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The high-temperature superconductivity in copper oxides emerges when carriers are doped into the parent
Mott insulator. This well-established fact has, however, eluded a microscopic explanation. Here we show that the
missing link is the self-energy pole in the energy-momentum space. Its continuous evolution with doping directly
connects the Mott insulator and high-temperature superconductivity. We show this by numerically studying
the extremely small doping region close to the Mott insulating phase in a standard model for cuprates, the
two-dimensional Hubbard model. We first identify two relevant self-energy structures in the Mott insulator: the
pole generating the Mott gap and a relatively broad peak generating the so-called waterfall structure, which is
another consequence of strong correlations present in the Mott insulator. We next reveal that either the Mott-gap
pole or the waterfall structure (the feature at the energy closer to the Fermi level) directly transforms itself
into another self-energy pole at the same energy and momentum when the system is doped with carriers. The
anomalous self-energy yielding the superconductivity is simultaneously born exactly at this energy-momentum
point. Thus created self-energy pole, interpreted as arising from a hidden fermionic excitation, continuously
evolves upon further doping and considerably enhances the superconductivity. Above the critical temperature,
the same self-energy pole generates a pseudogap in the normal state. We thus elucidate a unified Mott-physics
mechanism, where the self-energy structure inherent to the Mott insulator directly gives birth to both the high
critical superconducting temperature and pseudogap.

DOI: 10.1103/PhysRevB.98.195109

I. INTRODUCTION

High-temperature superconductivity in copper oxides oc-
curs when carriers are doped into a parent Mott insulator [1].
This observation [2] has brought about an enormous number
of studies on the role of strong electronic correlations in the
high-temperature superconductivity. In fact, various theoret-
ical studies, including numerical simulations which seriously
take into account the strong correlation effect, have shown that
superconductivity is a strong candidate of low-temperature
phases in the doped Mott insulators [3–5]. Nevertheless, how
the Mott insulator transforms into the superconductor by
doping (δ) and why a high transition temperature (Tc) results
from the Mott physics are questions that still remain open.

Another unresolved issue of the cuprates is the anomalous
metallic state observed above Tc. Especially in a lightly-doped
region, a gap called “pseudogap” has been observed in various
experiments [6–11, and references therein]. Its relation to the
superconductivity as well as to the Mott insulator has also
been controversial despite an intensive debate in the last few
decades.

All these three states, i.e., the Mott insulator, pseudo-
gap metal, and high-Tc superconductor, constitute nontrivial
electronic states which defy the description by the standard
theories of solids [12], like the band theory, Fermi-liquid
theory, and Bardeen-Cooper-Schrieffer theory [13]. One of
the simplest models that has been proposed to accommodate
all these three states is the two-dimensional Hubbard model

[2], which takes well into account the electronic correlations
resulting from the local Coulomb interaction. Recent numeri-
cal studies, based on quantum cluster theories [3,14–18], have
revealed a presence of self-energy poles in these three states
[19–35]. This fact well explains the inapplicability of the
above-mentioned standard theories, which cannot describe the
singular self-energy.

In this paper, we reveal the microscopic relation between
these Mott insulator, high-Tc superconductivity and pseudo-
gap, especially between the first two phases, by exploring how
the self-energy evolves with doping the Mott insulator. In the
superconducting state, the self-energy pole appears also in its
anomalous component, and it ultimately enhances the super-
conducting pairing [26]. We find that this self-energy pole
enhancing the superconductivity has the root at the self-energy
peaks present in the Mott insulator. This result validates and
substantiates the long-standing but still-speculative argument
that the Mott-insulating state at zero doping is at the origin of
the high Tc of the superconductivity, revealing the microscopic
mechanism in terms of the self-energy structure.

Figure 1(a) schematically illustrates the doping-
temperature (T ) phase diagram of the two-dimensional
Hubbard model, obtained by quantum-cluster theories
[3,14–18], close to half filling (δ = 0) and at intermediate-to-
strong coupling [3,4,35–39]. We first review the self-energy
structure in each phase. The Mott-insulating state appears
at δ = 0, where the self-energy shows a prominent pole [at
ω � 1 in Fig. 1(b)]. This pole generates the Mott gap (for
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FIG. 1. (a) Schematic phase diagram of the two-dimensional
Hubbard model with a strong repulsive interaction in the vicinity of
half filling. (b) A(kAN, ω) and Im�nor(kAN, ω) with kAN ≡ (π, 0) in
the Mott-insulating state (δ = 0, T = 0.01), where the Fermi level
(ω = 0) is taken to be just above the occupied states. t = 1 and
U = 8 are used for (b)–(d). Inset plots the superconducting order
parameter against δ, calculated at T = 0.01. (c) A, Im�nor (left) and
�ano (right) in the superconducting state (δ = 0.048, T = 0.01). (d)
A and Im�nor in the pseudogap state (δ = 0.047, T = 0.06). The
arrows denote the self-energy peaks discussed in the text.

0 � ω � 3) between the occupied and unoccupied weights in
the spectral function A(k, ω). Note that this Mott-insulating
state is paramagnetic while a real undoped cuprate shows
an antiferromagnetism at low temperatures. It is however a
well defined meaningful question from the perspective of
a mean-field theory to study this paramagnetic phase as a
parent state of the metallic phase that appears for δ > 0 and
takes over the antiferromagnetic state.

Carrier doping immediately alters the Mott insulator into
a superconductor at low temperatures, as displayed in the
inset to Fig. 1(b) by a nonzero value of the superconducting
order parameter, 〈ci↑cj↓〉 with i and j denoting the nearest
neighboring sites, which respects the dx2−y2 symmetry of the
pairing. This immediate emergence of superconductivity is
not the case of the cuprates, where it appears only after a
substantial hole doping (�5%). The latter is likely due to the
inhomogeneity inherent to the real materials and a remnant
antiferromagnetic order. In this paper, we assume the trans-
lational invariance and charge uniformity of the system, to
study a continuous doping evolution from the Mott insulator
to superconductor in a clean system.

In this superconductor, both the normal (�nor) and anoma-
lous (�ano) components of the self-energy show poles at low
energies [Fig. 1(c)] [25–27,29,33,34,40–42]. As their energy
positions perfectly agree, they share the same origin [33,34].
A Kramers-Kronig analysis shows that this pole considerably

lifts the low-energy value of Re�ano, enhancing the supercon-
ductivity [26,27,29,34,39,42].

For T > Tc [Fig. 1(d)], �ano vanishes while the low-energy
peak of Im�nor persists, yielding a small gap in A(k, ω).
This gap has been identified with the pseudogap observed
in the cuprates above Tc [19,22,24,28,30,32,43–45]. Though
this peak of Im�nor is broadened by thermal fluctuations, it
evolves into a pole at low T in the superconducting phase [as
displayed in Fig. 1(c)] [34] and also in the normal paramag-
netic state if this latter is imposed at low T by constraining the
CDMFT equations [22–24,28,30,32,43–49].

In Ref. [34], we showed the continuity of this self-energy
peak through Tc, which implies the same origin of the pseu-
dogap and high-Tc superconductivity. Furthermore, we found
that, in the single-particle Green’s function, the pole of �nor

cancels with the contribution from the anomalous part. We
then revealed that this cancellation means a presence of a hid-
den fermionic excitation coupling to the electron and that the
coupling generates the self-energy pole. The hidden fermion
emerges from a strong correlation effect while its explicit
identity is yet to be clarified.

The paper is organized as follows. In Sec. II, we explain our
model and method which our numerical calculations are based
on. In Sec. III, we present our numerical results. Here, we
first show the results for the Mott insulating state (Sec. III A),
which are consistent with various previous works, and give us
a starting point of the doping evolution studied in the subse-
quent subsections. Section III B is devoted to several remarks.
The main numerical results are presented in Secs. III C and
III D, where we have found the direct connection between
the Mott insulator and the high-Tc superconductor in their
self-energy structures. Section III E summarizes these findings
and further quantifies the relation in terms of the residue of the
self-energy poles. In Sec. III F, we reveal several characters
of the relevant self-energy peaks. Section IV is devoted to an
interpretation of the numerical results, where we rest on the
representation of the correlation effects by the fermionic exci-
tations and give an explanation to otherwise arcane numerical
results. We summarize the paper in Sec. V.

II. MODEL AND METHOD

We consider the two-dimensional Hubbard model,

H =
∑
kσ

ε(k)c†kσ ckσ + U
∑

i

ni↑ni↓, (1)

where ckσ (c†kσ ) annihilates (creates) an electron of spin σ

with momentum k and niσ is the density operator at site
i on a square lattice. U is the onsite Coulomb repulsion,
and ε(k) = −2t (cos kx + cos ky ) − 4t ′ cos kx cos ky − μ with
t (t ′) denoting the (next-)nearest-neighbor transfer integral
and μ denoting the chemical potential. We use t = 1 as the
unit of energy and t ′ = −0.2 throughout the paper. In real
cuprates, the value of t is estimated to be ∼0.4–0.5 eV by
ab initio calculations [50].

Within the CDMFT [17], we map the model (1) onto an
effective impurity model consisting of a 2 × 2 interacting-site
cluster and eight noninteracting bath sites [27,36,51]. We
solve the latter model with a finite-T extension [52–55] of
the exact diagonalization method [56]. Note that this finite
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temperature Lanczos method is different from the quantum
transfer Monte Carlo method [57] or finite temperature Lanc-
zos method [58], where inevitable intrinsic statistical error
makes the method not suitable for the present case. Our
method allows us to calculate precise real-frequency proper-
ties, resolving changes with tiny dopings. Unless otherwise
mentioned, we set T = 0.01 at which only the ground state
of the effective impurity problem has a substantial Boltzmann
weight. The CDMFT outputs �nor and �ano, which are related
to the retarded Green function Ĝ in the Nambu-matrix form as

�̂(k, ω) =
(

�nor(k, ω) �ano(k, ω)

�ano(k, ω) �nor(k,−ω)∗

)

=
(

ω − ε(k) 0
0 ω + ε(k)

)
− [Ĝ(k, ω)]−1. (2)

Here we consider a spin-singlet superconductivity, for which
we can choose the phase of the two off-diagonal components
to be the same. For the remaining arbitrariness of the overall
sign of the anomalous component, we chose it to have hidden-
fermion peaks with Im�ano ≷ 0 for ω ≷ 0 at k = kAN ≡
(π, 0).

The normal part of the single-particle Green’s function is
given by a diagonal component of Ĝ, i.e.,

[Ĝ(k, ω)]11 = [ω − ε(k) − �nor(k, ω) − W (k, ω)]−1, (3)

with

W (k, ω) = �ano(k, ω)2

ω + ε(k) + �nor(k,−ω)∗
. (4)

With these equations, the cancellation by the hidden fermion,
mentioned in the last paragraph of the previous section, is
explicitly expressed as a cancellation of the poles of �nor and
W [34].

The spectral function is defined by A(k, ω) ≡
− 1

π
Im[Ĝ(k, ω)]11. Its integral over momentum gives

the density of states. Because the pseudogap and the
superconducting gap are most prominent in the antinodal
region, we mainly study quantities at k = kAN, which can
be derived directly from the cluster-impurity model, as
explained in Ref. [35]. We have used a G-periodization
scheme [24] when we show the momentum-interpolated
self-energy. In order to plot the real-frequency properties, we
use an energy-broadening factor iη with η = 0.1. The doping
concentration δ is calculated with the exact diagonalization
method for the effective impurity model. For more details of
the method, we refer the readers to Ref. [35].

III. RESULTS

A. Electronic structure of Mott insulator

We start with the Mott insulating state, which is obtained
for U � 6 in the 2 × 2 CDMFT [59,60]. To make it simpler
to compare with doped systems, the chemical potential is put
just above the occupied states, where the calculated electron
density 1 − δ is more than 0.999. We first look at the local
density of states displayed in Fig. 2(a). The gap just above the
Fermi level (ω = 0) is the Mott gap [61]. Above the Mott gap
we see the upper Hubbard band (UHB) while the occupied
states below the Mott gap is the lower Hubbard band (LHB).
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FIG. 2. Electronic structure of the Mott insulator at δ = 0 and
T = 0.01. (a) The density of states for U = 7, 8, and 9. The Fermi
level is taken to be just above the occupied states. (b) The intensity
plot of the spectral function for U = 8 along the (0, 0)-(π, π ) line.

As is expected from the behavior in the atomic limit, the Mott
gap increases as U increases while the shape of each Hubbard
band changes only weakly with U . The dip around ω � −1.5
is related to the suppression of A(k, ω) in this energy range, as
shown in Fig. 2(b). Because this behavior has been discussed
in previous theoretical works [32,62,63] in connection with
the waterfall behavior observed in cuprates [64–67], we shall
call in this paper the dip feature the “waterfall.” The overall
feature of the spectral function including this dip obtained in
the initial stage of studies has been reviewed in Refs. [12,68].

FIG. 3. Doping evolution of self-energy and spectral function in
the vicinity of the Mott insulator at U = 7. (a) Self-energy of the
Mott insulator at δ = 0. We define ωMott, ωWF1, and ωWF2 for this
state. (b), (c) Self-energy of the superconducting state at tiny dop-
ings. The yellow vertical lines denote the self-energy pole structure
evolving into the hidden-fermion peak. (d), (e), (f) Intensity plot of
−Im�nor along the (π, 0)-( π

2 , π

2 ) line. (g), (h), (i) Corresponding
plots of A(k, ω).
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In Fig. 1(b) [Fig. 3(a)], Im�nor at k = kAN shows mainly
two structures: One is the sharp peak at ω = ωMott � 1.1(0.6),
which generates the Mott gap, and the other is a relatively
broad peak for −2 � ω � −1, which generates the waterfall
mentioned above. Just for the sake of convenience in the
following discussions, we define by −ωWF1 and −ωWF2 the
position of the upper and lower peaks in this structure, as
illustrated in Fig. 3(a). We use these energies in order to
specify the position of the waterfall structure while we avoid
to discuss its fine structure, considering the finite-size feature
of our calculation. As we shall see below, ωWF1 and ωWF2 do
not strongly depend on U while ωMott monotonically increases
with U in accordance with the shift of the UHB to higher
energies (see Fig. 2).

B. General remarks on the doping evolution of self-energy

We find that when carriers are doped into the Mott insu-
lator, the hidden fermion (i.e., self-energy pole enhancing the
superconductivity) emerges in different ways according to the
magnitude relation between ωMott and ωWF1,2. We shall there-
fore discuss each case of ωMott < ωWF1,2 or ωMott > ωWF1,2

separately in the following.
Here and hereafter, we use the term “hidden fermion” only

for the self-energy peak which shows a cancellation between
Im�nor and ImW in the superconducting state, because this
cancellation is a unique property caused by a coupling to a
fermionic excitation [34]. We shall explicitly show this can-
cellation in Fig. 7 below. We however extend this definition of
the hidden fermion to the normal metallic (pseudogap) state
as well if the isolated peak of Im�nor continuously evolves
into the hidden-fermion pole through the superconducting
transition.

The following discussions are focused on the low-energy
electronic structure for |ω| < 2, in which all the ingredients
to discuss the origin of the hidden fermion are contained.
On the other hand, the higher energy structure for ω > 2
also changes with doping. In particular, a self-energy peak
develops between the in-gap state and the UHB. Interestingly,
this self-energy peak traces back to the waterfall structure
present in the UHB at δ = 0 [see Fig. 2(b)]. We shall discuss
these points in more detail in Appendix A.

C. Doping evolution of self-energy for ωMott < ωWF1,2

For a relatively small U , ωMott is substantially smaller than
ωWF1,2 at k = kAN, as is displayed in Fig. 3(a) for U = 7. A
tiny doping immediately lifts �ano [Fig. 3(b)]. Here, the most
important finding is that Im�ano develops sharp peaks at ω =
ωMott and its electron-hole symmetric position [see Fig. 5(a)
below, too]: This evidences the direct transformation of the
Mott insulator into the superconductor. With further doping,
the peaks of Im�ano at ω = ±ωMott become more prominent
[Fig. 3(c)], evolving into the hidden-fermion peaks similar to
those seen in Fig. 1(c). Thus, the origin of the hidden fermion
is identified with the Mott gap.

On the other hand, the structure around ωWF1,2 gives a
broad peak with sign opposite to Im�ano(kAN, ωMott ) (i.e.,
hidden-fermion peak). Note that ImW and Im�nor do not
cancel each other at ωWF1,2 in this case of U = 7, as we
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FIG. 4. The same as Fig. 3 but at U = 9.

shall show in Sec. III F. As the sign of Im�ano(kAN, ωWF1,2)
is opposite to that of the hidden-fermion peak, the waterfall
structure at U = 7 cannot be directly connected to the hidden
fermion, in contrast to the peak at ωMott. We show in the next
subsection that this behavior qualitatively changes at larger U .

One may wonder if the above correspondence between the
hidden-fermion peak and ωMott holds away from kAN, too,
because the Mott gap has in general a much larger energy
scale than the pseudogap [28,69]. To examine this point, we
plot −Im�nor along the (π, 0)−( π

2 , π
2 ) cut in Figs. 3(d)–

3(f) [data along (0, 0)−(π, 0)−(π, π )−(0, 0) are shown in
Appendix B, where a large dispersion of ωMott is apparent].
We see that around this line, which is close to the Fermi
surface in the normal-state solution of doped systems, ωMott

is always located at low energy (ωMott < 1) and is indeed
transformed into the hidden-fermion peak at finite dopings.
Note that the peak of Im�nor splits around ( π

2 , π
2 ) in Fig. 3(f).

This feature may depend on the choice of the periodization
scheme [17,51,70], as the momentum around the nodal point
is not directly accessible within the solution of the 2 × 2-
cluster impurity model. However, the lowest-energy branch
corresponds to the d-wave form of the superconducting gap
[71]. Spectral functions obtained for these self-energies are
displayed in Figs. 3(g)–3(i), which clearly show the Mott gap
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FIG. 5. Peak position of the self-energy plotted against doping
δ for (a) U = 7 and (b) U = 9. Stars denote ωMott and ωWF1,2

measured with Im�nor(kAN, ω) of the Mott insulator. Orange circles
and light-blue triangles denote the peak positions of Im�ano in the
superconducting state, where the former and latter have the intensity
of opposite signs. The hidden fermion peak is hatched by yellow. In
panel (b), the inverted triangle is not plotted for δ > 0.025, where
the peak is not discernible likely because of the proximity to another
peak denoted by orange circles.

(for 0 < ω � 2) at δ = 0 and the d-wave Bogoliubov bands
(at ω � ±0.5 for k = kAN) at finite dopings. Spectra along
other symmetry lines are displayed in Fig. 14 in Appendix B.

D. Doping evolution of self-energy for ωMott � ωWF1,2

For a large U , ωMott is larger than ωWF1,2 at k = kAN.
Figure 4 shows the results at U = 9. In this case, too, �ano

immediately becomes finite at a tiny doping [Fig. 4(b)].
However, an interesting difference from the above case of
U = 7 is that the lowest-energy peak (indicated by a yellow
vertical line) of Im�ano emerges at ω = ±ωWF1 [see Fig. 5(b),
too], instead of ±ωMott in the previous case. As the doping
increases, this lowest-energy peak evolves into the hidden-
fermion peak enhancing the superconductivity [Fig. 4(f)].

In more detail, Im�ano in Fig. 4(b) shows another peak at
ω = ±ωWF2 and an opposite-sign peak at ω = ±ωMott. Unlike
the case for U = 7, the latter does not develop much for
further dopings, remaining a weak opposite-sign weight above
the hidden-fermion peak energy. The energy of the hidden-
fermion peak gradually decreases with doping. In response
to the change of �ano, �nor also changes with doping: The
Mott-gap peak at ω = ωMott rapidly loses its weight, which
is partly transferred to the hidden-fermion peak. This may be
more clearly seen in Figs. 4(g)–4(i) and Figs. 16(a)–16(c) in
Appendix B.

In terms of the spectral function, a spectral weight descends
from the UHB with doping [Figs. 4(j)–4(l) and Fig. 13 in
Appendix A]. A part of this weight makes up the upper
Bogoliubov band while a substantial weight remains above
the Bogoliubov band separated by a dip of the spectral weight.
Note that the split between the upper Bogoliubov band and
the weight above it can be seen in Fig. 3(i), too. This split
has been observed in electronic Raman scattering experiments
for various cuprates as a peak-dip feature in the B1g response
[72,73] and comes from the pole cancellation discussed in
Sec. III F.

For U = 8, ωMott is comparable to ωWF1,2 at k = kAN. In
this case, both ωMott and ωWF1,2 are involved in the emergence
of the hidden fermion peak at a tiny doping so that it requires
a more careful analysis. We discuss this case in Appendix C.

Pole of Σnor generating Mott gap

Waterfall structure

Mott insulator

Pole of Σnor and Σano 

enhancing supercond. 

Superconductor

Temperature Pole of Σnor  

generating pseudogap

Pseudogap metal

Σano vanishes

Hidden fermion f

Doping

FIG. 6. Relation between the self-energy structures in the Mott
insulator, pseudogap metal, and superconducting state, inferred from
the present results and those in Refs. [28,34].

E. Relationship between Mott insulator
and high-Tc superconductivity

From Figs. 3 and 4 (and additional data), we have extracted
the peak positions of the self-energy and plotted them against
δ in Fig. 5. The star symbols denote ωMott and ωWF1,2 extracted
from Im�nor in the Mott insulator. We see ωMott < ωWF1

(ωMott > ωWF1) for U = 7 (U = 9). Circles and triangles plot
the peak positions of Im�ano in doped cases [74], where the
former and the latter denote the opposite-sign peaks. These
plots clearly show the continuity of the peak positions, and
in particular the origin of the hidden-fermion peak, which
develops as the lowest-energy peak for δ > 0; for U = 7, it
is ωMott, and for U = 9 it is ωWF1.

We have thus established the microscopic relation between
the Mott insulator and the high-Tc superconductivity: The
hidden-fermion peak enhancing the superconductivity traces
back to the self-energy peaks present in the Mott insulator.
For ωMott < ωWF1,2 it traces back to the Mott-gap peak, while
for ωMott > ωWF1,2 it does to the waterfall peak (Fig. 6). The
former is the case for a relatively small U (6 � U � 7) while
the latter is the case for a relatively large U (� 8). This
amplitude relation between ωMott and ωWF1,2 may change with
the momentum, too (Appendix B). We emphasize that no
symmetry breaking, like antiferromagnetism or charge order,
has a direct relevance to the above mechanism generating the
hidden fermion.

As we show in Appendix D, for an energetically isolated
pole of the self-energy, its residue of the normal component
(Rnor

± for the poles at the positive/negative energies, respec-
tively) and that of the anomalous component (Rano

± ) satisfy

Rnor
+ Rnor

− = (Rano
± )2, (5)

where Rano
+ = −Rano

− holds. This relation explains the above
evolution of the self-energy peaks in some more detail. For
example, in Figs. 3(a)–3(c), as doping increases, Rnor

+ de-
creases while Rnor

− increases in a way that their product,
Rnor

+ Rnor
− , increases. Accordingly, |Rano

± | also increases. Thus,
the relation between Rnor

± and Rano
± inferred from the above

equation supports the picture that the large normal self-energy
present in the Mott insulator is the source of the large �ano in
the superconductors.

The results in Ref. [35] suggest that the superconductiv-
ity is maximized around U = 7–8. This fact may also be
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explained by the picture obtained above. Namely, the avail-
ability of the Mott-gap pole at low energy and its strength
increasing with U may have a good balance around U = 7–8,
leading to a strong superconductivity.

In Appendix E, we have given a more detailed analysis of
the doping evolution of the self-energy. The analysis demon-
strates that the difference between U = 7 and U = 9 cases
can indeed be ascribed to the difference of the amplitude
relation between ωMott and ωWF1; the doping dependence of
other ingredients, like the weight of the self-energy peaks and
the strength of the anomalous part, is shown to be qualitatively
similar in both cases.

The above discussions concern the low-energy structure
of the self-energy while in Appendix A we present a higher-
energy structure and discuss its doping evolution. In fact, the
weight of the Mott-gap peak at δ = 0 is transferred, with
doping, to a higher-energy structure, too, which then makes
a gap between the in-gap state and UHB, according to the
sum rule of the self-energy weight in the superconducting
state [35]. This behavior is observed generally for U = 7, 8,
and 9.

F. Characterization of self-energy peaks

The broad self-energy peak structure around −ωWF1,2

yields a suppression of the spectral function. This sup-
pression has been found at δ = 0 in previous nu-
merical studies [24,28,30,32,51,63,69,75] and found to
persist in the normal-state solution at finite dopings
[19,20,24,28,30,32,51,62,63,75]. In Refs. [32,62,63], this
structure has been discussed in connection with the high-
energy kink or waterfall structure observed in the cuprates
[64–67]. A similar structure has been seen even within the
single-site DMFT calculations [76–80], which take into ac-
count only local correlations, as well as in angle-resolved
photoemission spectra of SrVO3 [81,82]. These observations
indicate that this structure is a direct consequence of the
Mott physics, irrespective of the spatial dimensions and lattice
structures.

In order to elucidate the origin of the self-energy peaks, we
investigate whether the peaks of Im�nor and ImW [Eq. (4)]
cancel with each other: A cancellation signifies the isolated
pole character of the peak while the absence of the cancella-
tion signifies a continuous spectrum of the excitation.

Figure 7 plots the imaginary part of �nor, W , and their sum
at tiny dopings. The hidden-fermion peaks are discernible as
negative-intensity peaks in Im�nor (see yellow area), and at
the same energies ImW shows positive-intensity peaks, which
result from the peak of Im�ano at these energies. In their sum,
Im(�nor + W ), however, no trace of the peak is discernible.
Namely, the peak weights of Im�nor and ImW cancel out.
In Ref. [34], we revealed that this cancellation is a direct
consequence of a fermionic excitation yielding an isolated
pole in the self-energy.

On the other hand, in the higher-energy region colored
by gray, ImW shows negative or small positive values, so
that no cancellation occurs and Im(�nor + W ) more or less
follows the curve of Im�nor. This means that the broad
self-energy peaks around ω = ±ωWF1,2 cannot be described
by energetically-isolated fermionic excitations but will be
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FIG. 7. Relation between the normal and anomalous contribu-
tions to Green’s function in two slightly doped cases. In the yellow
region, Im�nor and ImW have opposite signs, and the peaks cancel
out in their sum. In the gray region, ImW has the same sign as Im�nor

or is so small that their sum follows the curve of Im�nor.

described by a continuum of them [35] and perhaps be ef-
fectively described by a coupling to a bosonic excitation.

In order to further elucidate the character of these excita-
tions, we plot in Fig. 8(a) Im�nor at cluster momenta K =
(0, 0), (π, 0), and (π, π ) for the Mott insulator. The result
reveals that the self-energy peak generating the Mott gap is
dispersive [28,69] while that of the waterfall is not. The latter
indicates that this excitation is spatially localized.

IV. DISCUSSION

A. Interpretation of general self-energy structure

In the following, we discuss a possible interpretation of
the above numerical results. The interpretation is based on
the observation in our previous work [34,35,55] that the
self-energy peaks can be represented by auxiliary fermionic
degrees of freedom fα’s hybridizing with a bare electron
(or a low-energy electron when we focus on the low-energy
electronic structure) c. These auxiliary fermionic degrees
of freedom represent correlated electronic states, to and
from which the bare electron transits; this process gives
the frequency-dependent self-energy. Note that, while this
multiple-auxiliary-fermion description of the correlation ef-
fect is always possible, in this paper we use the term “hidden
fermion” to point at a specific excitation which appears in the
superconducting state (and in the pseudogap state above Tc)
as an isolated pole in the low-energy part of the self-energy.
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FIG. 8. (a) Im�nor(K, ω) and (b) A(K, ω) at cluster momenta
K = (0, 0), (π, 0), and (π, π ), calculated for the Mott insulating
state at δ = 0 and U = 8. Arrows in panel (a) indicate the self-energy
peaks generating the Mott gap while the shaded area denotes the one
generating the waterfall.
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For instance, in the normal state, we consider the following
effective Hamiltonian,

Heff =
∑
kσ

[
ε(k) + U

2
(1 − δ)

]
c
†
kσ ckσ

+
∑
αkσ

[εfα
(k)f †

αkσ fαkσ + Vα (k)(c†kσ fαkσ + H.c.)].

(6)

Integrating out the f degrees of freedom in the corresponding
action, we obtain [35]

�nor(k, ω) = U

2
(1 − δ) +

∑
α

Vα (k)2

ω − εfα
(k)

(7)

as the self-energy of the electron ckσ . Note that this is nothing
but the spectral representation of the self-energy derived by
Luttinger [83]. Continuous distribution of εfα

can represent
a broad peak of Im�nor. On the other hand, when there is
an εfα

energetically isolated from other εfα
’s, it represents

a self-energy pole. This self-energy pole splits A(k, ω) into
two parts below and above εfα

, which can be interpreted as a
bonding/antibonding state of c and fα .

B. Interpretation of self-energy structure in Mott insulator

In the Mott-insulating state at δ = 0, the self-energy pole
generating the Mott gap splits the spectrum into the UHB
and LHB. As the UHB (LHB) basically represents doubly
(singly) occupied states, this self-energy pole represents a
linear combination of singly and doubly occupied states. In
fact, in the atomic limit (t = 0), this superposed fermionic
state is represented by f

Mott†
iσ ≡ c

†
iσ (1 − 2niσ̄ ) = c

†
iσ (−1)niσ̄

[Fig. 9(a)] [84,85], which we call the Mott fermion. Then, the
hybridization between c and f Mott gives the LHB and UHB
as the bonding and antibonding states, i.e., c

†
iσ + f

Mott†
iσ =

c
†
iσ (1 − niσ̄ ) and c

†
iσ − f

Mott†
iσ = 2c

†
iσ niσ̄ , respectively.

For finite t , the Mott fermion acquires a mobility. The
doublon in the Mott insulator can have a rather large mobility
though it is somewhat suppressed compared to the bare band-
width due to the renormalization by the antiferromagnetic
fluctuations. This intuitively explains a large dispersion (as
large as 3t) of the Mott fermion seen in Fig. 8(a) and panel
(a) of Figs. 14, 15, and 16 in Appendix B. Under a strong
antiferromagnetic correlation present in the Mott insulator, the
factor (−1)niσ̄ gives f

Mott†
iσ a nearly (π, π )-displaced disper-

sion compared to that of electrons [84]. This (π, π )-displaced
dispersion of the Mott fermion (with a reduced bandwidth
mentioned above) is indeed seen in panel (a) of Figs. 14, 15,
and 16 in Appendix B, where the bottom and the top of the
Mott-gap peak are located at (π, π ) and (0,0), respectively.

Since the Mott fermion is a fermion in the resonating
state of the UHB and LHB, it is interpreted as a fermion
added to a resonating doublon-hole pair. This pair is an
exciton in the Mott insulator for t �= 0. Namely, one can add
a local Mott fermion only at the site represented by the linear
combination of the electron-empty and singly occupied state,
because after adding the Mott fermion, the state becomes the
linear combination of singly and doubly occupied states. Such
a resonating state with empty and singly-occupied sites is

ciσ
†
 (1 - niσ)   ±      ciσ

† niσ      =− −
ciσ

† 

f Mott†{
iσ

add electron

(a)

(b) {Lower Hubbard band

- = f WF
iσ

add hole

FIG. 9. Schematic illustration of the fermionic excitations in the
Mott insulator at δ = 0. Small khaki circle represents an electron.
(a) Those relevant to the Mott gap, where the effect of t is not
illustrated explicitly for simplicity. f Mott† represents the electron
addition to the antibonding combination of the empty and singly-
occupied states. (b) Internal structure of the occupied states (LHB)
in the presence of a finite hopping t . f WF represents the hole addition
to the antibonding combination of the two states with and without the
dynamical doublon-hole excitations.

nothing but the dynamical exciton state where an exciton (0,2)
and a singly-occupied pair (1,1) are resonating in the notation
(n,m) for n and m electrons at the neighboring sites. This
means that the Mott fermion resides in the underlying vacuum
fluctuation generating the exciton.

Finite t also generates doublon-hole pairs dynamically in
the Mott insulator. This creates an internal structure in each
Hubbard band. As for the LHB, electronic states involving
dynamical doublon-hole pairs should have a relatively high
energy among the occupied states. Therefore, they are located
close to the top of LHB. On the other hand, the states close to
the bottom of LHB will be well described by a simple singly-
occupied state. A hole is added to either of these two states
(with or without the dynamical doublon-hole pairs) when
we look at the occupied spectra. Then, in the same way as
above, the antibonding combination of the two different hole
operators (projected onto the above two different states) will
give f WF

iσ [Fig. 9(b)], which represents the self-energy peak
generating the waterfall structure. Namely, the hybridization
between c and f WF produces the spectral weights below and
above the waterfall structure, as the bonding and antibond-
ing states, respectively. Here, f WF

iσ will have a continuous
spectrum, as indicated in Fig. 7, because various dynamical
doublon-hole excitations may be considered. The observation
in Fig. 8 that f WF

iσ is localized in space is compatible with this
picture because the doublon-hole pairs dynamically generated
in the Mott insulator can hardly move around. This picture is
also consistent with the observation of the high-energy kink
or waterfall structure in the single-site DMFT as discussed in
Sec. III F.
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t = 0

hopping

(a)

> 0

>0 (b)

add

t ≠ 0

= 0

doping

 t ≠ 0(c)

add

add

(d)

{
FIG. 10. Schematic illustration of electronic states relevant to the

hidden fermion excitation. Broad khaki area represents a delocalized
electron. (a) Doped holes (dashed open circle) get delocalized when
the hopping t is switched on. (b) An electron added around this hole
will be weakly bound to the hole. We speculate that this electron
bound to the hole comprises the hidden fermion. (c) The dynamical
doublon-hole pairs present at δ = 0 is delocalized due to hole doping.
The doublon (hole) part is illustrated by blue (white) in the upper
(lower) panel. (d) A hole (electron) added around the doublon (hole)
is bound to the doublon (hole). As panel (b) does, the lower panel
represents the hidden fermion (b) while the upper one represents its
hole counterpart.

C. Interpretation of self-energy structure
in doped Mott insulator

When the system is doped with holes, the finite t gives a
mobility to the electrons and holes, making them delocalized.
Namely, the wave functions of electrons and holes become
extended in real space [Fig. 10(a)]. As a single-particle ex-
citation, we consider adding an electron to the system from
outside. When this electron is added around the extended hole
site, the electron can be weakly bound to this hole [Fig. 10(b)].
Here, we consider a weak binding, rather than a strong binding
(in the energy scale of U ) as in the Mott insulator, because
the attraction between the electron and the hole is screened
by other doped holes. This electron weakly bound to a hole
and constituting a fermionic component of a bosonic exciton
can be extracted as a low-energy excitation as proposed in
Refs. [86,87] and identified with the hidden fermion discussed
in Ref. [34] after considering the antibonding combination
with c as is done above. Since in the limit δ → 0, this hidden-
fermion excitation reduces to the Mott fermion f Mott† [88],
in this interpretation it is obvious that the hidden fermion
emerges from ω = ±ωMott at tiny doping. In other words, the
Mott fermion and the hidden fermion are essentially the same
in the limit δ → 0 in the momentum region where ωMott <

ωWF1,2 is satisfied. It is remarkable that the same fermionic
excitation induces very different phenomena depending on
doping concentration, i.e., the Mott insulator at δ = 0 and

the high-Tc superconductivity at δ > 0. In Sec. III B, we
have extended the terminology of “hidden fermion” even for
the isolated self-energy pole in the normal metallic phase,
if the pole evolves continuously into the hidden fermion
in the superconducting state. Similarly, one can regard the
Mott fermion as belonging to the same category of the “hid-
den fermion” when it continuously evolves into the hidden
fermion in the superconducting state. However, even in this
case, we do not use the name of “hidden fermion” for the Mott
fermion by emphasizing its special role in the Mott insulator.

In the occupied state, dynamically generated doublons
and holes are also delocalized owing to the hole doping
[Fig. 10(c)], which opens new paths for electrons at the dou-
blon sites. A hole added around this extended doublon can be
weakly bound to this doublon [Fig. 10(d) upper panel]. This
is the hole-type excitation of the hidden fermion discussed
above. At the same time, the delocalization of the doublon-
hole pairs (in other words, emergence of unbound doublon
and hole) allows an electron addition near the hole to form a
weakly bound pair [Fig. 10(d) lower panel]. This gives the
particle counterpart of the above hole-type hidden fermion
and is nothing but the hidden fermion of Fig. 10(b). Because
the extended doublon-hole pair is continuously connected to
the dynamical doublon-hole pair (which is at the origin of the
waterfall) in the Mott insulator in the limit δ → 0, the hidden
fermion can emerge from ω = ±ωWF at tiny doping. Since
the lower energy excitation will be more stable, the lower one
between ωMott and ωWF1 would determine the energy from
which the hidden fermion first appears at a tiny doping.

Provided that the hidden fermion is an electron bound to
an existing hole site, it would have a dipole moment. Then,
the dipole-dipole interaction would play a role of the pairing
interaction between the hidden fermions [86]. Through the hy-
bridization, this pairing of the hidden fermions considerably
enhances the pairing of quasiparticles [34].

V. CONCLUSION

In summary, we have presented a microscopic relationship
between the Mott insulator and the high-temperature super-
conductivity in terms of the self-energy structure. In short,
a large self-energy present in the Mott insulator is directly
transformed, with doping, into a self-energy pole of the hidden
fermion, which in turn enhances the superconductivity. This
relationship with the Mott insulator can be contrasted with
that between a conventional superconductor and its normal
metallic (Fermi liquid) state, where the self-energy ascribed to
electronic correlations does not have a pole at low energy and
its effect is limited to the band renormalization. The revealed
direct relationship between the two self-energy structures
explains why the superconductivity can have a high Tc in the
vicinity of the Mott insulator.

We have shown a continuous evolution of the self-energy
from the Mott insulator to the superconductor, by studying an
extremely small doping region. The numerical result shows
that the hidden-fermion peak enhancing the superconductiv-
ity, as well as generating the pseudogap above Tc, traces back
to either the self-energy pole generating the Mott gap or a
broader self-energy peak generating the waterfall structure
at δ = 0. This mechanism does not rely on any specific
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fluctuations, such as spin fluctuations [89–93], but is a direct
consequence of the Mott physics.

The detail of this self-energy evolution depends on the
value of U , or more explicitly the magnitude relation between
ωMott and ωWF1 at δ = 0: The one at the energy closer to the
Fermi level seems to determine the energy from which the hid-
den fermion is born at a tiny doping. The magnitude relation
can also change with momentum because ωMott is much more
dispersive than ωWF1,2. The Mott-gap and waterfall peaks of
self-energy can play a similar role presumably because both
accompany a doublon bound to a hole, from which the hidden
fermion emerges at a finite doping.

To understand the doping evolution of the self-energy
weight, Eq. (5) is useful. It shows that the large weight of
�nor in the Mott insulator is transformed with doping into
the weight of the hidden fermion peak in the superconductor.
Upon further doping, �nor acquires a more electron-hole sym-
metric structure, with increasing the product Rnor

+ Rnor
− . This

would explain why the low-energy spectra show an almost
electron-hole symmetric structure around the optimal doping
[35,37]. The total weight, Rnor

+ + Rnor
− , also decreases with

doping and a higher-energy structure comes into the relevant
energy scale in the heavily overdoped region, where the effect
of the hidden fermion becomes less prominent.
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APPENDIX A: ELECTRONIC STRUCTURE IN A WIDE
ENERGY RANGE

Figures 11, 12, and 13 plot Im�nor(kAN, ω) and A(kAN, ω)
in a global energy range. In the shaded high-energy area
(|ω| > 2), the doping evolution of these functions is quali-
tatively similar for U = 7, 8, and 9. For ω < −2 or ω � U ,
there is no significant change with doping. On the other hand,
for 2 < ω � U we find a notable change with doping. In
particular, as indicated by an orange dashed curve, a self-
energy peak develops with doping and it acquires a dominant
weight at a substantial doping (bottom plots in each figure).
This self-energy peak gives the large spectral gap between
the in-gap state and the UHB. Interestingly, this self-energy
peak traces back to the waterfall structure in the UHB at
δ = 0, as the orange curves indicate. Note that the waterfall
structure is present both in the LHB and UHB of the Mott
insulator [28,32], as one can easily understand by considering
the electron-hole symmetric case of t ′ = 0.
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FIG. 11. Im�nor (red solid curve) and A(k, ω) (black dashed
curve) at k = kAN for U = 7. Each curve is shifted by −20 along
the vertical axis. A(k, ω) is amplified with a factor of 20. We shaded
the high-energy area which has not been the focus of the present
paper. The orange dashed curve indicates the self-energy peak which
develops with doping from a waterfall peak in UHB at δ = 0 to a
peak giving a large gap between the in-gap state and UHB at finite
dopings.

This observation is relevant to the well-known spectral-
weight transfer induced by doping the Mott insulator; the
spectral weight is transferred from the UHB to a low energy
just above the Fermi level, constituting the in-gap state [94].
Because this in-gap state is always located below the self-
energy peak pointed out above, it traces back to the weight
just below the UHB waterfall at δ = 0.

In analogy with the waterfall in the LHB (Sec. IV), the
waterfall in the UHB represents an electron addition to the
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FIG. 12. Same as Fig. 11 but for U = 8. Each curve is shifted by
−30 along the vertical axis.
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FIG. 13. Same as Fig. 11 but for U = 9. Each curve is shifted by
−40 along the vertical axis.

state with dynamically-generated doublon-hole pairs. When
the system is doped with holes, such an electron can be
added to a hole site, at a significantly lower excitation energy.
The resultant in-gap state therefore involves the doublon-hole
pairs. This is consistent with the interpretation in Sec. IV
because the in-gap state is an antibonding state between a
low-energy electron and the hidden fermion, which is an
electron constituting a doublon weakly bound to a hole. We
note that this reconstruction of the electronic structure in a
global energy range is consistent with that obtained previously
in the normal-state calculation (see Fig. 1 in Ref. [28]), too.
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FIG. 14. (a), (b), (c) Intensity plot of −Im�nor along
(0, 0)−(π, 0)−(π, π )−(0, 0) for U = 7. (d), (e), (f) Corresponding
plots of A(k, ω). The green dashed curve in panel (a) plots Eq. (B1)
for z̃ = 0.34 and μ̃ = −0.48.
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FIG. 15. The same as Fig. 14 but for U = 8. For the green dashed
curve in panel (a), we use z̃ = 0.53 and μ̃ = −1.15.

APPENDIX B: Im�nor AND A(k, ω)
ALONG SYMMETRY LINES

Figures 14, 15, and 16 show the doping evolution of
−Im�nor and A(k, ω) for U = 7, 8, and 9, respectively, along
the (0, 0)−(π, 0)−(π, π )−(0, 0) lines. Around (0,0) the self-
energy pole generating the Mott gap at δ = 0 is located at a
high energy (ω > 2) and the weight transfer to the hidden
fermion at a tiny doping if any is small and invisible in the
figures. The spectral weight does not change with doping
appreciably in this region.
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FIG. 16. The same as Fig. 14 but for U = 9. For the green dashed
curve in panel (a), we use z̃ = 0.63 and μ̃ = −1.61.
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FIG. 17. The same as Fig. 3 but at U = 8.

Around (π, 0) the Mott-gap peak is located at a lower
energy. In fact, for U = 7, ωMott is smaller than ωWF1, and
the Mott-gap peak directly transforms into the hidden fermion
with doping, keeping its energy position at ω � 0.6. On the
other hand, for U = 8 and 9, ωWF1 determines the hidden-
fermion energy, and a part of the weight at ω = ωMott de-
scends to this energy with doping. According to these drastic
changes of the self-energy, the spectral weight in this region
also changes considerably, forming the Bogoliubov band and
another band just above it. Note that the UHB is located at
ω > 2 for U = 8 and 9.

Around (π, π ), the Mott-gap peak is below the Fermi level
and this low-energy structure does not change appreciably
with doping. This makes the spectral weight for ω < 0 always
weak in this region. Combining these results with Figs. 3, 4,
and 17, we conclude that the tiny doping alters the low-energy
structure mainly around the (π, 0)-( π

2 , π
2 ) line, where ωMott

stays around ω ∼ t and the Fermi surface in the normal state
appears at a finite doping.

In panel (a) of each figure, we have also plotted a curve
defined by

ε̃f Mott (k) = z̃[ε(k + (π, π )) + μ] − μ̃, (B1)

which represents a (π, π )-displaced dispersion of f Mott men-
tioned in Sec. IV. Here z̃ is a renormalization factor, which

is taken to be momentum independent for simplicity, and
μ̃ is the onsite energy of f Mott. We determine z̃ and μ̃ to
reproduce the peak positions of Im�nor at (0,0) and (π, π )
(i.e., the top and bottom of the dispersion). The dashed green
curve indeed reproduces well the overall dispersion of Im�nor

while a discrepancy remains around (π, 0). This discrepancy
is attributed to the finite value of U/t since the argument of
the (π, π )-displaced dispersion is made in the limit of large
U/t .

APPENDIX C: RESULTS FOR U = 8

Figure 17 shows the self-energy and spectral function
for U = 8, where ωMott is comparable to ωWF1. In this
case, the doping evolution of the self-energy is more involved
than the cases for U = 7 and U = 9 because of the over-
lapping of the two energy scales. However, we can still see
that the hidden fermion [indicated by a yellow vertical line in
Figs. 17(b)–17(f)] emerges at either ω = ±ωWF1 or ωMott.

Because Im�ano is antisymmetric with respect to ω, the
doping makes �ano finite at the same time around ω =
−ωWF1,2 and ω = ωWF1,2 [Fig. 17(b)]. Then, the correspond-
ing structure in Im�nor at ω = ωWF1,2 splits the Mott-gap peak
into two: The split is evident for δ > 0.013 [Figs. 17(c), 17(d)
and 17(e)]. As δ increases, the peak closer to ω = 0 becomes
sharper, with gradually shifting to a lower energy, while the
peak at higher frequency loses its weight, which is transferred
to an even higher energy. Eventually in Fig. 17(f), the former
peak evolves into the hidden-fermion peak of Fig. 1(c).

APPENDIX D: RELATION BETWEEN THE POLE
RESIDUES OF �nor AND �ano

Suppose that there is only one energetically isolated pole
in the low-energy part of the self-energy (this is the case
when the hidden-fermion peak has well developed by doping).
Then, the normal and anomalous components of the self-
energy are written in the form [34,35]

�nor(ω) � U

2
(1 − δ) + V 2(ω + εf )

ω2 − ε2
f − D2

f

,

�ano(ω) � Dc + V 2Df

ω2 − ε2
f − D2

f

(D1)

around the pole at ω = ±ωf ≡ ±
√

ε2
f + D2

f . Here, Dc rep-

resents the frequency-independent part of the anomalous self-
energy, and εf and Df can be interpreted as the energy and
the anomalous term of the relevant hidden fermion which
hybridizes with electron through V . We have abbreviated the
momentum argument for the sake of brevity.

The residues of the poles in Eq. (D1) are easily calculated
as

Resnor
� (ω = ±ωf ) = V 2

2

(
1 ± εf

ωf

)
≡ Rnor

± ,

Resano
� (ω = ±ωf ) = ∓ V 2

2

Df

ωf

≡ Rano
± . (D2)
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Then, we find the following relations between these residues,

Rnor
+ + Rnor

− = V 2,

Rnor
+ − Rnor

− = V 2 εf

ωf

,

Rano
+ − Rano

− = − V 2 Df

ωf

. (D3)

These relations lead to

(Rnor
+ − Rnor

− )2 + (Rano
+ − Rano

− )2 = (Rnor
+ + Rnor

− )2, (D4)

or more simply,

Rnor
+ Rnor

− = (Rano
± )2. (D5)

With the self-energy matrix of Eq. (2), the above equation can
also be written as

det
[

lim
ω→±ωf

(ω ∓ ωf )�̂(k, ω)
] = 0. (D6)

Note that Eq. (D5) can also be derived from Eqs. (20) and
(21) in Ref. [33]. Equation (D5) implies that, as far as a
total amplitude Rnor

+ + Rnor
− is fixed, the product Rnor

+ Rnor
− is

maximized when Rnor
+ = Rnor

− (i.e., electron-hole symmetry)
holds. In fact, around the optimal doping, the self-energy
becomes nearly electron-hole symmetric at low energy, as one
can see in Figs. 10(b) or 11(a) of Ref. [35].

APPENDIX E: FITTING OF SELF-ENERGY

As we have seen in Sec. III, Im�nor(kAN, ω) at δ = 0
shows three peaks at ω = ωMott and −ωWF1,2. We can then
expect that the low-energy part of the self-energy at small δ

can be well expressed by the following form,

�nor(ω) � U

2
(1 − δ) +

∑
α=1,3

V 2
α (ω + εfα

)

ω2 − ε2
fα

− D2
fα

,

�ano(ω) � Dc +
∑

α=1,3

V 2
α Dfα

ω2 − ε2
fα

− D2
fα

, (E1)

which is an extension of Eq. (D1) [35]. These equations in-
deed well fit the low-energy part of the self-energy calculated
by the CDMFT for δ � 0.02. At δ = 0, εf 1 agrees with ωMott

while εf 2 and εf 3 agree with −ωWF1 and −ωWF2, respectively.
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FIG. 18. Doping dependence of the fitting parameters.
Im�nor(kAN, ω) and Im�ano(kAN, ω) obtained by the CDMFT are
fitted through Eq. (E1) for (a) U = 7 and (b) U = 9.

Figure 18 shows the obtained fitting parameters for U = 7
and U = 9. We find that the δ dependences of Vα and Dfα

are qualitatively similar for both U = 7 and U = 9: As δ

increases, V1 decreases while V2 and V3 slightly increases and
decreases, respectively. |Dfα

| rapidly increases at low doping,
with keeping Df1 and Df2,3 to be different signs. Note that
the overall sign of {Dfα

} does not matter because of the d

symmetry of the pairing.
A qualitative difference between U = 7 and U = 9 cases

is in the magnitude relation between εf 1 and εf 2,3: For U =
7 |εf 1| is smaller than |εf 2,3| at least for small δ while for
U = 9 |εf 1| is always larger than |εf 2,3|. This difference pro-
duces the different appearances of the self-energy evolution
discussed in Secs. III C and III D.

The sign of εfα
is related to the electron-hole asymmetry

between Rnor
+ and Rnor

− , as one can easily see with Eq. (D2).
For U = 7, the hidden fermion f1 enhancing the supercon-
ductivity emerges from ωMott so that εf1 is positive, leading to
Rnor

+ > Rnor
− . On the other hand, for U = 9 the hidden fermion

f2 emerges from −ωWF1 so that εf2 is negative, leading to
Rnor

+ < Rnor
− at tiny dopings. As Fig. 18(b) shows, this negative

εf2 approaches zero as δ increases and may change sign for
δ > 0.02, as indicated by the relation Rnor

+ > Rnor
− seen in

Figs. 4(e) and 4(f). In this region, however, the fitting with the
three poles does not work well (though the parameters related
to f2 still seem to evolve continuously) so that we avoid to
conclude.
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