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We investigate the competition between superconductivity, charge-ordering, magnetic-ordering, and the
Kondo effect in a heavy fermion s-wave superconductor described by a Kondo lattice model with an attractive
on-site Hubbard interaction. The model is solved using the real-space dynamical mean field theory. For this
purpose, we develop a numerical renormalization group (NRG) framework in Nambu space, which is used to
solve the superconducting impurity problem. This extended NRG scheme also allows for SU(2) spin symmetry
broken solutions, enabling us to examine the competition or cooperation between s-wave superconductivity
and incommensurate spin-density waves (SDWs). At half filling, we find an intriguing phase where the
magnetic ordering of the f -electrons lifts the degeneracy between the charge density wave (CDW) state and
the superconducting state, leading to a strong suppression of superconductivity. In addition, the system may also
become a half metal in this parameter regime. Away from half filling, the CDWs vanish and are replaced by
superconductivity combined with incommensurate SDWs up to moderate Kondo couplings to the f -electrons.
We find that both CDWs as well as superconductivity enhance magnetic ordering due to the suppression of
Kondo screening.
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I. INTRODUCTION

Strongly correlated electron systems attract enormous at-
tention because of the multitude of remarkable phenomena
they exhibit, such as the Kondo effect, magnetic or charge
ordering, and unconventional superconductivity. The situation
becomes particularly interesting when different effects are
either competing or reinforcing each other. A class of com-
pounds that exhibit all these effects are the heavy fermion
materials [1–14], where strongly interacting f -electrons hy-
bridize with conduction spd bands.

Heavy fermion superconductors are usually considered to
be a nodal unconventional superconductor where the nonlocal
Cooper pairing is mediated by magnetic fluctuations [15–20].
However, very recently the pairing mechanism of the first
heavy fermion superconductor CeCu2Si2 is controversially
discussed [21–26]. While CeCu2Si2 was generally believed
to be a prototypical d-wave superconductor [27], recent low-
temperature experiments have found no evidence of gap nodes
at any point of the Fermi surface [22]. These results indi-
cate that, contrary to the long-standing belief, CeCu2Si2 is
a heavy-fermion superconductor with a fully gapped s-wave
superconducting (SC) state which may be caused by an on-site
attractive pairing interaction.

Since it is generally believed that the coupling between
conduction electrons and strongly interacting f -electrons,
which causes the Kondo effect and magnetism, strongly
suppresses superconductivity, heavy fermion superconductors
with an attractive on-site pairing interaction have been barely
studied theoretically [28–33]. Furthermore, besides the possi-
bility of fully gapped superconductivity in CeCu2Si2, s-wave
superconductivity might always be induced in heavy fermion
systems via the proximity effect [34–36], making it possible

to study the interplay between superconductivity, magnetic
ordering, charge ordering, and the Kondo effect.

One of the simplest models comprising all these effects is
a Kondo lattice [37–41] with an additional attractive Hubbard
interaction U < 0 [42]:

H = t
∑

<i,j>,σ

(c†i,σ cj,σ + H.c.) − μ
∑
i,σ

ni,σ

+U
∑

i

ni,↑ni,↓ + J
∑

i

�Si · �si, (1)

where μ is the chemical potential, t denotes the hopping
parameter between nearest neighbors, and J > 0 is a Kondo
coupling. c

†
i,σ creates a conduction electron on site i with spin

σ and ni,σ = c
†
i,σ ci,σ . The last term in Eq. (1) describes the

spin-spin interaction between the conduction electron spins
�si = ∑

σ,σ ′ c
†
i,σ �σσ,σ ′ci,σ ′ and the localized f -electron spins �Si ,

with the Pauli matrices �σσ,σ ′ .
This model has been investigated in one dimension by

means of density matrix renormalization group (DMRG) for
a filling of n = 1/3 [28], for different fillings in three dimen-
sions using static mean-field theory [33] and for ferromagnetic
couplings J < 0 in two dimensions with the aid of variational
minimization and Monte Carlo methods [32]. For U = 0, the
model reduces to the ordinary Kondo lattice model, exhibiting
a competition between spin-density waves (SDWs) and the
Kondo effect, while for J = 0 one obtains the attractive Hub-
bard model with an on-site pairing term. This on-site pairing
may evoke superconductivity and, at half filling, also a charge
density wave (CDW) state which is energetically degenerate
with the SC state [42,43]. Although CDWs play a crucial role
at half filling, previous investigations of the model Eq. (1)
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have ignored possible CDWs [32,33]. A finite J and attractive
U allows us to examine the interplay between all these effects.
Such an attractive on-site term can arise in different ways.
In solid state systems, it can be mediated by bosons, e.g.,
phonons [44] or excitons, while in ultracold atom systems [45]
the effective interaction between optically trapped fermionic
atoms can be tuned using Feshbach resonances [46–49] so that
it is well described by a local attractive potential. In such sys-
tems, s-wave superfluidity has already been observed [50–53].

In this paper, we investigate the interplay between mag-
netic ordering, charge ordering, the Kondo effect, and su-
perconductivity for the Kondo lattice Hamiltonian with an
attractive Hubbard interaction [Eq. (1)] on a two-dimensional
square lattice. To analyze this system, we employ the real-
space dynamical mean field theory (RDMFT) which is a
generalization of the dynamical mean-field theory (DMFT)
[54,55]. The DMFT has been proven to be very suitable to
investigate the properties of strongly correlated lattice systems
in cases where the momentum dependence of the self-energy
can be neglected. In the RDMFT, each lattice site of a finite
cluster is mapped onto its own impurity model. This allows us
to study incommensurate CDWs or SDWs, however, nonlocal
interactions such as intersite SC pairing mechanisms cannot
be described with the RDMFT. Therefore, only s-wave super-
conductivity, mediated by a local pairing, is investigated in
this paper. The effective impurity models have to be solved
self-consistently. For this purpose we develop a new self-
consistent NRG [56,57] scheme which allows us to combine
superconductivity with spin symmetry broken solutions and
is, hence, more general than the one by Bauer et al. [42].

We obtain a rich phase-diagram at half filling and demon-
strate that depending on J and U superconductivity, CDWs,
SDWs, Kondo screening, or a different combination of these
effects may occur. Contrary to recent static mean-field calcu-
lations [33], we find a phase at half filling where CDWs and
SDWs coexist. It is shown that in this phase, the SDWs lift
the degeneracy between the SC state and the CDW state such
that superconductivity is suppressed. The spectral functions
reveal that the system becomes a half metal in the CDW phase
near the phase boundary to the Néel phase. Away from half
filling, CDWs are suppressed and superconductivity survives
for much larger couplings J . Instead of a homogeneous Néel
state, we observe incommensurate SDWs; however, we find
no evidence that superconductivity has an influence on the
pattern of this SDWs. We show that the CDWs, at half
filling, as well as the superconductivity, away from half filling,
enhance the magnetic ordering of the localized spins since
the emergent gaps in the density of states (DOS) mitigate the
Kondo screening.

These results resemble recent observations in cuprate su-
perconductors [58–60]. There one can also find a rich phase
diagram where superconductivity, CDWs, and SDWs coex-
ist or compete with each other. Similar to our model, the
appearance of CDWs also strongly depends on the doping
of the system. Note, however, that cuprate superconductors
are usually considered to be d-wave superconductors with
a nonlocal pairing mechanism, while in this paper we only
consider a local pairing.

The rest of the paper is organized as follows. The RDMFT
approach and its generalization to Nambu space are described

in Sec. II. Furthermore, the new self-consistent NRG scheme,
which is used to solve the effective impurity models, is
explained in detail. In Sec. III, we present the results for
half filling while the properties of the system away from half
filling are described in Sec. IV. We give a short conclusion in
Sec. V.

II. METHOD

A. RDMFT setup in Nambu space

To solve the model of Eq. (1), we employ the RDMFT,
which is an extension of the conventional DMFT [54,55] to
inhomogeneous situations [61]. It is based on the assumption
of a local self-energy matrix �i,j (ω) = �i (ω)δi,j , with

�i (ω) =
(

�i
11(ω) �i

12(ω)
�i

21(ω) �i
22(ω)

)
(2)

being the self-energy matrix of site i in Nambu space. Within
this approximation, correlations between different sites of the
cluster are not included, but the self-energy may be different
for each lattice site and allows, therefore, e.g., SDWs and
CDWs.

In the RDMFT, each site i in a finite cluster is mapped
onto its own effective impurity model with an SC symmetry
breaking term

HEff = HImp +
∑
�k,σ

ε�k,σ c
†
�k,σ

c�k,σ
+

∑
�k,σ

V�k,σ (c†�k,σ
dσ + H.c.)

−
∑

�k
��k[c†�k,↑c

†
−�k,↓ + c−�k,↓c�k,↑], (3)

where

HImp =
∑

σ

εdnd,σ + Und,↑nd,↓ + J �S�sd, (4)

with εd = μ, nd,σ = d†
σ dσ , �sd = d†

σ �σσ,σ ′dσ ′ and dσ being the
fermionic operator of the impurity site. The parameters ε�k,σ ,
V�k,σ , and ��k are those for the medium and may be different
for each site in the RDMFT cluster. The mapping of the lattice
model of Eq. (1) to the impurity model of Eq. (3) is achieved
by calculating the local Green’s function in Nambu space:

Gloc(z) =
∫ ∫

[z1 − Hkx,ky
− �(ω)]−1dkxdky, (5)

where Hkx,ky
is the hopping Hamiltonian of the finite RDMFT

cluster and the momentum dependence arises from the peri-
odic boundary conditions. The medium dependent parameters
of the effective impurity model for each site i are then
extracted from the site-diagonal Green’s function matrix in
Nambu space

Gloc,ii (z) =
(

〈d†
↑d↑〉i (z) 〈d↑d↓〉i (z)

〈d†
↓d

†
↑〉i (z) 〈d↓d

†
↓〉i (z)

)
, (6)

which will be discussed in detail below.
For a typical DMFT calculation, one starts with self-

energies �i (ω) for each site of the cluster which should break
U (1) gauge symmetry to obtain an SC solution. Afterward,
the local Green’s function of Eq. (5) is computed, which
is used to set up the effective impurity problems. Solving

195111-2



INTERPLAY BETWEEN CHARGE, MAGNETIC, AND … PHYSICAL REVIEW B 98, 195111 (2018)

these impurity models yields new self-energies �i (ω), which
are again used to calculate the local Green’s functions. This
procedure is repeated until a converged solution is found.

To solve the impurity models, a variety of methods such as
quantum Monte Carlo, exact diagonalization, or NRG [56,57]
can be used. We employ the NRG to compute the self-energy
and local thermodynamic quantities of the effective impurity
models since it has been proven to be a reliable tool to
calculate dynamical properties such as real-frequency Green’s
functions [62] and self-energies [63] with high accuracy
around the Fermi level. The combination of NRG and DMFT
has already been successfully applied to superconductivity
in interacting lattice systems [31,42,64] although only SU(2)
spin symmetric systems without magnetic ordering have been
treated [65,66].

B. Self-consistent NRG Scheme with SU(2) spin symmetry
breaking and superconductivity

To employ the DMFT, we still have to resolve how to
calculate the parameters of the NRG Wilson chain, which
depend on the local Green’s function of Eq. (6) at each lattice
site. Bauer et al. [42] have shown how the DMFT+NRG setup
can be extended to SC symmetry breaking. This approach,
however, requires SU(2) spin symmetry for the up and down
conduction band channels.

Therefore, we propose a new and different ansatz: Instead
of directly discretizing the impurity model of Eq. (3), we
first perform a Bogoliubov transformation and afterward dis-
cretize the model logarithmically into intervals Iα with I+ =
(xn+1, xn) and I− = −(xn, xn+1) with xn = D�−n, where
� > 1 is the discretization parameter of the NRG and D is the
half bandwidth of the conduction band. After retaining only
the lowest Fourier component [57] in Eq. (3), the Bogoliubov
transformed and discretized impurity model can be written as

HEff = HImp +
∑
σ,n,α

ξα
σ,na

†
α,n,σ aα,n,σ

+
∑
n,α

(γ α
n,↑a

†
α,n,↑d↑ + γ α

n,↑↓a
†
α,n,↑d

†
↓

+ γ α
n,↓↑a

†
α,n,↓d

†
↑ + γ α

n,↓a
†
α,n,↓d↓ + H.c.). (7)

The advantage of Eq. (7) over the direct discretization in
Ref. [42] is that in each interval, the up and down conduction
band channels are not directly coupled and the U(1) gauge
symmetry breaking instead occurs due to the new interval-
dependent hybridizations γ α

n,↑↓ and γ α
n,↓↑. Since the conduc-

tion band channels are not directly coupled anymore, we are
able to choose the bath parameters ξα

↑,n and ξα
↓,n independently

of each other and, afterward, adjust the hybridizations such
that they lead to the same effective action for the impurity
degree of freedom as in the original model [67]. As usual in
the NRG [57], we can, therefore, choose ξ+

↑,n = ξ+
↓,n = E+

n =
En and ξ−

↑,n = ξ−
↓,n = E−

n = −En, where En = |xn + xn+1|/2
is the value in the middle of an interval.

The remaining parameters for each site i of the finite clus-
ter are determined from the generalized matrix hybridization
function K (ω) in Nambu space, which can be calculated from

the local impurity Green’s function matrix of Eq. (6):

K (z) =z1 − Gloc(z)−1 − �(z), (8)

where we have omitted the site index i since the procedure is
the same for every site.

To calculate the remaining parameters, we demand, as
usual in the DMFT, that the local hybridization function of the
lattice K (z) and the hybridization function of the discretized
model are equal:

K (z) =
(

K11(z) K12(z)
K21(z) K22(z)

)

=
∑
n,α

1

z − Eα
n

(
γ α

n,↑ γ α
n,↑↓

γ α
n,↓↑ γ α

n,↓

)†(
γ α

n,↑ γ α
n,↑↓

γ α
n,↓↑ γ α

n,↓

)
. (9)

Since K12(z) = K21(z) must apply, we can choose γ α
n,↓↑ =

γ α
n,↑↓ = γ α

n,off . Using only the imaginary parts �↑(ω) =
−Im K11(ω + iη)/π , �↓(ω) = −Im K22(ω + iη)/π , and
�off (ω) = −Im K12(ω + iη)/π , the equation can be rewritten
as a sum of delta functions

�↑(ω) =
∑
n,α

(
γ α

n,↑
2 + γ α

n,off
2)

δ
(
ω − Eα

n

)
, (10)

�↓(ω) =
∑
n,α

(
γ α

n,↓
2 + γ α

n,off
2)

δ
(
ω − Eα

n

)
, (11)

�off (ω) =
∑
n,α

γ α
n,off

(
γ α

n,↑ + γ α
n,↓

)
δ
(
ω − Eα

n

)
. (12)

Integration over the energy intervals Iα
n ,

wα
n,σ =

∫
Iα
n

�σ (ω)dω wα
n,off =

∫
Iα
n

�off (ω)dω, (13)

yields the equation system

wα
n,↑ =γ α

n,↑
2 + γ α

n,off
2
, (14)

wα
n,↓ =γ α

n,↓
2 + γ α

n,off
2
, (15)

wα
n,off =γ α

n,off

(
γ α

n,↑ + γ α
n,↓

)
. (16)

One possible solution of this system is given by

γ α
n,↑ =

wα
n,↑ +

√
wα

n,↑wα
n,↓ − wα

n,off
2√

wα
n,↑ + wα

n,↓ + 2
√

wα
n,↑wα

n,↓ − wα
n,off

2

, (17)

γ α
n,↓ =

wα
n,↓ +

√
wα

n,↑wα
n,↓ − wα

n,off
2√

wα
n,↑ + wα

n,↓ + 2
√

wα
n,↑wα

n,↓ − wα
n,off

2

, (18)

γ α
n,off = wα

n,off√
wα

n,↑ + wα
n,↓ + 2

√
wα

n,↑wα
n,↓ − wα

n,off
2

. (19)

Note that in the case of vanishing superconductivity wα
n,off =

0, the equations reduce to the standard NRG solution [57]
γ α

n,σ
2 = wα

n,σ and γ α
n,off = 0.

Now that we have calculated all model parameters from a
given hybridization function K (ω), the next step is to map the
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FIG. 1. New Wilson chain with the superconducting symmetry
breaking terms δn (blue lines), δ̃n,↓↑ and δ̃n,↑↓ (green lines). δ̃n,↓↑ and
δ̃n,↑↓ vanish in the case of SU(2) spin symmetry.

impurity model of Eq. (3) via a Householder transformation
to a linear chain model of the form

HEff = HImp +
N∑

n=0,σ

εn,σ f †
n,σ fn,σ +

N∑
n=0

δn(f †
n,↑f

†
n,↓ + H.c.)

+
N−1∑
n=−1

(δ̃n,↑↓f
†
n,↑f

†
n+1,↓ + δ̃n,↓↑f

†
n,↓f

†
n+1,↑ + H.c.)

+
N−1∑

n=−1,σ

tn,σ (f †
n,σ fn+1,σ + H.c.). (20)

The new Wilson chain is illustrated in Fig. 1. In addition to the
usual hopping parameters tn,σ and on-site energies εn,σ of an
ordinary Wilson chain, this chain exhibits the SC symmetry
breaking terms δn (blue lines), δ̃n,↓↑ and δ̃n,↑↓ (green lines).
In the case of SU(2) spin symmetry, the terms δ̃n,↓↑ and δ̃n,↑↓
vanish and the chain reduces to the form of Bauer et al. [42].

Since δ̃n,↓↑ and δ̃n,↑↓ link different energy scales, it is
important to emphasize that both terms decay exponentially
with increasing n and, therefore, ensure the separation of
energy scales, which is vital for the NRG. Also note that both
terms do not need to be equal but depend on the details of the
Householder transformation, e.g., it is also possible that one
of these terms always vanishes.

Since the described NRG scheme is completely indepen-
dent of HImp, which incorporates all impurity degrees of
freedom, we have tested it for the exactly solvable case of
vanishing Hubbard U = 0 and Kondo coupling J = 0 and
found good agreement.

III. HALF FILLING

A. Phase diagram

Figure 2 summarizes our main results and depicts the phase
diagram as a function of the strength of the attractive U

and antiferromagnetic Kondo coupling J for half filling. The
calculations are performed for T/t = 4 · 10−5.

For a vanishing coupling J , our observations are in agree-
ment with the previous results for an attractive Hubbard model
[42,43]. At half filling and J = 0, the SC state is energetically
degenerate with a CDW state so that an arbitrary superposition
of both states yields a stable solution in the DMFT. For a CDW
state, the occupation of each lattice site may differ from half
filling, but the average of two neighboring sites yields nd = 1,
with nd = nd,↑ + nd,↓, such that on average the whole lattice
is half filled.

This behavior does not change for very weak couplings J ;
namely, we also see SC solutions for finite couplings. This

FIG. 2. The phase diagram at half filling in dependence of an
attractive U and antiferromagnetic Kondo coupling J . A detailed
explanation is given in the text. Lines indicate phase boundaries (see
Fig. 4). The step structures around the phase boundaries are caused
by the finite resolution of the data.

is demonstrated in Fig. 3(a), which shows the anomalous
expectation value � = 〈d†

↑d
†
↓〉 as a color contour plot. In this

regime, the system behaves exactly as in the J = 0 case and
we do not observe magnetic ordering for the localized spins
since the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion is too weak. Notice that for these small coupling strengths
J , the spins and the conduction electrons are effectively
decoupled at this temperature.

For larger couplings, the system undergoes a first-order
transition. The superconductivity breaks down and the anoma-
lous expectation value exhibits a jump to � ≈ 0. The small
residual value of � might be caused by a finite spectral
resolution due to numerical noise and broadening of the NRG
spectra. Note, however, that a finite temperature in a real
experiment would have a similar effect and could also lead
to a finite SC expectation value �. The reason for this is that
the energy difference between the SC state and the CDW state
is very small so that the SC state is partially occupied due to
the finite temperature effect.

For these larger coupling strengths J , the CDW phase
is energetically favoured over the superconductivity without
the need of a nonlocal density-density interaction. We thus
observe a CDW phase, which is revealed in Fig. 3(b), that
depicts the CDW order parameter ζ = |nd,i − nd,i+1|/2, mea-
suring the difference in the occupation of two neighboring
sites. Figure 3(c) displays the polarization of the localized
f -electron spins. In addition to the onset of the CDWs, we
also find SDWs where the localized spins are ordered in
an antiferromagnetic Néel state. The bright yellow area in
Fig. 3(c) indicates that in this regime the spins are almost
completely polarized since the Kondo screening is suppressed
due to the relatively large gap created by the CDW at the
Fermi energy in the DOS.

Note that although the degeneracy is lifted in this phase,
the energy difference between CDW and superconductivity is
very small such that it may take a large number of DMFT
iterations to go from a SC solution to a CDW solution. The
critical coupling separating the two phases displays a linear
dependence on U , as depicted in Fig. 4 (red solid line).
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FIG. 3. Different order parameters of the system at half filling
as a function of U and J : (a) The anomalous expectation value
� = 〈d†

↑d
†
↓〉. (b) The CDW order parameter ζ = |nd,i − nd,i+1|/2.

(c) The polarization of the localized f -electron spins |〈Sz〉|. The
step structures around the phase boundaries are caused by the finite
resolution of the data.

However, the gradient is very small such that the critical
couplings are very similar for a wide range of U .

The reason why the CDW state has lower energy compared
to the SC state is that the antiferromagnetically ordered f -
electron spins generate magnetic fields which oscillate from
site to site. In an SC state, a magnetic field always decreases
the gap size while in a CDW state it is possible to retain
the size of the gap in at least one of the conduction band
channels, i.e., up- or down-spin channel. Consequently, the
system becomes a half metal in this phase since the gap closes
only in one of the conduction band channels. Thus, anti-
ferromagnetically ordered spins can cooperate with a CDW
order in the conduction electrons, but not with SC conduction
electrons. This will be discussed in more detail in Sec. III C.

FIG. 4. Critical couplings Jc(U ) separating the phases plotted
against |U |. We find a linear behavior for all three phase bound-
aries: Jc/t = 0.038|U/t | − 0.011 for the transition from SC+CDW
to CDW+Néel (red solid line), Jc/t = 0.544|U/t | − 0.638 for the
transition from CDW+Néel to Néel (pink dashed line), and Jc/t =
0.284|U/t | + 2.053 for the transition from Néel to paramagnetism
(black dashed-dotted line).

We point out that this CDW+Néel phase and the break-
down of superconductivity has not been observed in recent
static mean-field theory calculations [33]. Instead, a phase
combining SDWs and superconductivity has been found be-
cause CDWs have not been considered in this static mean-field
approach while CDWs emerge in our RDMFT framework
without any additional assumptions.

Upon further increasing the Kondo coupling, another first-
order transition, indicated by discontinuous jumps in physical
properties, is observed and the CDW vanishes. The critical
coupling shows again a linear dependence on U as indicated
by the dashed pink line in Fig. 4. Note that in this phase, the
polarization of the localized spins decreases [see Fig. 3(c)].
The reason for this is a change in the size of the gap in the
DOS at the transition from the CDW to the Néel phase. The
Kondo temperature Tk = De−1/ρJ exponentially depends on
the coupling J and the DOS around the Fermi energy ρ.
In the CDW phase, the gap is rather large, which impedes
the Kondo effect, while in the Néel phase the gap in the
DOS becomes significantly smaller. This leads to an increased
Kondo screening in the Néel phase and, hence, a decrease of
the spin polarization.

For larger couplings, the Kondo temperature exponentially
increases and we obtain the results of a standard Kondo lattice
model without an additional attractive interaction, U = 0
[68]. Close to half filling, the Kondo lattice is dominated by
the interplay between RKKY interaction ∝ J 2 and the Kondo
effect as described by the Doniach phase diagram [37]. For
relatively small couplings J , the localized f -electrons are an-
tiferromagnetically ordered in a Néel state, thus, suppressing
the Kondo effect. On the other hand, with increasing coupling
the Kondo screening becomes more dominant such that the
polarization of the localized spins decreases.

At strong couplings, the Kondo effect dominates and the
system undergoes a continuous transition from a magnetically
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0
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. . 2.0 0 5 1 1 5 2 5 3

J/t

ζ
|nd,↑ − 0.5|
|nd,↓ − 0.5|

2|sz
d|
Φ

|Sz|/2

FIG. 5. Occupation of both spin-channels |nd,σ − 0.5|, CDW
order parameter ζ , polarization of the conduction band 2|sz

d | =
|nd,↑ − nd,↓|, anomalous expectation value �, and f -electron spin
polarization |Sz| as functions of the coupling J for a constant
U/t = −2 exactly at half filling.

ordered Néel state to a paramagnetic state [68]. Compared
to the U = 0 case, the critical coupling at which the transi-
tion from the magnetically ordered to the paramagnetic state
occurs, increases for a finite attractive U . Again, a linear
dependence on U is found for the critical Kondo coupling,
which is depicted in Fig. 4 as a black dashed-dotted line.
Note that the constant offset of about 2.053, which indicates
the critical coupling Jc for the case of vanishing interaction
U = 0, is in good agreement with the results of a stan-
dard Kondo lattice without additional attractive interactions
[68,69]. The reason for the increasing critical coupling is that
with increasing attractive U , either the doubly occupied or
empty state with total spin s = 0 is favored over the singly
occupied state with s = 1/2 and, consequently, the effective
magnetic moment in the conduction band, which screens the
localized spins, vanishes. Therefore, an attractive interaction
U inhibits Kondo screening of the localized spins [44].

B. Static properties and phase transitions

We now discuss the static properties of the system in
greater detail. Figure 5 shows the deviation of the occupation
numbers nd,↑ and nd,↓ from half filling, the CDW order
parameter ζ , the anomalous expectation value � = 〈d†

↑d
†
↓〉,

and the spin polarization of the localized f -electrons for a
constant attractive U/t = −2 as a function of the coupling J .

For small couplings up to J/t ≈ 0.065, the system behaves
exactly in the same way as for J = 0; the SC and CDW
states are degenerate (CDW state not explicitly shown). The
anomalous expectation value is constant and since we start
with a non-CDW self-energy, the occupation for all sites is
exactly half filling |nd,σ − 0.5| = 0 and ζ = 0. Due to the
small coupling, the RKKY interacting is very weak and we do
not observe a magnetic ordering of the localized f -electron
spins. Note, however, that the localized spins are completely
unscreened, due to the SC gap, see Sec. III C below. There-
fore, the localized f -electrons essentially behave like free

spins and even very weak perturbations can polarize them. In
the current model, however, there is no possibility to mediate
the coupling between spins other than the RKKY interaction.
In a real material, it is very likely that different long-range
interactions would produce a stable magnetic ordering in this
phase.

For larger couplings J , all properties show a discontinu-
ous jump indicating a first-order transition. The degeneracy
between superconductivity and CDWs is lifted so that super-
conductivity almost completely vanishes and instead a CDW
state with ζ 
= 0 appears. Upon further increasing the cou-
pling, the conduction-band polarization 2|sz

d | = |nd,↑ − nd,↓|
continuously increases due to the magnetic fields induced by
the localized spins and, consequently, the small residual super-
conductivity eventually vanishes. Note, however, that only the
occupation nd,↓ changes while nd,↑ remains almost constant.
The reason for this behavior is the alternating magnetic fields
originating from the antiferromagnetic ordered f -electrons,
which enable the system to preserve the gap in at least one
spin-channel.

Around J/t ≈ 0.45, another first-order transition occurs
and most physical properties display a discontinuous jump.
The occupation number at each lattice site jumps to half
filling such that ζ = 0 and |nd,↑ − 0.5| = |nd,↓ − 0.5|. For
the localized spins, we find the typical Néel state of a Kondo
lattice model at half filling without any CDW or SC order
� = 0. Note the small jump in Sz (sz

d ) at the phase transition
around J/t ≈ 0.5, indicating that the polarization is slightly
smaller (larger) than the one in the CDW phase.

For even larger couplings, the well known second-order
transition for the standard Kondo lattice from a magnetically
ordered to a paramagnetic state occurs [68] and the Néel state
vanishes continuously.

C. Dynamical properties

The local DOSs at a lattice site for the spin-up and spin-
down channel are depicted in Figs. 6(a) and 6(b), respec-
tively, for different couplings J and constant U/t = −2. The
spectrum at neighboring sites is mirrored on the ω = 0 axis.
Figure 6(c) displays the real part of the off-diagonal Green’s
function, where finite values indicate superconductivity.

For the very weak coupling J/t = 0.06 (red line), we ob-
serve a gap with two symmetric peaks for both spin channels.
Since the magnetic order is absent for this small coupling, the
spectrum for the spin-up and spin-down channel is identical.
The pronounced value of the Re[G12(ω)] inside the gap shows
that this gap originates from superconductivity.

In the CDW phase for J/t = 0.2 (blue line), both spin
channels have just one peak below the Fermi energy, which
is shifted to energies above the Fermi energy for neighboring
sites due to the CDW. Note that the position and the heights
of the peaks for the two channels is not identical. The value of
the off-diagonal Green’s function is very small, in accordance
with the observation of a very small �, see Fig. 5. In this
phase, the localized spins are almost completely polarized
since the gap at the Fermi energy suppresses the screening
of the f -electrons due to the Kondo effect.

For the two larger couplings J/t = 0.45 (green line) and
J/t = 2.4 (black line), the system is in the magnetically
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FIG. 6. The local DOS (a) ρ11(ω) for the spin-up and (b) ρ22(ω)
for the spin-down channel for U/t = −2. The spectrum at the neigh-
boring sites is mirrored on the ω = 0 axis. (c) Real part of the off-
diagonal Green’s function. The system is for J/t = 0.06 in the SC,
for J/t = 0.2 in the CDW, for J/t = 0.45, and J/t = 2.4 in the
Néel and for J/t = 3.0 in the paramagnetic phase.

ordered Néel phase already known for the ordinary Kondo lat-
tice. The off-diagonal Green’s function completely vanishes,
showing that there is no superconductivity anymore in this
phase. In this phase, the size of the gap strongly depends on
the strength of the coupling J [70] so that the gap is very
small for J/t = 0.45 while it is rather large for J/t = 2.4.
The small gap for weak couplings J in the Néel phase leads
to a sudden increase of the DOS around the Fermi energy
compared to the CDW phase and, consequently, results in an
enhancement of the Kondo effect. The increasing influence of
the Kondo effect causes a decrease of the polarization of the
localized spins, which can be seen as a small jump in Sz at the
phase transition [see, e.g., Fig. 3(c)].

At the phase transition point from the CDW to the Néel
phase, the peak in ρ22(ω) discontinuously jumps from below
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FIG. 7. Local DOS (a) ρ11(ω) for the spin-up and (b) ρ22(ω)
for the spin-down channel in the CDW + Néel state for different
couplings close to the phase transition to the magnetically ordered
phase and U/t = −2. For neighboring sites, the spectrum is mirrored
on the ω = 0 axis.

to above the Fermi energy, once again indicating a first-order
transition.

For the coupling J/t = 3.0, the system is in the para-
magnetic phase and we observe a gap with two symmetric
peaks. Since there is no polarization anymore, the DOS of the
spin-up and spin-down channel are identical. As before, we do
not observe superconductivity and Re[G12(ω)] is completely
zero.

Since, for very small couplings, the system behaves just
like an attractive Hubbard model with J = 0 while, for large
couplings, the results of a standard Kondo lattice with U = 0
are obtained, the CDW phase is the most interesting phase.
Figure 7, therefore, depicts the local DOS in the CDW phase
for couplings close to the phase transition point to the mag-
netically ordered state in more detail. When approaching the
phase transition point to the SDW phase, we observe that
the position of the peak for the spin-up channel is almost
unchanged, indicating an insulating system. On the other
hand, the peak in the spin-down channel is shifted towars
the Fermi energy, leading to a gap-closing. In addition to the
shift, the spectral weight at the Fermi energy increases and
two small peaks around the ω = 0 evolve. The energy scale
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FIG. 8. Momentum-dependent spectral functions of (a) the spin-
up channel and (b) spin-down channel for U/t = −2 and a coupling
J/t = 0.4 close to the quantum phase transition.

on which these additional peaks appear agrees very well with
the energy of J 〈�S · �sd〉, indicating that these peaks originate
from spin-flip excitations.

A comparison between Figs. 7(a) and 7(b) reveals that
the system becomes a half metal close to the quantum phase
transition where only the gap in one conduction band channel
disappears. This behavior arises from the combination of
the CDW and the oscillating magnetic fields caused by the
localized spins. While at the site shown in Fig. 7 the effective
magnetic field tends to shift the peak in ρ11(ω) to lower
energies and away from the Fermi energy, the peak in ρ22(ω)
is displaced toward the Fermi energy. At the neighboring
sites, the situation is the same. Because of the spin-flip of the
localized spin in the Néel state, the effective magnetic field
now shifts the peak of ρ11(ω) to higher energies. However,
due to the CDW, the peak is now located above ω = 0 so that
it is again displaced away from the Fermi energy. For the same
reason, the peak in ρ22(ω) of the neighboring sites is shifted
toward the Fermi energy so that the gap closes only for the
spin-down channel.

The half-metallic behavior is once again shown in Fig. 8
where the momentum-dependent spectral functions close to
the quantum phase transition are depicted. While the spectrum
for the spin-up channel (panel a) is almost indistinguishable
from the spectrum in the SC phase at J = 0 (not shown) and
exhibits a gap, the spectrum of the spin-down channel does
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FIG. 9. (a) CDW order parameter ζ , averaged occupation nd =
1/N

∑
i nd,i , superconducting expectation value �, and polarization

of the localized spins |Sz| for U/t = −2 and J/t = 0.2 as a function
of the chemical potential μ. For μ/t = 1, the lattice is half filled
and CDWs occur. (b) Site-dependent polarization Sz of the localized
f -electron spins for U/t = −2, J/t = 0.2 and μ/t = 1.4. Around
μ/t = 1.4, the antiferromagnetic Néel state is not stable anymore
and instead SDWs as shown in panel (b) appear.

not show any gaps and instead displays the properties of a
metal.

Since the system can preserve the gap in one conduction
band channel, the CDW+Néel state yields a small energy gain
compared to the SC state where the effective magnetic fields
always decrease the size of the gap in both channels. This
opens the opportunity to use the combination of CDWs and
Néel ordering, which originates from the interplay between
an attractive U and a Kondo coupling J , as an application for
spin filters.

For the momentum-dependent spectral functions of the
magnetically ordered phase and the paramagnetic phase, we
have not observed any differences compared to the standard
Kondo lattice [68].

IV. AWAY FROM HALF FILLING

In the attractive Hubbard model with J = 0, the SC state
and CDW state are degenerate only at half filling. Away from
half filling, this degeneracy is lifted and instead only the SC
state becomes the ground state.
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Figure 9(a) shows different properties of the system for
U/t = −2 and a finite coupling J/t = 0.2 as a function of
the chemical potential μ.

For the particle-hole symmetric case μ/t = 1, the average
occupation number nd = 1 indicates that the system is at half
filling and, consequently, we observe CDWs with ζ 
= 0.

For a small critical deviation away from μ/t = 1 the CDW
order parameter ζ shows a discontinuous jump to a value
close to zero, indicating a first-order transition. At the same
time, also the SC expectation value jumps from � = 0 to a
finite value. At this point, the SC state, instead of the CDW +
Néel state, becomes the new ground state. The finite residual
ζ is presumably caused by a finite energy resolution and
broadening effects of the NRG spectra, which have the same
effect as a finite temperature in real experiments.

Using an applied voltage to change the chemical potential,
it is, therefore, possible to drive the system from the insulating
CDW phase at half filling to the SC phase. This could be inter-
esting for a possible future implementation of SC transistors.

Away from half filling, the superconductivity persists up
to much larger couplings J compared to the case of half
filling. The almost free f -electron spins are stabilized in a
SDW state by the RKKY interaction. In this phase, we observe
superconductivity combined with magnetic ordering confirm-
ing previous results [28,32,33]. Upon further increasing the
chemical potential, the small residual ζ rapidly disappears,
leading to a complete breakdown of the CDWs while the
deviation from half filling |nd − 1| continuously increases.
The SC expectation value � decreases almost linearly with
increasing μ until it vanishes around μ/t ≈ 1.75.

Away from half filling, however, the homogeneous Néel
state becomes unstable and changes into a phase of SDWs
as depicted in Fig. 9(b) in which the polarization of the
localized spins are lattice-site dependent. Exactly the same
kind of SDWs have also been found for the normal Kondo
lattice with U = 0 [68,71]. Although the superconductivity is
still significant (� ≈ 0.04) in this regime, we can, therefore,
conclude that it has no influence on the structure of the SDWs.
A finite attractive U just changes the critical Kondo coupling
at which the Néel state becomes unstable [28,33].

Figure 10 depicts the anomalous expectation value � and
the polarization of the localized f -electron spins as a function
of the coupling J and the filling n for U/t = −2. Note that in
contrast to the case of half filling, � continuously decreases
with increasing Kondo coupling J and no discontinuity occurs
[28,32,33]. Away from half filling, superconductivity can be
observed for couplings up to J/t ≈ 0.5 and it is largest
for fillings around n ≈ 0.92. While for larger fillings than
n≈0.92 superconductivity is suppressed since at half filling
the CDW state is the ground state, for lower fillings it de-
creases because the electron density is reduced.

The momentum-dependent spectral functions for two dif-
ferent couplings J/t = 0.5 and 0.7 are shown in Fig. 11 for
the filling n ≈ 0.85 and U/t = −2. For the smaller coupling
J/t = 0.5 [Fig. 11(a)], the spectrum exhibits two gaps, one
directly at the Fermi energy (indicated by a blue dashed line),
and the other at ω/t = 0.25. For this coupling strength, we
still observe a significant anomalous expectation value of
� ≈ 0.05 and the gap at the Fermi energy is the SC gap. This
gap is largest for J = 0 and becomes continuously smaller

FIG. 10. (a) Superconducting expectation value � and (b) polar-
ization of the localized spins as a function of the coupling J and the
filling n for U/t = −2.

with increasing coupling J , which agrees with the observation
that � continuously decreases with increasing J .

For the larger coupling J/t = 0.7 [Fig. 11(b)], the SC
expectation value is zero � = 0 and, consequently, the gap
at the Fermi energy is completely gone so that the system
behaves like a metal. On the other hand, the width of the gap at
ω/t = 0.25 is increased compared to the case for J/t = 0.5.
This gap is already known from the ordinary Kondo lattice
[68] and resides at half filling. It is caused by the hybridization
with the localized electrons and the width increases with
increasing coupling J [70].

V. CONCLUSION

In this paper, we have studied the competition between
superconductivity, charge ordering, magnetic ordering, and
the Kondo effect in a heavy fermion s-wave superconductor
which is described by the Kondo lattice model with an at-
tractive on-site Hubbard interaction. To solve this model, we
have employed for the first time the combination of RDMFT
and a newly developed self-consistent NRG scheme in Nambu
space as an impurity solver. Compared to the approach of
Bauer et al. [42] we have chosen a different ansatz for the
discretized impurity model that allows SU(2) spin symmetry
broken solutions, which is essential to study the competition
between SDWs and superconductivity.

Using this new approach, we have found a rich phase-
diagram at half filling, where depending on J and U many
different effects may occur. For very small Kondo couplings
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FIG. 11. Moment-dependent spectral functions for (a) J/t = 0.5
and (b) J/t = 0.7 for n ≈ 0.85 and U/t = −2. Blue dashed line
indicates Fermi energy.

J compared to the on-site interaction U , the system behaves
like a Hubbard model with an attractive on-site interaction
while for large couplings the system shows the properties of
a usual Kondo lattice with U = 0. For moderate couplings,
we have found a completely new phase where CDWs and
magnetic ordering are present at the same time. Interestingly,
the Néel state of the f -electron spins favors the CDW state
over the SC state and, hence, lifts the degeneracy between the
two phases such that superconductivity is strongly suppressed.
Another remarkable feature is that, in this phase, the system
may become a half metal close to the quantum phase transition
to the non-SC magnetically ordered phase where the gap in the
DOS closes only in one spin-channel of the conduction band.

Away from half filling, our findings are in good agreement
with previous results [28,32,33]. The CDWs are suppressed

and we have found instead a phase where superconductivity
along with magnetic ordering exists up to moderate couplings
J . For the chosen interaction U/t = −2, the superconductiv-
ity is strongest for fillings around n ≈ 0.9. The anomalous
expectation value as well as the SC gap both decrease continu-
ously with increasing coupling J . Instead of the homogeneous
Néel state, we have observed incommensurate SDWs. Since
the same kind of SDWs have already been seen in the ordinary
Kondo lattice away from half filling [68], we find no evidence
that superconductivity has an influence on the structure of
these SDWs. A finite attractive U just changes the Kondo
coupling, at which the incommensurate SDWs occur.

Since an applied voltage can change the chemical potential
and drive the system from the insulating CDW state at half
filling to the SC state away from half filling, this system might
be interesting for a possible future implementation of a SC
transistor, where superconductivity can be switched on and
off simply by applying a voltage.

Interestingly, superconductivity away from half filling as
well as CDW at half filling both enhance the magnetic order-
ing since the gap in the DOS mitigates the Kondo screening
[44] such that the f -electron spins are almost completely
polarized in both phases.

In future work, our enhanced RDMFT+NRG approach
could be used to investigate a variety of other SC systems
since it is not limited to homogeneous SC lattice systems,
where localized f -electrons reside on every lattice site. One
example could be diluted SC systems where the behavior for
different impurity concentrations is examined. In this case,
one would randomly place a specific number of impurities
on the lattice sites of a large RDMFT cluster such that the
desired concentration is achieved. On the other hand, one
could also study proximity-induced superconductivity where
a lattice Hubbard model with an attractive on-site potential U

is coupled, e.g., to an ordinary Kondo lattice. These issues are
now under consideration.
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