index, the minimum energy spacing
is not necessarily zero in the subspace defined by fixing these
quantum numbers.

B. Finite-temperature formulation

We next wish to calculate the average expectation value of
a given observable Ô as usual

〈〈Ô〉〉 = Tr(ρ̂Ô)

Tr(ρ̂)
, (6)
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where the trace refers to averaging over all possible ionic
configurations { �R} and over a complete basis of electronic
states. The total contribution to the statistical density matrix
ρ̂ is given as ρ̂ = exp(−βĤ), where Ĥ is the many-body
Hamiltonian operator for the ion-electron wave function. The
average 〈〈Ô〉〉 can be carried out using Feynman paths in
imaginary time [46,47], by writing

e−βĤ = e−�τĤe−�τĤ · · · e−�τĤ, (7)

where K�τ = β (K is the number of terms in the above
product). We can introduce complete sets of states, namely,∫ Nion∏

I=1

d �R(j )
I

∣∣ �R(j )
I

〉〈 �R(j )
I

∣∣∑
nj

∣∣�nj

〉〈
�nj

∣∣ = 1̂, (8)

K − 1 times, between each j th pair of exponentials. We have
chosen the electronic states to be the ion-independent states
|�nj

〉, which denote Nele × Nele Slater determinants of all pos-
sible selections of Nele orbitals from the entire single-particle
Hilbert space spanned by a suitable complete single-particle
basis: ∑

nj

∣∣�nj

〉〈
�nj

∣∣ = 1̂ele. (9)

Applying the Trotter expansion for the ionic coordinates and
the ionic kinetic energy operator and integrating out interme-
diate electronic states we get

Z =
∫

D �R e−SE

∑
n1

〈
�n1

∣∣ exp(−�τĤ{ �R(1)})

×
∑
n2

∣∣�n2

〉〈
�n2

∣∣ exp(−�τĤ{ �R(2)})

×
∑
n3

∣∣�n3

〉〈
�n3

∣∣ · · · exp(−�τĤ{ �R(K )})
∣∣�n1

〉

=
∫

D �R e−SE

∑
n1

〈
�n1

∣∣ K∏
j=1

exp(−�τĤ{ �R(j )})
∣∣�n1

〉
,

(10)

〈〈Ô〉〉= 1

Z

∫
D �R e−SE

∑
n1

〈
�n1

∣∣Ô K∏
j=1

exp(−�τĤ{ �R(j )})
∣∣�n1

〉
,

(11)

D �R ≡
K∏

j=1

Nion∏
I=1

d �R(j )
I , (12)

SE ≡
Nion∑
I=1

K∑
j=1

MI

2h̄2�τ

∣∣ �R(j+1)
I − �R(j )

I

∣∣2
, (13)

where Z is the partition function Z = Tr[e−βĤ] and Ĥ{ �R(j )}
is the electronic Hamiltonian at ionic positions collectively
denoted as { �R(j )}. ∫

D �R stands for integration over all K

time slices. The path integral is over all possible ionic paths in
imaginary time which start at { �R(1)} and end at { �R(K+1)} =
{ �R(1)} at imaginary time h̄β, that is, periodic boundary
conditions in imaginary time are imposed. Under usual

circumstances the ionic exchanges have a very small contri-
bution and we have neglected them for simplicity. They can
be introduced by sampling of the crossover ionic paths [5].

We now use TDDFT to map the many-body to single-
particle propagators:

e
−�τĤ{ �R(j )} → T̂ (j ),

T̂ (j ) = T̂ exp

[
−

∫ j�τ

(j−1)�τ

Ĥ{ �R(j )}[n(τ ′)]dτ ′
]
, (14)

where

Ĥ{ �R}[n] =
Nele∑
i=1

Ĥsp

{ �R}[n, �ri] + �E{ �R}[n], (15)

�E{ �R}[n] ≡
∑
I<J

Z2e2

| �RI − �RJ | − 1

2

∫
VH [n, �r]n(�r )d3r

+Exc[n] −
∫

Vxc[n, �r]n(�r )d3r. (16)

The first term in �E{ �R} is the total ion-ion electrostatic repul-
sion term and the last three terms are the so-called “double-
counting” terms, which arise due to the auxiliary nature of the
DFT equations [26,48,49]. The final expression is given by

〈〈Ô〉〉 = 1

Z

∫
D �R e−SE

∑
n1

〈
�n1

∣∣Ô K∏
j=1

T̂ (j )
∣∣�n1

〉
, (17)

Z =
∫

D �R e−SE

∑
n1

〈
�n1

∣∣ K∏
j=1

T̂ (j )
∣∣�n1

〉
. (18)

C. Exact electronic imaginary-time propagation

Next we present a method for carrying out an exact prop-
agation of the electronic state in the many-body path integral.
This is practically possible because the electronic sector is
described with DFT. We implement this as follows: We draw
a space-time atomic configuration �R ≡ { �R(j )} for all Nion

ions and at all time slices j = 1, 2, . . . , K , that is, for the
whole ring polymer. The space-time atomic configuration is
selected from the Gaussian distribution e−SE . First, given
such an atomic configuration, we are interested in finding the
electronic spectrum, that is, the eigenstates and eigenvalues of
the operator

T̂
(K )

( �R) ≡
K∏

j=1

T̂ (j ). (19)

Imagine that we have found the eigenstates |�(K )
k ( �R)〉 of this

operator, that is,

T̂(K )( �R)
∣∣�(K )

k ( �R)
〉 = �k ( �R)

∣∣�(K )
k ( �R)

〉
, (20)

where k labels the eigenstate of the whole system. Since
�E{ �R(j )} does not depend on the local electron coordinates
�ri it can be treated as a constant contribution; moreover,
while this contribution is changing during the electronic time
evolution because the density changes, it does not affect the
electronic wave functions. Then, we can use these eigenstates,
which form a complete set, to calculate the trace over the
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electronic degrees of freedom in Eq. (18), instead of the DFT
eigenstates. These eigenstates provide more information about
the electronic states of the entire “polymer,” that is, the space-
time atomic configuration, as opposed to using the eigenstates
of one particular electronic configuration. Equation (18) takes
the following form:

〈〈Ô〉〉 = 1

Z

∫
D �R e−SE

×
∑

k

�k

〈
�

(K )
k ( �R)

∣∣Ô∣∣�(K )
k ( �R)

〉
, (21)

Z =
∫

D �R e−SE

∑
k

�k ( �R). (22)

At low temperature only the highest eigenvalue �max( �R) will
contribute, that is, we will have �max( �R) = exp[−Sele( �R)]
where we call the quantity Sele the “electronic action.” The
low-temperature limit is equivalent to infinitely long imagi-
nary time, in which case only the space-time configurations
of lowest action contribute. Thus, we obtain

〈〈Ô〉〉 = 1

Z

∫
D �R e−SE �max( �R)O( �R), (23)

O( �R) ≡ 〈
�

(K )
0 ( �R)

∣∣Ô∣∣�(K )
0 ( �R)

〉
, (24)

Z =
∫

D �R e−SE �max( �R), (25)

where |�(K )
0 ( �R)〉 is the eigenstate which corresponds to �max.

It is the lowest-action largest-eigenvalue eigenstate of the
operator T̂(K ) and it can be found by repetitive action of this
operator on an initial state until convergence is achieved; the
initial state can be chosen as the DFT ground state of the
atomic configuration at the first imaginary time slice. Starting
from any state |�(K )〉 with nonzero overlap with the exact
|�(K )

0 〉, and applying the dimensionless operator T̂(K ) on this
state we find

lim
L→∞

[T(K )( �R)]L|�(K )〉 = c
∣∣�(K )

0 ( �R)
〉
. (26)

This is achieved by applying the “bead” operator T̂ (j ) on suc-
cessive beads and going around the ring polymer a sufficient
number of times L until convergence. We discuss in Sec. III
how this is done in practice. After having determined this
state, we can calculate the matrix element of the operator of
interest Ô. Therefore, we accept the atomic configuration �R
with probability �max( �R) and we calculate the average of the
quantity O( �R) defined by Eq. (24), as

〈〈Ô〉〉 = 1

Nconf

∑
�R

′O( �R), (27)

where the prime indicates that the sum is over space-time
configurations �R which have been first selected from the
Gaussian distribution exp[−SE] and were accepted or rejected
according to the probability distribution �max( �R).

III. IMPLEMENTATION

A. Imaginary-time-dependent DFT

We implemented the method described above in the
TDDFT/Ehrenfest dynamics code TDAP-2.0 presented in
Ref. [50]. This code is based on the SIESTA [51] package and
employs a numerical pseudoatomic-orbital basis set. In such a
finite, localized basis set the imaginary-TDDFT (it-TDDFT)
equations become

∂τ |ψl〉 = −S−1
(
Ĥsp

{ �R}[n, �r] + Q̂
)|ψl〉, (28)

where |ψl〉 is the lth KS orbital, S is the overlap matrix with
matrix elements Sμν = 〈χμ|χν〉 in the basis functions χμ, and
Ĥsp

{ �R} is the KS Hamiltonian operator expressed in this basis,

with matrix elements Hsp

{ �R},μν
= 〈χμ|Ĥsp

{ �R}|χν〉. The matrix Q̂

is the term due to the evolution of the basis set in imaginary
time, with matrix elements:

Q(j )
μν = 〈χμ|∂τ |χν〉 ≈

�R(j ) − �R(j+1)

�τ
〈χμ|∇ �R(j ) |χν〉. (29)

We found that the single-particle propagator t̂ (j ) is best
approximated through the self-consistent midpoint exponent
[52] computed with the Padé approximant [50]:

t̂ (j ) ≈ exp
{ − �τ

[
S−1

(
Ĥsp

{ �R(j )} + Q̂(j )
)]

1/2

}
, (30)

where the subscript 1/2 indicates values taken at the mid-
dle of the j time step and approximated by averaging the
initial and final values. This is equivalent to a second-order
Magnus expansion [52]. After each imaginary time step the
wave functions are orthonormalized with the usual modified
Gramm-Schmidt procedure, during which the normalization
constants are obtained as

λ(j ) = exp(−�τ�E{ �R(j )})
∏

l

∑
l′

〈
ψ

(j )
l

∣∣t̂ (j )
∣∣ψ (j+1)

l′
〉

(31)

with �E{ �R(j )} being the DFT double-counting and ion-ion
repulsion terms, Eq. (16).

The wave functions are propagated along the ring for
several revolutions, until self-consistency is achieved. This is
defined as the limit when the maximum difference between
the density matrix elements belonging to the same bead in
the current “lap” and those in the previous lap has fallen
below a preset cutoff value, typically set to �10−6. The
density matrices of all beads are taken into account. Self-
consistency is normally reached quickly, typically after two
to three revolutions. Then �max can be computed as

�max( �R) =
∏
j

λ(j ). (32)

We found that the use of a localized basis and the nonlinearity
of the TDDFT Hamiltonian can cause large numerical errors
in the propagation if the distance between beads is large,
which makes the imaginary-time velocity high. To cope with
this problem, we introduce a tolerance distance d0 used in
the following sense: if the distance between two adjacent
beads is larger than d0, the electronic propagator Eq. (30) is
substepped with a reduced time step. The intermediate ionic
positions used in the propagator are equally spaced and thus
the Euclidean action term SE [Eq. (13)], which corresponds
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FIG. 1. Convergence of �EKS = EKS − E
BO
KS and �E� = E� −

E
BO
KS with respect to substepping parameter d0. Averaging is per-

formed over the beads (including sub-beads). Note, these curves do
not represent simulation averages, but rather energies corresponding
to one particular ring configuration randomly drawn from the MD
simulation for the corresponding temperature.

to ionic kinetic energy, is not affected. The brute-force ap-
proach for dealing with the propagator errors is to decrease
�τ for both the electrons and the ions; however, this is
computationally expensive with the current implementations
of TDDFT. The substepping introduces effective sub-beads
along each straight-line segment when it exceeds d0. This is
somewhat similar to the use of the semiclassical action in
the BO path-integral methods [3], where for the given �τ it
increases the accuracy in comparison to the primitive action,
especially at higher “velocities.” Thus, although we introduce
substepping as a means of dealing with the numerical errors of
the propagator in Eq. (30), it might also improve the accuracy
of the method for the given �τ regardless of these errors.

We show the convergence for the single ring configuration
with respect to d0 in Fig. 1 for the H2 molecule (see also
subsection A 4, Table II). The ring-polymer configurations
for this test were created by running standard adiabatic path-
integral molecular dynamics (PIMD) with the Nosé-Hoover
chain thermostat. In order to simplify the comparison be-
tween the adiabatic and exact approaches we introduce the
energy E�:

E� = − ln �max

β
. (33)

In the limit of infinitesimally small time slice �τ , E� → EKS,
where EKS is the bead average of the total electronic energy

E
(j )
KS =

∑
l

〈
ψ

(j )
l

∣∣Ĥsp

{ �R(j )}
∣∣ψ (j )

l

〉 + �E{ �R(j )},

EKS = 1

K

K∑
j=1

E
(j )
KS . (34)

Figure 1 demonstrates that E� and EKS indeed converge, and
that EKS converges to its final value faster. This convergence
is confirmed in our PIMC runs in Sec. IV at both T = 300 K
and T = 40 K.

B. Path-integral Monte Carlo

We implemented the PIMC algorithm that uses staging
coordinates [53,54], as reviewed in subsection A 1. The elec-
tronic part is treated with the it-TDDFT method presented
here [denoted as it-PIMC (a shorthand for itTDDFT-PIMC)
below] or Born-Oppenheimer DFT (denoted BO-PIMC). Any
average can be obtained by using Eqs. (24) and (27). For
the average energy, it is convenient to use the following
thermodynamic relation:

E = − ∂

∂β
ln Z

= lim
K→∞

〈
KD

2β
−

K∑
j=1

{
Nion∑
I=1

KMI

2h̄2β2

( �R(j )
I − �R(j+1)

I

)2

}
+EKS

〉
,

(35)

where the average is taken over appropriately distributed
configurations { �R} and D is the dimensionality of the
system. The last term inside angular brackets is obtained
with the help of the Hellmann-Feynman theorem (see
subsection A 3). Because for low temperatures the number
of time slices required is large (>200), some degree of
parallel processing is needed even for small systems. For
Born-Oppenheimer PIMC and PIMD algorithms, parallelism
is trivial due to the independence of the electronic systems
at each bead. In the present method the electronic systems at
different beads are not independent. To deal with this problem
we first run a long BO constant-temperature PIMD simula-
tion, in order to generate independent starting configurations.
By drawing from this set of configurations, a suitable number
of it-PIMC simulations can then be started in parallel.

IV. RESULTS

We report results of physical properties of some prototypi-
cal systems using our method. We simulated the H2 molecule
at T = 40 K and T = 300 K using the PIMC method, with
K = 381 and K = 50 beads, respectively, and using d0 =
0.0026 Å (0.005 bohr) in both cases. We found that <1000
of accepted Monte Carlo (MC) steps are sufficient for equi-
libration after sufficiently long thermalization with staging-
coordinate BO-PIMD (∼1.5 × 105 steps with 0.05 fs time
steps). In all cases, we started averaging after 1000 MC steps.
We used the triple-ζ plus triple-ζ polarization shell basis set
and the local density approximation with the Ceperley-Alder
(CA) exchange-correlation functional [55] and a standard
pseudopotential from the SIESTA database. Local and semilo-
cal exchange-correlation functionals such as CA have large
self-interaction error in the case of the H2 molecule [56].
However, we emphasize that the goal of the simulations here
is to compare our method to the standard approaches and
not to the experimental data (for recent high-accuracy experi-
mental measurements of an H2 molecule, see Refs. [57,58],
and references therein). For this purpose our choices of
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TABLE I. E0 = EZPE + Erot + ECOM calculated with four meth-
ods (all values in meV). Here EZPE stands for vibrational zero-point
energy, and Erot and ECOM are rotational and center-of-mass motion
energies at the given temperature, respectively. E0

harm is calculated by
computing the ZPE using the H2 harmonic frequency (516.8 meV)
and adding a rotational (rigid rotor) and the center-of-mass mo-
tion contributions. E0

Morse uses the ZPE estimated from a Morse
potential fitted to match the DFT potential energy, again taking into
account the rotational and center-of-mass motion energy. E0

BO-PIMC

and E0
it-PIMC are the energies computed from BO-PIMC and exact

it-PIMC simulations, respectively. For MC simulations one standard
deviation uncertainty is indicated in parentheses.

T (K) E0
harm E0

Morse E0
BO-PIMC E0

it-PIMC

40 279 228 228.0(2) 237(1)
300 356 312 292(1) 301(1)

exchange-correlation functional and pseudopotential are quite
adequate. We use the same DFT parameters in all calculations
to facilitate this comparison. The bond length we obtained
after the standard relaxation with the settings and functional
described above is 0.78 Å. In both BO-PIMC and it-PIMC
we obtained about the same bond length of ∼0.81 Å for
both temperatures [59] (the experimental bond length for H2

is 0.74 Å). Although the classical-nuclei bond length is off
by 0.04 Å (as expected for the local functional [56]), a 0.030
Å path-integral correction to it is in reasonable agreement with
the 0.025 Å correction obtained in high-accuracy calculations
[60,61].

The results for the zero-point energy (ZPE) obtained with
different methods are summarized in Table I. First we calcu-
late the ZPE using the standard Born-Oppenheimer harmonic
approximation, with vibrational frequency corresponding to
the DFT potential for the H2 molecule. The harmonic approx-
imation overestimates the ZPE because the high ZPM of the
molecule explores the anharmonic region of the potential. The
energy at T = 40 K calculated with the Morse potential (with
parameters fitted to match the interatomic potential obtained
in our DFT computations) agrees well with that obtained from
BO-PIMC simulations after taking into account the rotational
and thermal motion using standard rigid rotor and ideal gas
partition functions. However, these methods underestimate
the ZPE by ∼10 meV in comparison to our exact it-PIMC
results. This correction to BOA agrees well to 14.1 meV
obtained previously in highly accurate analytic-variational
and quantum Monte Carlo calculations of the H2 molecule
[17,19–21]. Approximately the same difference is observed
between BO-PIMC and it-PIMC at T = 300 K, which is not
surprising due to the high frequency of the H2 molecule vibra-
tion. This agreement with the exact calculation is quite good
in comparison to ∼160 meV obtained in multicomponent
DFT computations [28]. Thus our method can also be used
to aid the design of multicomputations density functionals
because both methods can be set to share the same electronic
parts of the functional. Energy differences between BOA and
it-TDDFT in Fig. 1 (see also Table II) and in Table I differ
by one order of magnitude. This is because in Fig. 1 the
difference is between two methods applied to the same ring

polymer and the electronic energy only, while in Table I the
differences of the total energy are averaged over a large num-
ber of configurations. In fact, after decomposing the energy
expression of Eq. (35) into nuclear kinetic and electronic parts
we observed that the difference is mostly due to the nuclear
kinetic energy part. This can be explained by the following. At
a given temperature within the BO-PIMC the nuclear kinetic
energy and the electronic energy are partitioned in a certain
fraction. The it-PIMC leads to a repartitioning in which the
contribution of the nuclear kinetic energy is higher as com-
pared to its value in the BO case. This is accomplished in the
it-PIMC procedure by preferring configurations that have, on
average, shorter distances between the beads, which lowers
the E� obtained from it-TDDFT. This makes the electronic
energy close to the BO electronic ground-state energy.

These results suggest that even for systems like the H2

molecule which has a wide gap between occupied and un-
occupied energy levels, the it-TDDFT correction to the BO
approximation is quite significant, being roughly 5% of the
ZPE. We expect these corrections to be larger for systems
with a smaller band gap and even more so in metallic phases,
as in the hypothesized high-pressure phase of bulk atomic
hydrogen.

In Fig. 2(a) we present the imaginary-time evolution of
the electronic density distribution for the first four time slices
for the H2 molecule. For proper comparison, we rotated the
molecular axis to be in the same direction for all time slices
and kept the center of mass of the molecule at the same
position. As the distance between the two hydrogen atoms
in the molecule fluctuates the electronic density adjusts from
one in which the electrons are localized at each atom (when
the distance between the atoms is relatively large) to one in
which the electrons are shared by the two atoms. We note
that the electronic wave functions which determine the density
are also defined and evaluated at intermediate times between
two successive beads. In going from one bead to the next the
wave function is determined by evolving the wave function
which corresponds to the first bead by applying the imaginary
time evolution operator. The final wave function is determined
for the entire ring polymer simultaneously by applying the
evolution operator which corresponds to the entire ring several
times until we obtain convergence.

In Fig. 2(b) we give an example of a ring-polymer con-
figuration of the imaginary-time positions of the two atoms
in the H2 molecule. The size of the rms deviation of each
atom from their equilibrium position is large as compared to
the interatomic distance. These atomic position fluctuations
are correlated between the two atoms to a significant degree:
when one of the atoms moves in a certain direction going from
one bead to the next, the other atom is more likely to move in
the same direction by a similar amount. In the same plot we
also present the averaged difference in the density distribution
obtained with our method from that obtained by applying
the Born-Oppenheimer approximation, across the space-time
configuration in three-dimensional space. In our method, we
find an enhancement in the density between atoms compared
to the BO approximation result. In Fig. 2(c) we present the
same difference in the density distribution, after rotating and
shifting the molecule so that its center of mass is fixed and the
bond is on the x axis. The asymmetry in the electronic density
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FIG. 2. (a) The electron density evolution along the first four beads of the ring polymer representing the H2 molecule (T = 40 K). (b)
Atomic positions and average density difference between the present method and the BO approximation for the ring polymer representing H2.
Black lines depict the bond between two atoms on the time slice (shown for intervals of 100 time slices). The bead color corresponds to time
slice, with colors varying from red to yellow for the first atom and from blue to cyan for the second. (c) The average density difference (in

units of electrons/Å
3
) shown with the molecular axis rotated to be in the same direction for all time slices by keeping the center of mass of

the molecule at the same position and carrying out the average over all time slices. Blue-green and red-orange isosurfaces represent the excess
of electron and of hole, respectively. The dark-blue distribution above the right atom represents the distribution of the distances between two
atoms along the ring polymer in imaginary time.

in Fig. 2(c) is due to the fact that the average is done over a
single path in which the center of mass is moving in imaginary
time and that implies each atom moves by a different amount
and not necessarily in opposite directions. This has important
implications that we discuss below.

In Fig. 3 we show the ring polymers that represent the
space-time configuration of the carbon and hydrogen atoms
in the benzene molecule. As expected, the positions of the
hydrogen atoms have large fluctuation, while the heavier
carbon atoms have much smaller position fluctuations within
the ring polymer.

Due to the imaginary-time propagation of the electronic
degrees of freedom the mirror symmetry of electronic density
is broken. This asymmetry implies a fluctuation of dipole
moment along a single path, which is shown in Fig. 4 for
the H2 and the benzene molecules. The symmetry is restored
after summation over all paths in the case of an isolated
molecule. When more than one molecule is present the fluc-
tuation of the molecular dipole moment can lead to van der
Waals forces between molecules. In our imaginary-time path-
integral method the presence of van der Waals forces will
be manifested by increased contribution of the ring-polymer
configurations where the molecular dipole moments are cor-
related to produce attraction. This asymmetry is not present
within the BO approximation because the wave functions at
each bead correspond to the ground-state density distribution
for each bead configuration. In our case, however, we consider
the imaginary-time DFT evolution starting from each bead
configuration until we reach the next, and our wave function
is an eigenstate of the entire polymer-ring configuration.

1.4 Å

1.2 Å

1 Å

FIG. 3. The interacting ring polymers representing the space-
time positions of the atoms of the benzene molecule at T = 40 K,
top and side views. The solid lines connect the equilibrium positions
of each atom. The same color is used to denote that these positions
belong to the same imaginary-time slice with lighter colors used for
carbon atoms.
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FIG. 4. Imaginary-time evolution of the dipole moment along a single path for (a) the H2 molecule and (b) the benzene molecule.

V. DISCUSSION AND CONCLUSIONS

We have developed an ab initio method to extend the DFT
approach to include the ionic zero-point motion exactly. We
employ the usual Feynman path-integral approach where the
atomic coordinates form ring polymers in which each bead
represents the atomic positions at different imaginary-time
slices. The main idea is that we can actually propagate exactly
within DFT the electronic degrees of freedom along each ring
polymer and this allows us to define a space-time DFT super
wave function and electronic density which characterizes the
entire ring polymer. This includes imaginary-time correlations
of the electronic state between different beads of the ring poly-
mer. This exact propagation effectively incorporates the effect
of all virtual electronic states without limiting the description
of the system to the usually adopted BO approximation.

As test cases, we applied our method to the H2 molecule
and the benzene molecule. We find that the difference be-
tween our “exact” treatment and the BO approximation is
non-negligible when the system contains light atoms, like
hydrogen. This energy difference will be significant when
ionic zero-point motion plays an important role in determining
the prevalent ordered state, like occurrence of charge density
waves. Another obvious example of relevance is the case of
highly pressurized hydrogen [11,62], where the zero-point
motion is expected to play a significant role, not only in
determining the transition temperature and pressure but, more
importantly, in determining which of the competing phases
prevails in the various regimes of the phase diagram. We
also expect our method to be useful in understanding the
behavior of systems that involve hydrogen bonding and proton
exchange, which are common in water and in various organic

and biological molecules. While in general our method re-
quires the entire spectrum of the electronic system, in systems
in which the electronic ground state is separated from the first
excited state by a gap �, our method provides information for
all kBT  �. Even in the case where in the electronic system
the difference between the ground state and the first excited
state is as small as, say, � ∼ 0.3 eV, our approach should be
reliable at as high as room temperature.

Furthermore, the present accurate approach can find appli-
cation in several other systems in condensed-matter physics
where the effects of correlated motion between electrons and
ions is suspected to play an important role. Examples include
those where there is a Pierls instability where its formation
is assisted by a correlated electron-ion motion, the recently
discovered superconductivity in hydrates [63], as well as
various polaronic problems. It is also possible for such an
approach to find application in astrophysics, for example, in
studies of superconductivity in very cold brown-dwarf stars
(assuming that cold brown dwarfs exist) where the electron
and ions should be moving in a correlated fashion.
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APPENDIX

1. Path integral Monte Carlo

In our implementation of PIMC we use the following
transformation to stage coordinates as defined in previous
work [5,53,54]:

�u(j+k) = �R(j+W ) − k �R(j+k+1) − �R(j )

k + 1
, k = 1, 2, . . . , W,

(A1)

where W is the segment length (algorithm parameter) and j

is a randomly chosen bead. The corresponding terms in SE

[Eq. (13)] transform as

Nion∑
I=1

W∑
k=0

MI

2h̄2�τ

∣∣ �R(j+k+1)
I − �R(j+k)

I

∣∣2

=
Nion∑
I=1

MI

2h̄2�τ

[
W∑

k=1

k + 1

k

∣∣�u(j+k)
I

∣∣2

+ 1

W + 1

∣∣ �R(j+W+1)
I − �R(j )

I

∣∣2

]
. (A2)

This PIMC algorithm employs two types of moves: (i) ran-
domly choosing bead j and drawing new coordinates from
the Gaussian distribution for the transformed coordinates �u
and (ii) random displacement �s of the whole ring. The move
is accepted or rejected depending on the ratio of current (c)
and proposed (p) �max: if q = �

p
max/�

c
max = e−β(Ep

�−Ec
� ) � 1

the move is accepted, otherwise it is accepted if r < q, with r

being a uniform random number in the [0,1) interval. W and
s are chosen so that the acceptance rate is around 40%.

2. Path integral molecular dynamics

For the molecular dynamics sampling method the staging
coordinates are defined by the following relation [53,54]:

�u(1) = �R(1),

�u(j ) = �R(j ) − (j − 1) �R(j+1) + �R(1)

j
, j = 2, . . . , K.

(A3)

Then the partition function, which yields the same averages as
the one in Eq. (25), can be constructed as

Z = e−βHcl , (A4)

Hcl ≡
K∑

j=1

Nion∑
I=1

([ �P (j )
I

]2

2M̄
(j )
I

+ 1

2
M

(j )
I ω2

Ku(j )2

)

+E�({ �R}), (A5)

M
(1)
I = 0, M

(j )
I = j

j − 1
MI (j > 1), (A6)

M̄
(1)
I = MI, M̄

(j )
I = M

(j )
I (j > 1), (A7)

ωK =
√

K

βh̄
. (A8)

Hcl in Eq. (A5) is a classical Hamiltonian with fictitious
momenta �P (j )

I associated with each bead. The forces on the
beads are derived in the subsection A 3. Z can then be sampled
from a standard MD simulation. To keep the temperature
constant we couple every ionic degree of freedom in the
system to Nosé-Hoover chain or Langevin thermostat.

3. Hellman-Feynman theorem for the ring polymer

In order to derive Eq. (35) we need to evaluate the deriva-
tive of �max with respect to β:

∂

∂β
�max = ∂

∂β

〈
�

(K )
0

∣∣T̂∣∣�(K )
0

〉
. (A9)

Because �
(K )
0 is the self-consistent eigenvector of T̂,

∂

∂β
�max = 〈

�
(K )
0

∣∣ ∂

∂β
T̂

∣∣�(K )
0

〉
. (A10)

Then
∂

∂β
T̂ = ∂

∂β

∏
j

T̂ (j ) =
∑

j

T̂ (1) · · · T̂ (j−1)

× ∂T̂ (j )

∂β
T̂ (j+1) · · · T̂ (K )

= − 1

K

∑
j

T̂ (1) · · · T̂ (j−1) · Ĥ{ �R(j )}[n(j�τ )]

· T̂ (j ) · · · T̂ (K ). (A11)

The last equality is derived by writing T̂ (j ) directly as
the iterative solution of the it-TDDFT equation (4) and
taking into account the fact that �max is stationary with
respect to variation of �

(K )
0 , therefore terms containing∫

d�r δH{ �R(j )}/δn(�r, j�τ ) · ∂n(�r, j�τ )/∂β vanish. Then,〈
�

(K )
0

∣∣ − 1

K

∑
j

T̂ (1) · · · T̂ (j−1) · H{ �R(j )}[n(j�τ )]

· T̂ (j ) · · · T̂K

∣∣�(K )
0

〉
= − 1

K

∑
j

λ(1) · · · λ(j−1)〈� (j )|H{ �R(j )}[n(j�τ )]|

×� (j )〉λ(j ) · · · λ(K )

= −�max

K

∑
j

E
(j )
KS , (A12)

TABLE II. The data for Fig. 1. Energies are in meV and d0 is
given in units of the Bohr radius. Averaging is done over the beads
(including sub-beads) for a single ring-polymer configuration (see
Fig. 2).

H2, T = 300 K, K = 36 H2, T = 40 K, K = 381

d0 (bohr) �EKS �E� E
BO
KS �EKS �E� E

BO
KS

0.08 1.90 12.33 − 30457.66 2.59 14.32 − 30519.72
0.02 0.95 3.02 − 30456.94 1.32 3.70 − 30520.02
0.005 0.84 1.31 − 30457.93 1.15 1.69 − 30520.12
0.001 0.82 0.92 − 30458.19 1.14 1.24 − 30520.09
0.0002 0.82 0.84 − 30458.24 1.14 1.16 − 30520.09
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where λ(j ) is defined by λ(j )|� (j )〉 = T̂ (j )|� (j+1)〉, with � (j )

being the normalized electronic wave function corresponding
to �

(K )
0 at the time slice j [see also Eqs. (31) and (32)].

Equation (A12) leads to Eq. (35) in the main text.
Similarly, �F (j )

ele , the electronic component of the total force
on the bead j , required for the molecular dynamics sampling
algorithm can be derived from

�F (j )
ele = −∇ �R(j )E� = 1

β
∇ �R(j ) ln �max = 1

�maxβ
∇ �R(j )�max.

(A13)

Following the same steps as for Eqs. (A9)–(A12) we get

�F (j )
ele = − 1

K
∇ �R(j )E

(j )
KS . (A14)

4. Convergence of �EKS and �E�

For a more quantitative comparison of convergence rates,
we provide here (Table II) the values of the quantities �EKS

and �E�, as well as the actual value of the average E
BO
KS , for

different values of the substepping parameter d0.
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