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We investigate the ground state and low-energy spin-orbital excitations of a single iron(Il) phthalocyanine
molecule in isolation and on an oxidized Cu(110) surface. Considering the subspace spanned by the three lowest
spin-triplet states of 3A2g and °E o symmetry, we diagonalize the Hamiltonian made of the anisotropic spin-orbit
interaction and the ligand field splitting A, defined as the energy difference between 3Eg and 3A2g. We find
that the ground state switches from a *E,-like state with large orbital moment and out-of-plane easy axis for
A < —60 meV to a 3Azg—like singlet state with in-plane easy axis for A > —60 meV. The analysis of the first
excited states in the two regimes explains the zero-field splitting data reported for S-FePc as well as for FePc
molecules adsorbed on an oxidized Cu(110) surface [N. Tsukahara et al., Phys. Rev. Lett. 102, 167203 (2009)].
Importantly, the calculated magnetic susceptibility obtained with the ab initio value A = 93 meV compares
remarkably well with the experimental data of S-FePc in the whole available temperature range of 1-300 K.
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I. INTRODUCTION

Due to the importance of the Fe phthalocyanine (FePc)
molecule for possible applications in nanodevices and spin-
tronics, a quantum model of its magnetic ground state is of the
utmost interest. There is, by now, converging theoretical ev-
idence obtained with different methods that, neglecting spin-
orbit interaction, the ground state of an isolated FePc molecule
is an orbital singlet of A,, symmetry followed by two orbitally
degenerate states of E, symmetry lying about 0.1 eV higher
with spin § = 1 [1-5]. On the experimental side the analysis
and interpretation of the Fe K- and L-edge x-ray magnetic
circular dichroism (XMCD) in the case of a Au-supported
FePc film carried out in Ref. [1] led to the conclusion that
the above multiplets are indeed the constituents of the ground
state of the isolated molecule, provided that the intermolecular
interaction in the stack does not change the nature of the
lowest multiplet levels in the single molecule.

It is therefore important to investigate the consequences of
the model suggested above in comparison with experimental
evidence available for the isolated molecule, namely, the
temperature dependence of the paramagnetic susceptibility in
the range of 1-300 K obtained by Dale ef al. [6], Barraclough
et al. [7] and Labarta et al. [8] in crystal powder samples
of FePc in the B phase [9]. In this phase the molecular
arrangement of the FePc molecules in a zigzag fashion with
a large distance between metal ions results in weak mag-
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netic coupling between them, as proved by the fact that the
sample remains paramagnetic down to the lowest measured
temperature (1.5 K). The measured magnetic properties can
therefore be ascribed to the single molecules with reasonable
accuracy. They provide a clue to the nature of the ground state
and give access to the first excited state of the molecule, the
so-called zero-field splitting (ZFS). Low-energy excitations of
FePc have also been reported from inelastic electron tunneling
spectroscopy with scanning tunnel microscopy (STM) where
the FePc molecules were adsorbed on an oxidized Cu(110)
surface [10]. As the substrate perturbs the electronic structure
of the molecule, it is interesting to see whether the model
developed in Ref. [1] for a FePc film can be extended to this
case. This is particularly important in view of technological
applications, where FePc molecules will be subject to external
perturbation, especially at interfaces.

II. THE MODEL FOR THE ISOLATED MOLECULE

As discussed in the Introduction, our starting assumption
is that the ground and first excited states can be described
as mixtures of the three lowest-lying multiplets, which are
the orbital singlet A,, and the orbital doublet E,, all being
spin triplets, i.e., nine states altogether. All other multiplets
are well separated in energy, typically by 0.5 eV or more
according to Table III of Ref. [1]. The spin-orbit interaction
(SOI), which is one order of magnitude smaller (~50 meV),
cannot significantly mix in these higher multiplets.

Here we determine the ground state, ZFS, and magnetic
susceptibility by diagonalizing the Hamiltonian in the sub-
space of the three lowest multiplets (3A2g, 3E ) in the presence
of SOI. This model was already considered in Sec. VI of
Ref. [1], but only in the limit of saturated spin moments,

©2018 American Physical Society
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TABLE I. Basis states classified according to M.
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which is appropriate for FePc films in the « phase with a large
intermolecular exchange field. Here we focus on the isolated
molecule and therefore solve the model without the constraint
of spin saturation.

In general the Hamiltonian reads

Htot = H() + Hm + Hext~ (1)

Here  Hy = E(Asg) |Az)(Ang| + E(E) (EN(EL + |E2)
(E;l) is the multiplet Hamiltonian, and E(A.) and E(E,)
are the multiplet energies of the spin-triplet states. We define
A = E(E;) — E(Ay,) and take E(E,) to be the energy zero,
such that E(Ay;) = —A. The spin-orbit Hamiltonian H,
has the usual form, H;, = Zi ¢ 1; - s;, where the sum runs
over all the electrons i and s = (sx, 5,, 5;) are the spin-1/2
matrices. For the SOI, the contribution of the light ligand
atoms is negligible, and the calculation of the SOI parameter
¢; can be restricted to the Fe atom [11]. For a given molecular
orbital i, ¢ is proportional to the fraction of charge A;
that lies inside of the muffin-tin sphere of Fe, and we find
{(eg) = 0.04 eV [1]. Finally, H.y describes the perturbation
due to the substrate, which we model by introducing matrix
elements between the A, and E, basis states (see Sec. III).
For the isolated molecule, we have Hqy = 0.

A. Analytic solution of the model at zero field

Indicating by d; the molecular orbital (MO) of symmetry s
in the Dy, point group [2], the nine basis states are given by
the following Slater determinants (see Ref. [1], Eq. (67)):

1) = [As(Ms = 1)) = |d}-d}"d5d3),

1
V2
17) = [Age(Ms = 1)) = |d_d; d}%d3),

xz7yz 22

2) = |Ey(Ms = 1)) = |d}.d}.d.dY),

xz%yz%yz%2

1 . -
E{Id;;d;dyzdzz) +ld.dy.dy.d3)),

18) = |Ey(Ms = 1)) = |d dd; d>),

YTyt

14) = |Asg(Ms=0)) = —={ldi.d}.d5d) + |dfd;.d5d)),

yz© 72 xz7%yz

15) = |E;,(MS=0)> =

3) = |E;(Ms = 1)) = |d}.d_d}.d}),
1 _ _ _ —
5 d o d) + 1 d dd )

9) = |E;(Ms =1)) = |d}.d_.d;.d>,). )

xz¥xz%yz%2

6) = | E(Ms5=0))=

The basis states are eigenstates of S, with eigenvalues Mg =
1,0, —1. They are ordered here as A,,, Egl, E; for fixed My
and then with decreasing M. It is easy to see that all basis
states have orbital momentum L, values between 1 and —1
and that it is possible to construct simultaneous eigenstates

of §; and L,, with M; = 1,0, —1. These transformed basis
states are labeled |M; M) in Table I and classified according
toM; = M; + M.

When calculating the matrix elements of SOI between
these states, one has to remember that the MOs are mixtures
between Fe 3d and ligand orbitals. A crucial quantity for
our analysis is the relative 3d weight in each MO, which
we denote as Ay, where s labels the orbital symmetry. In
multiple-scattering theory the wave functions are expanded
in partial waves around each muffin-tin sphere, and the Fe d
contribution can be written as ) o; Ry(r)Y2,(r), from which
the Fe d weights are obtained as

ro
As = log|? / Ri(ryrdr,
0

where rp = 1.10 A is the muffin-tin radius of the Fe atom. For
an occupied MO, A is the charge lying inside the Fe atomic
sphere. Note that for free-atom Fe 3d orbitals, A is as large
as 0.98, so the A values of the MOs accurately describe the
reduction of 3d weight through hybridization. In particular,
for a MO of E, symmetry A, is found to be 0.59, whereas for
a MO of Ay, symmetry A, = 0.79.

Therefore a matrix element of the SOI connecting two
states of E, symmetry is proportional to A., whereas one
connecting two states of respective symmetries E, and A,,

is proportional to /A, times a factor of /3 coming from
the application of [, , [12]. Since the factor A, is already
incorporated in the definition of ¢, the ratio between the two
matrix elements turns out to be r = /31, /A, ~ 2.

The Hamiltonian matrix falls into blocks of dimensions
1,2,3,2, 1 for M; =2,1,0, —1, —2, which can be diag-
onalized analytically. Due to time-reversal symmetry, states
with M; # 0 are doubly degenerate. Table II gives the matrix
elements (i|H;,|j) between the states in Table I and the
secular equation of the corresponding block for M; > 0. (The
M ; < 0 matrices are identical upon sign reversal of M, and
Ms.) The corresponding energies and eigenstates are given in
Table I11.

Figure 1 (top panel) plots the three lowest eigenvalues,
corresponding respectively to states |0_), |1_), and |2) as a
function of the ligand field strength A. We see that the three
eigenvalues cross at x =2A/¢{ = —3 (A = —60meV). At
this point the ground state switches from an °E o-like, M; =
42 doublet with large out-of-plane magnetic anisotropy to the
3Ag-like orbital and spin singlet |0_) with in-plane magnetic
anisotropy (see the discussion of the magnetic susceptibility
below). The bottom panel replots the three lowest eigenvalues,
putting the ground state at £ = 0 for all A’s, visualizing the
first and second zero-field splittings (ZFS1 and ZFS2; see
below).
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TABLE II. Matrix elements of Hy, in units of 2/¢ between the states in Table [ (x = 2A/¢).

M, [11) |01) [10) |00) [11) [11) Secular equation

[11) -1 w+1=0

|01) —Xx r

[10) r 0 ww+x)—r>=0

|OO> —X r —r

[11) r 1 0

[11) —r 0 1 (w—D(w—D(@+x)—2r1=0

B. Analysis of magnetic susceptibility data

To establish the magnetic anisotropy for the singlet ground
state |0_), we note that (0_|Ly|0_) = (0_]S,|0_) =0 for
a = x, Y, z. Therefore one has to go to second-order per-
turbation when calculating the variation of the energy with
magnetic field, i.e., the magnetic susceptibility tensor

(0] L + 2Su1n)[2
Xaow = ) : 3)

E, — Eo

where |n) is any excited state of the molecule and we have
used the fact that in Dy, symmetry, xqp is diagonal and x., =

Xyy F Azz-
|

The relevant matrix elements different from zero are

(0-15:100) = —(0—|L|0p) = sin¢_,
(0-1Se,y112) = (0[S, [1=)

1
=5 (\/5 cos¢_ cosby + sing_ sinfy),
(0 |Ly y1s) = (0| Ly y[12)

r . .
==3 (\/5 cos¢_ sinfr+sing_ cosbi). (4)

Therefore

sin® ¢_ [v/2 cos ¢p_(cosbs — r/2 sinfs) + sin ¢_(sin O — r/2 cos 65)]*
Xz = sy Xxax = Xy,y = 2 3 — , 5
wy — w; = 0] — W,

with the factor of 2 in the second equation coming from the
double degeneracy of the excited state |14).

Figure 2 plots on a log scale x. . and x, . as a function of
A.For A = 93meV, the ratio x,./x.. = 3.1 x 10?, indicat-
ing a strong in-plane anisotropy.

A quantity that can be compared with the experimental
data is the ZFS, i.e., the energy difference between the ground
state and the next excited state in zero magnetic field. The
bottom panel of Fig. 1 plots the splittings between the ground
state and the next two excited states (top panel of Fig. 1) as
a function of A, which we call ZFS1 and ZFS2 (ZFS1 =
o] —wy, ZFS2 = w; —w, for A > —60meV, whereas
ZFS1 = w| — w5, ZFS2 = w, — w, for A < —60meV).

In Ref. [2], for the case of the isolated molecule, we
obtained A = 93 meV from ab initio molecular orbital calcu-
lations, so that from Fig. 1 we find ZFS1 = 8.8 meV and ZFS2
= 96.6 meV. However, rather than rely on the comparison of

(

a single value, we now have all the ingredients to calculate
the average magnetic susceptibility in the case of an isolated
molecule and compare it with the experimental points taken
by Dale et al. [6] in the temperature range between 1 and
300 K. We also compare it with the data by Barraclough
et al. [7] and Labarta et al. [8].

To write down the magnetic susceptibility we need to
expand each stationary energy state E, ;j(H) in Table III in
terms of the magnetic field strength H as

E,;(H)=E),+E H+EJ} H?, (6)

where j indicates the degeneracy. Indicating for brevity by n
the pair «, j, the magnetization density associated with this
state is

JdE,(H)

=EV+2EP H. (7

TABLE III. Eigenstates |M,, «) and energies E(M,, o) of Hamiltonian (1) (He = 0) in units of ¢/2 as a function of x = 2A/¢ and

r=.3/he =2.
M, Eigenvalues Eigenstates Mixing coefficients
2 w, = —1 [2) = |11)
+
of = 3(—x £ [x? +4r2]7) [14) = cos04]01) + sin 6 |10) tan 0, = “’IYJ
wy =1 100) = 5 (I11) +[11))
— — a)i X

0 wF = Hex +1£[(x + 1) + 8712} 104) = c0s ¢]00) + —5 sin g (|11) — [11)) tan ¢, = L2
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FIG. 1. Top: Lowest three eigenvalues as a function of A. Bot-

tom: The same as for the top panel, but setting the ground state at
E =0forall A.

Then for a system in thermal equilibrium at temperature 7 the
average magnetization density M(H, T) is

>, M,(H) exp[—E,(H)/kT]
Y, exp[—E,(H)/kT]

In the limit H — 0 we can write

M(H,T)= (8)

exp[—E,(H)/kT1=exp (— EL/kT) (1 — E" H/kT), (9)

so that Eq. (8), using Eq. (7) and keeping only terms up to first
order in H, becomes

—M(H,T)
Y (EW—[ED) H/KT+2 EQ H) exp (— EY /kT)
B > exp(—ES/kT) '

(10)

Ignoring saturation effects, one usually considers the part of
the susceptibility x = M(H, T)/H which is independent of
the field strength. Denoting by N Avogadro’s number and re-
suming again the pair of indices «, j, the molar susceptibility
can be written as [13]

> [(E;{;)z JkT —2EX exp (- EO /KT)

Yo oxp (= Eq; [KT)
(n
provided
E( exp(— E /kT
w1 = - Zes Ear 00 U Fai /M) )

2o oxp (= Eg; /KT)

or, in other words, that the system is in a paramagnetic state.
To calculate explicitly Eq. (11) we first observe that, since
the excitation energy corresponding to the highest measured
temperature (300 K) is around 25 meV, it is sufficient to
consider the first excited state |1_) (ZFS1 = 8.8 meV) in the

1000
— | o1
@
=
g 100
o3 | oot
ol ] 0,001
-0 0 50 100 150 200

A (meV)

FIG. 2. Axial (x;,) and in-plane (x,.) susceptibilities as a
function of A > —60meV. Note the different scales for the two
functions.

summation over « (apart from the ground state |0_)) and to
neglect the next excited state |2) (ZFS2 = 96.6 meV).
Turning now to the calculation of Eéli and Eézi, we

observe that E |((}_)>, ; = 0, whereas

E\, =B (I_|L.+2S;|1_) = B (sin> 0_ +2 cos’ )

1
:'B<l+ 1—I—tan29_)’ (13)

where 8 indicates the Bohr magneton. For Ef; we need to
consider two terms. The first one arises when « runs over the
ground state |0_),

O _ B2 1{0_|L, +28,|1_)[?
0= - =
(wo — )

1 2
2513 Xyy ¥y =x,y),

already calculated in Eq. (5) (without the degeneracy factor
2 and taking only the § = — term of the sum) whereas the
second one comes from identifying o with |1_),

O _ B2 I(1_|L, +28,]0_)?
= - -
(w1 —0)0)

— (2)
=—E ..

Introducing the quantity d = D/kT = (0] — w, )/ kT, we
therefore obtain for the average susceptibility

2N B2 Gor e pos) ed —1
3 Xx.x T Xy.y ed 12
2N p?

P(1+ TTanto.
3kT 1+ tan- 6_

X (T) =

+

2
) () L ¢ /)

This expression should be compared with the one used by
Dale et al. [6],

4N B2, (e? =1\ 2Ng*
81 d +
3D e +2 3kT

X (T) = gie’ +2)7", (15)
to fit the parameter D to the experimental points. This is the
usual expression (neglecting spin-independent terms) derived
on the basis of a spin Hamiltonian for an orbitally nondegen-
erate state with effective spin S = 1 and magnetic field either

195108-4



SIMPLE MODEL OF THE GROUND STATE AND SPIN- ...

PHYSICAL REVIEW B 98, 195108 (2018)

parallel H; or perpendicular H, , to the molecular axis [12],
Hy =DS§>+g BH.S.,
Hy=DS82+g1 BH, S, (16)

with respective eigenvalues

EI(HZ)ZO» El(Hz)ZD:tgH:BHz:
EZ(Hx) =D,
Ex(H) = D/2+\[(D/22 + L B H2,  (17)

Indeed, expansion of these eigenvalues in powers of the mag-
netic field provides E élj and E ;23 in Eq. (6), which inserted in
Eq. (11) leads to Eq. (15). ’

According to the theory of the spin Hamiltonian, Dale ez al.
[6] used the relation 2D = A(g, — g), where A = 18.6 meV
was the spin-orbit coupling parameter A L - S for the ground
term of the free-ion value, reduced by 25%. Since S = 1, this
quantity is related to our ¢ by the relation A = ¢{/2 and is
therefore very close to our value of ¢ /2 = 20 meV. From the
fit, they derived D = 8.67meV, gy = 1.93,and g; = 2.86.In
their words, “any value taken from the range 17.3-21.0 meV
will yield a reasonably close fit and acceptable values of g
and g, . Moreover, we have found that the value obtained for
D is not a sensitive function of the value chosen for A.”

In our case, using our ab initio values A = 93 meV and
¢ =40meV, we obtain D = 8.83meV, gy = 1.88,and g, =
2.89. The following expressions for g and g, were derived
from the comparison of the two expressions of y, (T') (14)
and (15) and Eq. (5):

1 2
82 = 1 + - . 7 ’
I 1+ tan26_

gi =2[V2 cos¢_(cosf_ —r/2 sinf_)
+ sin¢_(sinf_ — r/2 cos 9_)]2. (18)

With this identification, the two expressions for the suscepti-
bility are identical, and in the high-temperature limit one finds
a Curie-Weiss law [12],

c C:2gi+gﬁ 2NB2
T-6’ 3 3kp
_si-8 D

287 +gf 3kp

’

Xon(T) =

19)

Inserting the ab initio values given above, one finds 6 =
8.1 K, which should be compared with 6 = 9 K reported by
Lever [14], 8 = 7 K given by Labarta ef al. [8], and § =3 K
reported by Dale et al. [6]. The discrepancy between these
experimental values might be due to the different numbers of
experimental points used by the various authors, 13, 23, and
4 in the range 90-300 K, respectively, to fit the Curie-Weiss
law.

Note that the similarity between expressions (14) and (15)
is not fortuitous. In both cases the low-energy excitation struc-
ture of the underlying models in the presence of an external
magnetic field is the same and is described by Eq. (16), in
one case with effective operator § = 1 and in the other with
effective operator J = L 4+ § = 1, with respective angular

;

N
T

7

1 02Xm (erg/gaussz)

0 50 100 150 200 250 300

Temperature (K)

FIG. 3. Comparison of the theoretical curve, Eq. (14), with the
experimental points by Dale er al. [6] (blue stars), Barraclough
et al. [7] (green open squares), and Labarta et al. [8] (black solid
squares) for A = 93 meV and two values of the anisotropy parame-
ter,r =2 and r =\/§.

momentum projections Mg and M. The advantage of our
approach lies in the fact that it gives an explicit expression
for the spin-orbit coupled eigenstates, allowing the ab initio
calculation of the various parameters of the effective Hamil-
tonian D, g, and g .

Figure 3 compares the theoretical curve, Eq. (14), with the
experimental points by Dale et al. [6], Barraclough et al. [7],
and Labarta et al. [8] for A = 93 meV and two values of the
anisotropy parameter, r = 2 and r = /3.

The agreement between the theoretical curve for » = 2 and
the experimental data is remarkable, considering that there is
no adjustable parameter in the theory. All relevant quantities
(A, ¢, 7, A, Ay) have been calculated ab initio. For compar-
ison the curve with r = /3 is also shown, corresponding to
neglecting the anisotropy of hybridization (A,/A, = 1). The
agreement with the data is considerably worse. This shows
that the common practice in ligand field multiplet calculations,
which consists of treating hybridization effects through an
isotropic reduction factor, is very questionable. In particular in
the case of the FePc molecule the anisotropy of the hybridiza-
tion parameters was found to be essential for establishing the
correct ordering of the A,, and E, multiplets in the isolated
molecule and their energy gap A.

Figure 4 plots x,, in Eq. (14) for three values of A with
r = 2, from which one can roughly deduce the uncertainty in
the determination of ZFS1 (0.3 meV) and A (10 meV). For
simplicity only Dale ef al.’s points [6] are shown.

Finally, Barraclough et al. [7], besides measuring the aver-
age susceptibility, also provide measurements of the magnetic
anisotropy of FePc from room temperature to about 90 K.
Appendix A discusses these measurements in relation to the
theoretical predictions.

III. ZERO-FIELD SPLITTING OF FEPC ADSORBED ON
AN OXIDIZED CU SUBSTRATE

In the previous section on the isolated molecule, the exter-
nal perturbation Hey in Eq. (1) was set to zero. Here we extend
our model by introducing a perturbation due to a substrate
and analyze the ground and first excited states of an FePc

195108-5



CALOGERO R. NATOLI et al.

PHYSICAL REVIEW B 98, 195108 (2018)

4
_ A (ZFS)
Y% gl 72.42 (9.30)
2 —— 92.82 (8.84)
g —— 103.02 (8.57)
S
5,
€
=2
(V]
o
1t
o L L L L L
0 50 100 150 200 250 300

Temperature (K)

FIG. 4. yx, for A =92.82,103.02, 72.42 with the corresponding
ZFS values taken from Fig. 1. All values are given in meV.

molecule adsorbed on an oxidized Cu substrate [10]. Single
FePc molecules adsorb essentially flat on the Cu surface,
but some tilting and/or distortion cannot be excluded [10].
On physical grounds, two kinds of effects can be expected
from the interaction with a substrate. First, the ligand field
parameter A = E(E,) — E(Ajg) is modified and may even
change sign. Second, the symmetry is reduced, which may
lead to mixing between the Dy, molecular orbitals. Concern-
ing the first effect, the a, (= d») orbital, which is oriented
normal to the molecular plane, hybridizes more strongly with
the substrate atoms than the e, (d,., d,;) orbitals. Being an
antibonding orbital [15], the a, level is pushed up with respect
to the isolated molecule.

As a consequence, the |A;, ) multiplet rises relative to | Eg)
because |A,,) has one more electron in ay, [see (2)]. This
argument is confirmed by the constrained density functional
theory calculations of Nakamura et al. [3], who found a
ground state of type |Ay,) for the isolated molecule and one
of type | E,) for a film of molecules. In other words, the ligand
field parameter A has changed sign.

Tsukahara et al. [10] measured the ZFS of the FePc
molecules adsorbed on a Cu(110)(2 x 1)-O surface by inelas-
tic electron tunneling spectroscopy with STM as a function of
an applied external magnetic field. They observed a reduction
of the ZFS value with respect to the isolated molecule and
a change in magnetic anisotropy from easy plane to easy
axis. Two FePc species, i.e., two different adsorption states,
were found to coexist on the substrate: an « species with
ZFS1 = 1.9 meV and ZFS2 = 4.7 meV and a B species
with ZFS1 = 4.1 meV and ZFS2 = 9.0 meV [16]. These
ZFSs can roughly be reproduced within the easy-axis phase of
our free-molecule model by taking A = —72.5meV (ZFS1 =
2.0, ZFS2 =3.5) and A = —86.7meV (ZFS1 =4.2, ZFS2 =
7.4), respectively (see Fig. 1, bottom panel). However, as
the easy-axis ground state is doubly degenerate due to time-
reversal symmetry (corresponding to M; = %2 in Table I),
one would expect each ZFS value to split into two branches
upon application of a magnetic field, whereas experimentally,
only one is observed in both species [10]. This finding is
explained by the second effect, i.e., symmetry reduction upon
adsorption. In the free-molecule model (1) with He = 0,
i.e., the multiplet Hamiltonian in Dy, symmetry restricted
to the {3A2g, 3Eg} subspace, J, = L, + S, is conserved. The

substrate interaction lowers the symmetry, which leads to
mixing between multiplet states of different M; and thus to
lifting of the ground-state degeneracy M; = +2, as we are
going to show.

The substrate perturbation Hey is assumed to be an ef-
fective one-particle operator. By extending the model used in
Sec. VI of Ref. [1], it can be defined in the basis introduced in
(2) via the matrix elements

(1|Hext|2> = _tily
(7| Hex|8) = —1{,
(4| He|6) = —13,

<4|Hext|5> = _t?7

(1 Hext|3) = —13, (20)
(7| Hexi|9) = —15,

with the obvious meaning of the spin projection symbols
u, 0, d. The rationale underlying this choice is that, because
of the symmetry reduction upon adsorption, the MO |d,.)
and |d,.) are no longer equivalent, and they mix with |d,2)
via the matrix elements (d,; y.|Hex|d;2). This hybridization
is assumed to be spin dependent, which can be related to the

antiferromagnetic coupling found between the Fe 3d and Cu
3d bands [17]. By noting that

—t{' = (1|Hext|2) = —(d; | Hext|dy,),
—t{' = (7| He|8) = —(d} | Hexi|d}?).
—1) = (4| Hex5) = —(1/2)((d5 | Hexi|d,) + (d5| Hex|d52) ),

2n
with similar relations for #; upon interchanging dy, with dy_,

the definition of the perturbation in (20) is plausible. The
matrix elements of the other parts of the Hamiltonian (1), Hy
and Hy,, are given in Appendix B.

Guided by the findings in Sec. II for the free molecule,
we keep A < —60meV in the vicinity of the transition point.
We start with the B species. We have set all # to zero for
simplicity. By trial and error we have obtained a good fit of
the ZFS and magnetic properties with the parameter values
t =35 10 =25 1! =25, and A = —65 meV. The three
lowest eigenvalues are —35.15, —31.07, and —26.05 meV,
corresponding to a ZFS1 of 4.08 meV and a ZFS2 of 9.1 meV,
in excellent agreement with the experimental values of the g
species (4.1 and 9.0 meV) [10]. The eigenvectors are listed
in Table IV in Appendix B. Regarding the spin character, for
the ground state (GS) we find (GS|S,|GS) = 0.49, and for the
first excited state (EX) we find (EX1|S,|EX1) = —0.40, in ap-
proximate agreement with the y. states of Fig. 2 of Ref. [10],
but for the second excited state we have (EX2|S,|EX2) =
—0.30, at variance with the spin character of the upper state
Xo. However, given the approximate character of the effective
spin model used in Ref. [10], the correspondence is accept-
able [18]. Note that the spin averages over a given state are
those projected onto the Fe site. Those without projection
are easily obtained from the mixing coefficients of the state
in terms of the basis states. For the orbital moment of the
GS we find (GS|L.|GS) = 0.46up, (GS|L,|GS) =0, and
(GS|L,|GS) = 0.45up, so that . /pw, =2, indicating the
easy-axis character of the GS, in agreement with the negative
D value found for the molecule on the oxidized Cu surface.

For the o species we took again 7, = 0, obtaining the best-
fit values ¢! = 15, t? =10, tld =10, and A = —65 meV and
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TABLE IV. Molecular eigenstates of the S species. Eigenvector coefficients below 0.02 are neglected.

Energy (meV) ) 2) 13) 14) I5) 16) 7) I8) 19)
-35.15 0.43 —0.62 0.40i 0.40i —0.34

-31.07 0.23 —0.11i —0.27i —0.51i —0.36 —-035 —0.34 0.48i
—26.05 0.39 —0.21i —0.47i —0.23i 0.15 0.16 0.69

concomitant lowest eigenvalues of —25.7, —23.8, and —20.7
meV, i.e., ZFS1 = 1.9 meV and ZFS2 = 5.0 meV, in very
good agreement with the experimental values of 1.9 and 4.7
meV. The eigenvectors are listed in Table V in Appendix B.
The spin character of the states is similar to that of the
B species. (GS|S;|GS) = 0.45 and (EX1]|S,|EX1) = —0.36,
but (EX2|S,|EX2) = —0.16. The orbital character of the GS
is again easy axis, with u,/u; = 2.32 since (GS|L.|GS) =
0.52 g, {GS|L,|GS) =0, and (GS|L,|GS) = 0.45up.

The different sets of parameters needed to fit the excitation
spectra of the two species reflect their different couplings
with the same substrate, as observed experimentally. It is an
indication of the internal consistency of the model that A is
the same for both species and the hybridization parameters ¢
of the « species are roughly half those of the g species.

Moreover, the need of a spin-correlated hopping to fit the
data signals a kind of spin coupling between the molecule
and substrate. The model is flexible enough to accommodate
different situations but has no predictive character, although it
can shed light on some aspects of the physics of the coupling.
To make some progress, the relation between the hybridiza-
tion parameters and the molecular structure still needs to be
investigated, as well as their influence on the value of A.

Finally, we have calculated the behavior of ZFS1 and
ZFS2 when an external magnetic field B,(T) is applied to
the molecule, from 0 to 10 T (Fig. 5). All parameters are
fixed by the above fits. A comparison with Fig. 2 of Ref. [10]
is quantitatively good for the o2 and 1 branches but not
for the 1l and B2 branches, which show, respectively, a
marked upward and downward curvature not reproduced by
the calculations. One reason for this discrepancy might be
that under the external field the coupling of the molecule with
the substrate, being spin dependent, slightly changes with the
intensity of the applied field.

10
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FIG. 5. Field dependence of the ZFSs for the o and § species
compared with the experimental points of Ref. [10].

As a last comment we observe that our model makes sense
provided the perturbation brought about by the substrate is
weak, in the sense that the electronic structure of the molecule
is not substantially altered. This is not the case of the clean
Cu(110) surface. As the work function of Cu ( 5e¢V) is much
smaller than the binding energy (with respect to vacuum) of
the free-FePc lowest unoccupied molecular orbital (LUMO)
level (13 eV in our MS calculation [1]) the LUMO level will
be pinned to the Cu Fermi level in the adsorbed molecule.
This leads to charge transfer from the surface to the molecule
which will partially fill the e, and a;, holes and thus reduce
the Fe spin and orbital moment, possibly quenching it com-
pletely. Indeed, some states (especially d,2 states) become so
strongly hybridized with the Cu band that they undergo a large
broadening and spin/orbital polarization is lost.

IV. CONCLUSIONS

Based on the analysis of the XMCD spectroscopic data at
the Fe K and L edges and recent theoretical investigations
[1-5], we have presented a model of the magnetic ground
state and low-lying excited states of the FePc molecule in
which an orbital singlet of A, symmetry and two orbitally
degenerate multiplets of £, symmetry separated by 93 meV
are mixed by a spin-orbit interaction of the order of 50 meV.
Relying on the level scheme summarized in Table III and the
corresponding matrix elements of the magnetic operators L
and S, we have calculated the paramagnetic susceptibility in
the Van Vleck model. The remarkable agreement with the
experimental data of Dale et al. [6] (complemented by the
data by Labarta et al. [8]) in the range of 1-300 K obtained
ab initio without adjustable parameters makes us confident
that we have found the low-energy quantum structure of the
free FePc molecule. We thus substantiate all the inferences
contained in Ref. [6] regarding the ground and first excited
states of the molecule. As stated in their abstract, “in the
range 1.25-20 K the susceptibility is virtually independent
of temperature and this result has been used to show that the
ground state of the central iron atom is an orbital singlet, with
a real spin triplet state. This is split by second-order spin-orbit
coupling into a singlet ground state and a doublet state at
70cm™!, to give gy = 1.9 and g, = 2.9.” All this is reflected
in our finding that the ground state |0_) is an orbital singlet
made up of spin-triplet states combined in such a way that
(0_|S.10_) = 0, followed by a doublet |1_) at 71.5cm~!, for
which (1_|S,|1_) = cos?6_ and (1_|L,|1_) = sin®6_.

Moreover, the disagreement of the theoretical curve for
r = +/3 with the paramagnetic susceptibility data provides us
with the experimental proof that the usual practice of reducing
the free-ion Coulomb parameters by a uniform quantity to
account for hybridization in a molecular environment does not
give accurate results.
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TABLE V. Molecular eigenstates of the o species. Eigenvector coefficients below 0.02 are neglected.

Energy (meV) In 12) 13) I5) 16) 7) 18) 19)
—-25.7 —0.35 —0.55 —0.49i —0.43i 0.38

-238 —0.17 0.19i 0.45i 0.41 0.32 0.38 —0.56i
—-20.7 0.43 —0.25i —0.48i —0.21i 0.69

Using the eigenvalues listed in Table III, the eight excited
states of the molecule are calculated as 8.8 meV (doublet),
97 meV (doublet), 132 meV (doublet), 137 meV (singlet),
and 162 meV (singlet). A comparison with the same spectrum
calculated in Ref. [19] as 2.4 meV (singlet), 3.6 meV (dou-
blet), 11 meV (singlet), 47 meV (singlet), 130 meV (doublet),
and 160 meV (singlet) provides further evidence, besides that
given in Ref. [1], that their suggested ground state is not
correct.

Finally, we have successfully reproduced the experimental
data by Tsukahara et al. [10] by application of an extension
of the model used in Ref. [1]. The results confirm that the
type of magnetic anisotropy of the molecule on a substrate is
mainly determined by the sign of the energy gap A between
the orbital doublet and the singlet, while the hybridization
between them (the parameters #7) is responsible for lifting
any degeneracy left by SO coupling and for influencing the
averages of the spin and orbital operators.
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APPENDIX A: CRITICAL ANALYSIS OF SUSCEPTIBILITY
DATA OF REFERENCE [7]

In Fig. 3 the data for the average susceptibility obtained
by Barraclough er al. [7] are plotted against those measured
by Dale et al. [6]. The slight difference between the two sets
probably comes from their different ways of treating the data.
Dale et al. found that the sum of the constant contributions
to the molar susceptibility is very close to zero, indicat-
ing that contributions from diamagnetism and temperature-
independent paramagnetism cancel each other out to a large
extent. Barraclough et al. instead corrected for diamagnetism
using the value given by Lever [14].

At first glance, one might suppose that the fitted values for
D, g, g derived from the two sets are roughly the same.
However, Barraclough et al. measure not only the average
susceptibility x,, but also separately the susceptibilities per-
pendicular and parallel to the symmetry axis of the molecule
in a crystalline sample. In practice, the anisotropy components
(x1 — x2) and (x; — x3) of the crystal tensor xi, x2, x3 with
respect to the principal axes 1, 2, and 3 were measured, and
from them the actual 8-FePc molecule anisotropy components

X and X,llq were derived. Clearly, X,, = 2% + X,‘,‘l) /3.

By making the identification

. _2NB* (ed—l)
X ="p 8\ 2)
2
xh = g
from the fit, they deduced the values D = 7.94meV and
g1 = g = 2.74, without having to resort to the SO coupling
constant A.

These values seem to be rather close to those derived by
Dale et al. [6] (D =8.67meV and g, = 2.86, gy = 1.93);
however, they pose a problem. In fact, one of the tenets of
the theory underlying the derivation of the spin Hamiltonian
for an orbitally nondegenerate ground state, used to interpret
the susceptibility data, is the relations

(AD)

g1 =2(1-1AY),
D =)*(AL — Ay,

g =21 —AA,
(A2)

where A and A are the diagonal components in tetragonal
symmetry of the second-order tensor A,, associated with
the product of the matrix elements of the components of the
orbital moment in the basis functions of the atomic term [12].
Therefore g; = g is incompatible with a finite ZFS D.

We now consider the theoretical quantities corresponding
to those in Eq. (A1),

l—ZN,BZ el —1
Xm - Xx,x €d+2 ’

XH _ 2Nﬁ2 + 2(€d +2)71 (A3)
" kT 1+ tan?6_ ’
4 |
:\E 3l
E,
2
L o
£
=
NO
Tl
0 L L L L L
0 50 100 150 200 250 300

Temperature (K)

FIG. 6. Comparison of the theoretical curves, Eq. (A3) (A =
93meV, r =2), with the experimental points by Barraclough
et al. [7] for the anisotropic susceptibilities x; and x!.
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which are compared in Fig. 6 with the experimental points.
One can see that while the theoretical x> is acceptably close
to the experimental points, X,',L is roughly a factor of 2 off the
measured quantities.

In trying to understand the possible origin of this discrep-
ancy we have reanalyzed the data by Barraclough et al. [7].
In particular we have noted that they use the relation, de-
duced from their Table III, x5 — xh = G — x2)e + (1 —
X3)c, Which is at variance with that given by Gregson and
Mitra [20], x& — xm =2 (01 — X2)e — (X1 — X3)e- On the
other hand, this latter relation is in keeping with that derived
by Bleaney et al. [21] for an FePc molecule with Dy, symme-
try in a monoclinic crystal (8 phase).

Due to these inconsistencies we have decided not to take
into account Barraclough et al.’s anisotropic magnetic data in
our analysis.

APPENDIX B: CALCULATION DETAILS FOR FEPC ON
OXIDIZED CU(110) (SECTION III)

1. Hamiltonian matrix elements

Here the matrix elements of the Hamiltonian (1), Hy +
Hq, + Hey, in the basis (2) are given in units of ¢/2. The
matrix elements of Hey, are listed in Eq. (20). The term Hj,
i.e., the ligand field splitting of the free molecule, is diagonal
in this basis. We set E(E,) = 0, so the only nonzero elements
are

2A

(i|H0|i)=E(A2g)=—x=—T, i=14,7 (Bl

The matrix elements of the spin-orbit interaction Hj, are given
by (see Eq. (68) of Ref. [1] calculated at 6 = 0)

(11 Hsol5) = (4|Hyol8) = —(2[Hsol4)

r

= _<5|Hso|7> = l\/i exp (l¢)7
(1| Hy|6) = (4]H,,|9) = — (3| Hy,|4)
= —(6|H,o|7) = %2 exp (i),

(2|Hyo|3) = —(8|Hyo|9) = i. (B2)
The ¢ dependence in Eq. (B2) stems from rotating by the
same angle the reference frame around the z axis in view
of averaging the in-plane orbital moment over the random
positions of the molecule. In this case p; = ((Ly) + (L,))/2
would depend only on the combinations (7 )* + (£ )* for each
spin direction. In the following, however, we shall set ¢ = 0
since in the experimental setting of Ref. [10] there is only a
single molecule with a definite orientation with respect to the
CuO chains of the substrate.

2. Eigenvector coefficients of low-lying molecular eigenstates

For the B species of the adsorbed FePc molecule, we
obtained a good fit with the parameter values ¢} = 35,1) =
25, tf =25, A = —65meV. The eigenvalues and eigenvec-
tors of three lowest-lying states are given in Table IV.

For the o species, we took t; = 0 and the best fit values
t =151 =10,¢ = 10,and A = —65meV. The eigenval-
ues and eigenvectors are listed in Table V.
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