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We provide a full and unbiased solution to the Dyson-Schwinger equation illustrated for φ4 theory in 2D.
It is based on an exact treatment of the functional derivative ∂�/∂G of the four-point vertex function � with
respect to the two-point correlation function G within the framework of the homotopy analysis method (HAM)
and the Monte Carlo sampling of rooted tree diagrams. The resulting series solution in deformations can be
considered as an asymptotic series around G = 0 in a HAM control parameter c0G, or even a convergent one up
to the phase transition point if shifts in G can be performed (such as by summing up all ladder diagrams). These
considerations are equally applicable to fermionic quantum field theories and offer a fresh approach to solving
functional integro-differential equations beyond any truncation scheme.
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I. INTRODUCTION

Despite decades of research there continues to be a need
for developing novel methods for strongly correlated systems.
The standard Monte Carlo approaches [1–5] are convergent
but suffer from a prohibitive sign problem, scaling exponen-
tially in the system volume [6]. Diagrammatic Monte Carlo
simulations [7–9] were developed to prevent this, scaling
exponentially only in the expansion order [10]. However, this
happens at the expense of substantially worse series conver-
gence properties [11–13]. After nearly ten years and despite
recent and tremendous progress [14–16], one may well fear
that the combination of an asymptotic/divergent series and a
mild sign problem is as prohibitive as the standard approaches.
Recently [17], we therefore suggested to use the more flexible
Dyson-Schwinger equation (DSE) instead of self-consistent
Feynman diagrams [18] to provide a fully self-consistent
scheme on the one and two particle level. Furthermore, we
extended the homotopy analysis method (HAM) [19,20] to φ4

field theory in two dimensions (2D) (providing us with more
tools to enhance the convergence properties in a systematic
way), and showed how the expansion in terms of rooted
trees is amenable to a systematic Monte Carlo sampling.
This expansion is furthermore convenient when dealing with
multidimensional objects such as the four-point vertex func-
tion. Clearly, this is a radically different way at looking at
interacting field theories. However, in our previous work [17],
we truncated the DSE at the level of the six-point vertex. The
infinite tower of equations for n-point correlation functions
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was not solved and differences with the full, exact answer
could be seen when the correlation length increases.

In this work, we solve the full DSE by writing them as a
closed set of integro-differential equations. Within the HAM
theory there exists a semianalytic way to treat the functional
derivatives without resorting to an infinite expansion of the
successive n-point correlation functions, cf. Refs. [21,22]
where the DSE has been used to generate new weak coupling
expansions. The unbiased numerical solution of the DSE is
largely unexplored as it was considered to be too complex to
be solved even in the simplest cases [23–25]. Furthermore,
taking into account the functional derivatives deteriorates the
convergence properties of the field theory substantially com-
pared to the truncated case considered in Ref. [17]. Here we
show how the remaining theory can be brought under control
within the HAM as an asymptotic expansion of the HAM
deformations in terms of an auxiliary convergence control
parameter c0 (times the two-point correlation function G)
around G = 0, or even as a convergent expansion in the HAM
deformations when a shift of G is possible, e.g., by solving the
ladder equations. Although the ideas are illustrated for a 1d
integral and φ4 theory in 2D the convergence considerations
and the methodology are generically applicable as long as the
two-point and four-point correlation functions are bounded,
and may just as well be applied to the better known Hedin
[26] and parquet equations [27] or to the functional renormal-
ization group equation [28,29].

The paper is organized as follows. The main ideas and
results are introduced in Secs. II–IV. In Secs. II and III, we
first analyze the toy model (i.e., the 1d integral, cf. Ref. [30])
to illustrate the approach and then proceed in Sec. IV with
the full solution of the DSE for the φ4 model in 2D. We
provide further technical details, derivations, and information
about the developed algorithm in Appendixes A–C. We do
not include these details in the main text in order to provide
the reader with a clear introduction to our new approach. The
appendixes should be consulted in order to judge the validity
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and broad applicability of the results presented in the main
text.

II. FUNCTIONAL CLOSURE

The functional closure is most easily demonstrated in the
case of a 0D field theory. Consider the 1D integral

Z[J ] =
∫

dφ e−S[φ]+Jφ with S[φ] = 1

2
kφ2 + λ

4!
φ4, (1)

where Z[J ] is the generating functional of the n-point corre-
lation functions G(n),

G(n) = 1

Z[0]

∫
dφ e−S[φ]φn = 1

Z[0]

dnZ[J ]

dJ n

∣∣∣∣
J=0

. (2)

Although in this example the generating functional Z[J ] is a
real-valued function and the n-point correlation functions are
real numbers, we will, nevertheless, use the terminology of
(quantum) field theory (FT) as there will be no ambiguities.
Moreover, we use the shorthand notation G = G(2) for the
two-point correlation function. The DSE [31] can be derived
by introducing an infinitesimal shift δ in the integration vari-
able, φ → φ + δ, and expanding the resulting expression in
powers of δ. This yields

dS

dφ

[
φ = d

dJ

]
Z[J ] = JZ[J ]. (3)

The first derivative of the action S with respect to the field φ is
promoted to a differential operator by the substitution φ = d

dJ
.

The DSE (3) is a definition of the generating functional in
terms of a differential equation equivalent to the definition
of Z[J ] through (1). For a realistic FT (3) turns into a
functional integro-differential equation, whereas (1) turns into
a functional integral.

Instead of focusing on the solution of (1) we focus on (3).
Differentiating (3) once with respect to J and setting J = 0
afterwards yields, after introducing the connected four-point
correlation function G(4)

c = G(4) − 3G2 and the four-point
vertex function � = −G−4G(4)

c ,

G−1 − k = λ

2
G − λ

6
G3�. (4)

This is the first equation in the expansion of the differential
equation (3) into an infinite hierarchy of coupled equations for
the correlation functions. We close the hierarchy by consider-
ing the generating functional to be a functional of the inverse
noninteracting two-point correlation function k, Z = Z[J =
0, k]. Therefore we can write

G(4) = −2
dG

dk
+ G2 and

� = −2G−2 dG−1

dk
+ 2G−2. (5)

We use (4) to expand the derivative of the inverse of the two-
point correlation function with respect to k. This together with
the chain rule

d�

dk
= dG

dk
�′ = (G4� − 2G2)�′, (6)

where we denote the derivative with respect to G as �′, leads
to the differential equation

�[G] = λ − 3λ

2
G2� + λ

2
G4�2 − λ

3
G3�′ + λ

6
G5�′�. (7)

A solution to (4) requires knowledge of the universal func-
tional �[G], which can be obtained by solving the differential
equation (7). �[G] is subsequently used in (4) and solved
for G for a given inverse of the noninteracting two-point
correlation function k. The combined system (4) and (7) is
typically solved by a fixed point iteration. This gives the
physical two-point correlation function G. The physical four-
point vertex function � follows by evaluating the universal
functional �[G] for the physical G. In Ref. [17], we have
already shown how to solve a realistic FT when only taking
the first three terms on the right-hand side of (7) into account,
i.e., working with a truncated version of �[G], which has a
finite convergence radius. Next, we examine the deterioration
in convergence properties when taking the derivatives in (7)
into account.

III. VERTEX EQUATION

The exact solution of (7) obtained by the implicit Euler
method is shown in Fig. 1(a) for λ = 10. It agrees with
inverting the functional G[k] → k[G] and plugging it into
�[k[G]]. The additional vertical (horizontal) grid line corre-
sponds to the physical G(�) obtained for the model parame-
ters k = 1, λ = 10. In case of a FT, (7) takes the form of a
functional integro-differential equation and the implicit Euler
method cannot be applied. It is therefore necessary to study
semianalytic solutions to the differential equation (7).

The power series expansion �[G] = λ +
limM→∞

∑M
n=1 cnG

n has zero convergence radius [32]:
bringing (7) into the form of �′[G] = F [G,�[G]], we find
that F is not holomorphic at G = 0, � = λ. An expansion
around G = 0 corresponds to approaching the noninteracting
limit by fixing λ and taking k → ∞, i.e.,

Gk = 1

Z

∫
dφ φ2 e

− 1
2 φ2− λ

4!k2 φ4 k→∞= 1. (8)

Further details about the analytic structure of the functional
�[G] are given in Appendix A. We observe numerically,
see Fig. 1(b), that the power series solution to (7) has the
properties of an asymptotic expansion, i.e., for every small
G there exists an optimal truncation order M such that the
truncated power series asymptotically approaches the exact
answer with exponential accuracy. However, Fig. 1(a) shows
that it is not possible to construct �[G] as a power series at
values of G where it corresponds to the physical G for the
considered model parameters k = 1 and λ = 10.

A more powerful semianalytic method is the HAM [19].
The starting point is the construction of the homotopy

(1 − q )L[�[G, q] − u�,0[G]] + qc0N [�[G, q]] = 0 (9)

for the differential equation (7). N [�[G]] = 0 is the nonlinear
differential operator defining (7) and L is an arbitrary linear
operator with the property L[0] = 0. The homotopy (9) in-
cludes the deformation parameter q ∈ [0, 1], which deforms
the solution of L from �[G, 0] = u�,0[G] at q = 0 to the
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FIG. 1. (a) �[G] at coupling λ = 10 obtained by the implicit
Euler algorithm, a power series (asymptotic), and the HAM (asymp-
totic). The thin grid lines show the evaluation for the physical
G, � for k = 1. (b) The relative error δ�[G] of a power series
solution at small G shows the behavior of an asymptotic series
in the maximal expansion order M . (c) The relative error δ�[G]
of the HAM series solution around the noninteracting limit for
G = 0.3 shows the behavior of an asymptotic series in the max-
imal deformation order M controlled by the convergence control
parameter c0. (d) The convergence of the HAM series of defor-
mations u�,m[G],

∑M

m=0 u�,m[G] with respect to a linear operator
Lladder[�[G]] = �[G] − λ + 3λ

2 G2�[G], the ladder approximation to
the vertex equation (7). The functional �[G] is evaluated at the
physical G for k = 1. The inset shows the convergence of the main
plot on a much finer scale.

solution of the differential equation (7), �[G, 1] = �[G],
at q = 1. u�,0[G] is the initial guess for the solution of
N [�[G]] = 0. The convergence control parameter c0 controls
the rate at which the deformation happens. The HAM attempts
to find the solution of (9) through a Taylor series expansion in
q, i.e., �[G, q] = u�,0[G] + ∑

m=1 u�,m[G] qm. The expan-
sion coefficients are given by u�,m[G] = �(m)[G, q = 0]/m!
and can be obtained by the mth derivative of (9) with respect
to q. Therefore the HAM gives a series solution of the dif-
ferential equation (7) in terms of the deformation coefficients
u�,m[G],

�[G] = u�,0[G] +
∑
m=1

u�,m[G]. (10)

We first use the easiest possible linear operator L[�[G, q] −
u�,0[G]] = �[G, q] − u�,0[G]. This choice can be straight-
forwardly generalized to functional integro-differential equa-
tions. In this case, the mth-order deformation in the HAM
series solution is given in simple powers of G and additionally
depend on the auxiliary parameter c0. Picking the identity
operator, L = id, is a too simplistic choice and does not

lead to a convergent HAM series solution. Nevertheless, the
homotopy introduces the convergence parameter c0 which
gives us additional freedom since the effective parameter c0G

can always be made small as long as G remains finite and
therefore the limitations of the standard power series approach
can be overcome. As is illustrated in Figs. 1(a) and 1(c), the
asymptotic nature can then be postponed to larger expansion
orders for smaller c0 but with larger deviations from the
exact result at low expansion orders. This approach can be
generalized to realistic field theories in which case c0||G||
can be chosen to be small where ||G|| denotes the Lp norm
of the two-point correlation function. In the next section, we
show numerically that this holds for a generic FT and that it
is possible to get accurate results even close to a second-order
phase transition at which ||G|| gets unbounded.

Before extending this approach to a realistic FT we like
to emphasise the great potential and novelty of the Dyson-
Schwinger and homotopy approach to FT. Instead of con-
structing the HAM series expansion around the noninteracting
limit, G = 0, we can use the linear operator L = Lladder

to construct a homotopy with respect to the analytically
solvable ladder approximation, Lladder[�[G]] = �[G] − λ +
3λ
2 G2�[G]. In an FT, the term 3λ

2 G2�[G] sums up all RPA-
ladder diagrams. The resulting homotopy can be written as

�q[G] = λ − 3λ

2
G2�q + λ̃(q, c0)

2
G4�2

q

− λ̃(q, c0)

3
G3�′

q + λ̃(q, c0)

6
G5�′

q�q,

where λ̃(q, c0) = c0q

1 − q + c0q
λ, (11)

which should be compared to the closed DSE (7). Taking
into account the equivalence between the functional integral
and the functional integro-differential approach, an important
question is if (11) can be related back to an auxiliary action
such as S = S0(q ) + qSint, which has been considered in
variational perturbation theory approaches [33,34] or shifted
action approaches [35]. S0(q ) is some quadratic auxiliary
action and Sint is the interaction part such that S(q = 1) = S

with S the physical action of the theory under consideration.
A general feature of DSEs is that each term on the right-
hand side of (7) contributes exactly with one factor of the
bare coupling constant. In contrary, for the homotopy (11),
there are terms contributing with a modified bare coupling
constant λ̃ and therefore (11) can not be associated with the
closed DSE of an auxiliary action. In conclusion, we see
that the HAM series solution is effectively an expansion with
respect to the truncated interacting ladder model which has no
correspondence in a functional integral representation and can
only be written down in the equations of motion approach.
Figure 1(d) shows that the HAM series with respect to the
ladder approximation yields a convergent series solution.
Moreover, we find that the HAM series solution is globally
convergent, i.e., it is not restricted by a finite, c0-dependent
convergence interval. Therefore we also find a convergent
solution for values of G, which correspond to G[k] with
k < 0. In this parameter regime, the action (1) has degenerate
minima and the standard perturbative series for the vertex
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function is not Boreal summable [36]. For further details see
Appendix A.

IV. φ4 THEORY IN 2D

Consider the Z2-symmetric φ4 theory on a 2D lattice with
action

S[φ] = 1

2

∑
i,j

φiG
−1
0;i,j φj + λ

4!

∑
φ4

i . (12)

The inverse noninteracting two-point correlation function is
given by G−1

0;i,j = −�i,j + m2δi,j , where �i,j denotes the
discretized Laplace operator in 2D. For m2 < 0, this model
undergoes a second order phase transition from a magnetically
ordered to an unordered phase at a critical coupling constant
λc(m2). The phase transition is signalled by the divergence
of the magnetic susceptibility χ = G(p = 0), which leads
to the same critical exponents as for the 2D Ising model
previously studied diagrammatically with grassmannization
techniques [37]. In our simulation, we use m2 = −0.5, which
corresponds to λc(m2) ∼ 2. The coupled set of equations for
(12), generalization of (4) and (7) and derived in Appendix B,
are graphically depicted in Fig. 2.

We use an extension of the Monte Carlo algorithm de-
veloped in Ref. [17] to sample the expansion of the HAM
in rooted tree diagrams. The detailed algorithm, especially
the correct implementation of the functional derivatives, is
discussed in Appendix C. Figure 3 shows the result for the di-
vergence of the susceptibility χ for successive approximations
of �[G] and for the full solution of the functional integro-
differential equation. It should be pointed out that the coupled

= 3× 3×

= +

=Σ

Σ

Γ

Γ

Γ Γ Γ

Γ

δΓ
δG

δΓ
δG

-

-

+

-

+

FIG. 2. The coupled set of equations defining model (12) is
closed through a functional integro-differential equation. Each dia-
gram is in one-to-one correspondence with the terms in (4) and (7).
The noninteracting two-point correlation function G0;i,j is denoted
by a thin line, the two-point correlation function Gi,j by a bold line,
and the bare vertex by a dot. The correct convolution of lattice indices
can be obtained by standard diagrammatic rules. The terms without
functional derivatives involve the permutation of external indices and
is denoted by the factor 3.

FIG. 3. The development of the divergence of the susceptibility
χ = G(p = 0) close to the phase transition for the model (12). Var-
ious approximations of the universal functional �[G] yield system-
atic, quantitative errors whereas the full solution captures the correct
quantitative behavior. The black, dashed purple and blue lines were
obtained in Ref. [17] and correspond to different truncations of the
functional �[G]. The black approximation corresponds to �[G] =
0, the dashed purple line to �[G] = gR = λ(1 + 3λ/2

∫
p
G(p)2)−1

and the blue line to the truncation of �[G], which takes into account
only the first three diagram elements on the right-hand side of
Fig. 2 in the functional integro-differential equation for �[G], i.e.,
corrections of the order of the six-point vertex function �(6) are
neglected.

set of equations, Fig. 2, are defining the FT (12) directly in
the thermodynamic limit, i.e., results obtained by our method
are for infinite system sizes. The results are compared to the
numerically exact simulation of model (12) with the classical
Worm algorithm [38] on system sizes which are much larger
than the correlation length. We find that it is possible to obtain
controlled results with our current Monte Carlo algorithm
up to χ ∼ 10, which corresponds to a correlation length of
ξ ∼ 3. Our diagrammatic Monte Carlo sampling is based on a
direct sampling of all topologies of rooted tree diagrams at a
given order. This naive approach leads to sampling problems
at higher deformation orders and restricts the order to 5–6.
Due to the sign alternation between the linear and quadratic
terms in the vertex equation the sampling suffers from a sign
problem discussed in Ref. [17] for the case of the stochastic
construction of a truncated functional. We find no qualitative
difference if the functional derivative terms are added. We
performed extensive Monte Carlo simulations such that the
error bars are exclusively determined by the extrapolation of
the lowest deformation orders as is shown in Fig. 4. It is only
possible to extrapolate the inverse of the two-point correla-
tion function and therefore the error introduced through the
extrapolation is growing rapidly as the susceptibility diverges,
cf. Fig. 3. It should be pointed out that we have no global
excess to �[G] but only to a stochastic, local evaluation
of the universal functional through the diagrammatic Monte
Carlo sampling of the HAM series solution in terms of
rooted tree diagrams. Further details about the algorithm are
presented in Appendix C. In order to obtain the results in
Fig. 3 through this evaluation of �[G], we simplified the
calculation by starting the fixed point iteration for the coupled

195104-4



FULL AND UNBIASED SOLUTION OF THE DYSON- … PHYSICAL REVIEW B 98, 195104 (2018)

HAM, c =0.2

HAM, c =0.1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.000

0.005

0.010

0.015

0.020

0.025

1/M

1/
G

(p
=0

)−
1/
G
ex
ac
t(p

=0
)

FIG. 4. In order to obtain an error estimate for the extrapolation
of the homotopy series we use a linear extrapolation for different
deformation parameters c0. We make sure within error bars that
results extrapolate to the same value for different c0. The plot shows
the results for λ = 3.5 where the correlation length is already large
enough such that there are considerable deviation from the exact
result if only a truncated functional �[G] has been considered,
cf. Fig. 3.

system in Fig. 2 at the numerically exact two-point correlation
function. This reduces the computational time as we have
to perform only a single fixed point iteration step. For more
general starting points of the fixed point iteration we refer
to Ref. [17]. Figures 3 and 4 show that, although there is no
single physical small parameter close to the phase transition,
we obtain controlled results as we can construct the homotopy
(9) always with respect to a small enough c0. In the vicinity
of the second-order phase transition, ||G|| → ∞ implies that
c0 → 0 but in order to get meaningful results, the number of
required deformations increases rapidly. Therefore, due to the
limited number of deformations, which can be computed with
our algorithm, we can not go closer to the phase transition.
For transitions where ||G|| remains finite (the divergence may
then occur in the four-point vertex function), this argument is
not applicable.

V. OUTLOOK

Although the approach to FT introduced in this work is
illustrated for the simple though representative case of φ4

theory, models with arbitrary two-body interactions in its sym-
metric phase can be tackled on the same footing. As shown in
Appendix B, the transition from the functional integral repre-
sentation for general models to functional integro-differential
equations yields exactly the same set of equations as depicted
in Fig. 2. The only difference is that the convolution of indices
in the diagrams representing the functional integro-differential
equation is with respect to a collective index i, which sum-
marizes all possible field labels of the considered model. The
statistics of fermionic fields translate into additional signs for
the permutations of external indices in the diagrams of Fig. 2
and into sign alternating two-point correlation functions.

VI. CONCLUSION

In conclusion, we have introduced a general approach
to tackle FT through full and unbiased solutions of

functional integro-differential equations derived from the
DSE. We showed for a toy model that by using the semi-
analytic HAM we can solve the differential equation for the
vertex function. The HAM gives a convergent series solution
if the homotopy is constructed with respect to the analytically
solvable ladder approximation for the four-point vertex func-
tion or an asymptotic series solution, which can be controlled
by the convergence control parameter c0 if the homotopy is
constructed around the noninteracting limit. The latter result
found for the toy model can be readily applied to a simple FT
where the asymptotic series solution can be controlled by the
convergence control parameter c0 even close to a second-order
phase transition.

The open data for this project can be found at Ref. [39].
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APPENDIX A: ANALYTIC STRUCTURE OF THE
UNIVERSAL FUNCTIONAL �[G]: CONVERGENT HAM

SERIES SOLUTION

In order to obtain the analytic structure of �[G] near G =
0, we first consider the analytic solution to the integral

Z =
∫

dφ e−S[φ] with S[φ] = 1

2
kφ2 + λ

4!
φ4. (A1)

The analytic solution to this integral for k ∈ C with fixed λ ∈
R+ is given as

Z[k] = e
3k2

4λ

⎧⎨
⎩

√
3
√

k
λ
K 1

4

(
3k2

4λ

)
Re(k) > 0√

3
2π

√
− k

λ

(
I 1

4

(
3k2

4λ

)
+ I− 1

4

(
3k2

4λ

))
Re(k) < 0

.

(A2)

Here, In(z)/Kn(z) are the modified Bessel functions of the
first/second kind and Z[k = 0] = (3/2λ)1/4�(1/4) where
�(x) is the Gamma function. The integral (A1) can be re-
garded as an integral representation of the function Z defined
in (A2). The same holds for the two-point correlation function
G[k], which we do not show here. The important point is
that both Z[k] and G[k] are piecewise-defined functions in
k, which can be represented by a single integral expression.
There exists also a differential equation equivalent to the
integral representation of the function Z[k] or G[k]. For G[k],
this is the coupled system of differential equations:

G±[k]−1 − k = λ

2
G±[k] − λ

6
G±[k]3�

(4)
± [k],

�±[k] = λ − 3λ

2
G±[k]2�±[k] + λ

2
G[k]4

±[�(4)
± ]2

+ λ

6
G±[k]

d�
(4)
±

dk
. (A3)
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(a)
G[k]
G+[k]
G−[k]
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(b)
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FIG. 5. The two solutions for G(�)±[k] of (A3) on the real axis
for λ = 1. The physical solution G(�)[k] corresponds to the solution
G(�)+[k] for k > 0 and G(�)−[k] for k < 0, cf. (A2).

There are two independent solutions to this equation for G

and, consequently, also for � denoted as G±[k] and �±[k],
respectively. While (A1) is single-valued, the solution to the
system of equations (A3) in principle leads to two independent
solutions. They are shown for G±[k], �±[k] on the real axis
in Fig. 5. We will show in the following that the analytic
structure of �[G] near G = 0 can be understood from the
existence of the two independent solutions to (A3). Formally,
�[G] can be obtained from �±[k] by inverting the relation
G = G±[k]. There are two independent solutions which for
some k satisfy G = G+[k1] = G−[k2]. This leads to two
branches for �[G] where �[G] must evaluate to �

(4)
+ [k1] on

the first branch and to �
(4)
− [k2] on the second branch. In

order to obtain the analytic structure of �[G] near |G| = 0,
it is necessary to study the intersection of the images of
G± for elements which satisfy |G| → 0. The complete circle
in the complex G plane |G|eiφ, φ ∈ [0, 2π ] for |G| → 0 in
Fig. 6 is included in the image of G+[k] and can be obtained
by the parametrization k = |k|e−iφ where |k| → ∞. On the
other hand, the image of G−[k] includes two segments of
the circle |G|eiφ , namely, with φ ∈ [π

4 , 3π
4 ] and φ ∈ [ 5π

4 , 7π
4 ]

and can also be obtained by the parametrization k = |k|e−iφ .
Therefore there are branch cuts starting from G = 0 cutting
the complex G plane in the ±π

4 direction.
According to the above result a power series solu-

tion around G̃ ∈ R+, should have convergence radius R =
sin( π

4 )G̃. The convergence radius can also be determined

G

|G|eiφ = G+[k = |k|e−iφ]

|G|eiφ = G−[k = |k|e−iφ]

G̃

R

FIG. 6. The elements of the images of G±[k] onto the circle
|G|eiφ for |G| → 0. For φ ∈ [ π

4 , 3π

4 ] and [ 5π

4 , 7π

4 ], G± map onto the
same G. Therefore �[G] has to be single valued on φ ∈ [− π

4 , π

4 ]
and [ 3π

4 , 5π

4 ] and multivalued on φ ∈ [ π

4 , 3π

4 ] and [ 5π

4 , 7π

4 ]. The
Taylor series of �[G] around G̃ ∈ R+ has the convergence radius
R = sin( π

4 )G̃.

numerically by considering the coefficients cn in the power
series �[G] = ∑

n cn(G − G̃)n. The power series can be ob-
tained by using the analytically known result for �

(4)
+ [G+[k]]

on the real axis, i.e., c0 = �[G̃]. As shown in Fig. 7, the
numerically obtained convergence radius from the large or-
der behavior of the coefficients cn agrees with the expected
convergence radius.

Moreover, we numerically find a convergent HAM se-
ries solution if we are considering a linear operator L
such that the HAM does not yield a series solution around
the noninteracting limit G = 0. With the simple choice
Lladder[�[G]] = �[G] − λ + 3λ

2 G2�[G] we obtain the result
shown in Fig. 8(a). The linear operator is the ladder ap-
proximation to the functional �[G] and for a field theory

0 0.01 0.02 0.03
8

9

10

11

12

n

b n

FIG. 7. The linear extrapolation of the large order asymptotic

b2
n = cn+1cn−1−c2

n

cncn−2−c2
n−1

yields a convergence radius R ≈ 1
8.105 = 0.123,

which can be compared to the expected convergence radius of
R = sin( π

4 )0.172 = 0.122. Here, G̃ = G+[k = 5] = 0.172 has been
considered.
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FIG. 8. (a) The approximation to the HAM series solution
�[G] = limm→∞

∑M

m u�,m with M = 30 on a semilogarithmic scale.
The HAM series converges globally, i.e., it is not limited to a finite,
c0-dependent convergence interval. Therefore convergence can be
achieve for large values of G which corresponds to k < 0. The
truncation of the series solution at M = 30 already gives decent
results for large G without extrapolating the series solution. The
convergence of the HAM series solution is explicitly demonstrated
in (b) and (c). Without tuning the convergence control parameter c0,
convergence can be observed both for small ((b) G[k = −1] ≈ 0.73)
and large ((c) G[k = −200] ≈ 12) G.

sums up all RPA-ladder diagrams. Therefore the HAM series
solution is an expansion with respect to the interacting ladder
approximation. With the linear operator Lladder the HAM
series solution gives a globally convergent solution. Therefore
the series also converges for large values of G. This regime
corresponds to the double well potential, i.e., k < 0. The
convergence is demonstrated in Figs. 8(b) and 8(c). The HAM
series solution is converging for arbitrary G without tuning the
convergence control parameter c0.

APPENDIX B: FUNCTIONAL CLOSURE FOR FIELD
THEORY

In this appendix, we derive a closed system of functional
integro-differential equations for general interacting many-
body models with arbitrary two-body interaction. These equa-
tions define the many-body theory under consideration in a
functional integro-differential formulation.

1. Correlation functions and functional derivatives

To find a closed set of equations for correlation functions
we write high-order correlation functions as functional deriva-
tives of low order correlation functions. In this section, we
show how we define the functional derivatives in a collective
index notation.

In Sec. II, the algebraic 0D quantum field theory (FT)

Z[J ] =
∫

dφ e−S[φ]+Jφ with S[φ] = 1

2
kφ2 + λ

4!
φ4

(B1)

was considered, where Z[J ] is the generating functional of
the n-point correlation functions

G(n) = 1

Z[0]

∫
dφ e−S[φ]φn = 1

Z[0]

dnZ[J ]

dJ n

∣∣∣∣
J=0

. (B2)

We extend the definition of the generating functional Z[J ]
with a one-point source term J to a two-point source term. The
inverse noninteracting two-point correlation function k can be
thought of as a two-point source term. Therefore the partition
function Z = Z[J = 0] is considered to be a generating func-
tional with respect to k, Z = Z[k]. The two-point correlation
function G = G(2) can be obtained by differentiation with
respect to the two-point source term k,

G = −2
d ln Z[k]

dk

∣∣∣∣
kphys

. (B3)

In order to practically use (B3), Z[k] has to be computed
for arbitrary k ∈ R and afterwards the derivative has to be
evaluated at k = kphys.

We first discuss the extension to a FT for the proto-
typical Z2 symmetric φ4 model on a lattice in arbitrary
dimensions D,

Z[J ] =
∫

d(φ) e−S[φ]+∑
i Jiφi

with S[φ] = 1

2

∑
i,j

φiG
−1
0;i,j φj + λ

4!

∑
i

φ4
i . (B4)

In this case, G−1
0 ∈ RL×L with L the number of lattice

sites and G−1
0;i,j = G−1

0;i,j ;phys = −�i,j + m2δi,j , where � is the
discretized Laplace operator in D dimensions. The measure
of the functional integral is denoted by d(φ). The n-point
correlation function carries now additional lattice indices and
is defined as

G
(n)
i1,...,in

= 〈φi1 . . . φin〉

= 1

Z[0]

∫
d(φ) e−S[φ]φi1 . . . φin . (B5)

In analogy with the 0D case, we consider Z = Z[J = 0] =
Z[G−1

0 ] and write the two-point correlation function as

Gi,j = −2
δ ln Z

[
G−1

0

]
δG−1

0;i,j

∣∣∣∣∣
G−1

0;phys

. (B6)

Therefore Z[G−1
0 ] has to be computed for arbitrary G−1

0 ∈
RL×L and only after the derivative has been taken the expres-
sion is evaluated in the subspace of physical G−1

0 = G−1
0;i,j ;phys.

In particularly, although G−1
0;i,j ;phys lies inside the subspace

of translational invariant G−1
0 the calculation of Z[G−1

0 ] must
not be restricted to this physical subspace. Translational in-
variance can only be restored after the functional derivative of
Z[G−1

0 ] is evaluated at G−1
0;phys.
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(a) (b) (c)

p1
p1

p5

p6

p1−p5−p6

p5

k1+k2−p5

k1

k2 k3

k4

p5

p6

p1

−p1−p5−p6

p7

p8

−p4−p7−p8

p4

FIG. 9. Feynman diagrams in momentum space contributing to
different correlation functions for φ4 theory with action (B4). The
lines represent noninteracting two-point correlation functions G0

whereas the interaction vertex is represented by the dot. Due to the
local interaction, momentum is conserved at each vertex. (a) The
second-order contribution to the self-energy. Due to the translational
symmetry of the φ4 model incoming and outgoing momenta have
to be equal and G0 depends only on a single momentum variable.
(b) A second-order contribution to the four-point vertex function
depending on the four external momentum variables ki . Due to
translational symmetry, δ(k1 + k2 + k3 + k4), the four-point vertex
function effectively depends on three momentum variables. (c) The
second-order diagram contributing to the self-energy without as-
suming translational symmetry. Therefore incoming and outgoing
momenta do not have to be equal and the two-point correlation
function lines depend on two momentum variables.

The following argument [40] illustrates that this is indeed
indispensable. The four-point correlation function G

(4)
i1,i2,i3,i4

=
〈φi1φi2φi3φi4〉 can be written as

G
(4)
i1,i2,i3,i4

= −2
δGi1,i2

δG−1
0;i3,i4

∣∣∣∣∣
G−1

0;phys

+ Gi1,i2Gi3,i4 . (B7)

Model (B4) is translational invariant and therefore G(4) de-
pends on three relative distances, e.g., i1 − i2, i1 − i3, i1 − i4.
If translational invariance is already restored before taking the
functional derivative in (B7), i.e., taking the functional deriva-
tive only in the restricted subspace of translational invariant
G−1

0 , the right-hand side depends only on two relative dis-
tances i1 − i2, i3 − i4. In this case, the functional derivative
does not provide the full information about all values of the
four-point correlation function. This shows that it is crucial
to consider G−1

0 ∈ RL×L and not perform the calculation
in a restricted subspace. We can also consider an argument
based on diagrammatic reasonings which is closer to the
actual computational techniques introduced in this chapter.
The above result can be obtained by taking into account the
following considerations. Formally, a FT can also be defined
through its series expansion of correlation functions in terms
of Feynman diagrams. The functional derivative with respect
to G0 (related to the one with respect to G−1

0 through the chain
rule of functional differentiation) can be considered for each
diagram. The action of this derivative on a single Feynman
diagram is diagrammatically represented by removing one
G0 line in all possible ways. The result of cutting a single
G0 line is a new diagram with two additional external legs,
which can be a Feynman diagram in the series expansion
of a higher order correlation function. The precise relation
will be derived in the following chapter. We consider this
process for a specific example where translational invariance
is already restored before taking the functional derivative. The
functional derivative of the diagram in Fig. 9(a) in momentum

space will give the following expression:

1

3

δ

δG0(p3)

∫
p5,p6

G0(p1 − p5 − p6)G0(p5)G0(p6)

=
∫

p5

G0(p1 − p3 − p5)G0(p5). (B8)

Due to translational invariance G0 is diagonal in momentum
space and depends only on a single momentum variable. The
resulting diagram obtained from this functional differentiation
is depicted in Fig. 9(b). It contributes to the Feynman diagram-
matic expansion of the four-point vertex function. However,
as we already assumed translational invariance before taking
the derivative we can obtain information only in the subspace
k1 = −k4 = p1 and k2 = −k3 = −p3.

The contribution for arbitrary external momentum vari-
ables is given by the functional derivative of the diagram in
Fig. 9(c). Translational invariance is not taken into account
yet and therefore G0 depends on two momentum variables. In
this case, differentiating the diagram gives

1

3

δ

δG0(p2, p3)

∫
p5,p6,p7,p8

G0(p5,−p4 − p7 − p8)G0(p6, p7)

×G0(−p1 − p5 − p6, p8)|G0=G0,phys

= δ(p1 + p2 + p3 + p4)
∫

p5

G0(p1 + p2 − p5)G0(p5),

(B9)

which is exactly the analytic expression for Fig. 9(b) with
ki = pi .

This result can be generalized to more complicated sym-
metries such as interacting fermions with spin σ on a lattice
with a translational invariant hopping matrix h and local on-
site Hubbard type interaction. The free part S0 of the action
S = S0 + Sint can than be written as

S0[ψ̄, ψ] =
∫ β

0
dτdτ ′ ∑

σ,σ ′;i,j

ψ̄i,σ (τ )G−1,ψ̄ψ

0;i,j,σ,σ ′ (τ, τ ′)ψj,σ ′ (τ ′),

(B10)

where G
−1,ψ̄ψ

0;i,j,σ,σ ′ (τ, τ ′)=G−1
0;i,j,σ,σ ′;phys(τ, τ

′)=δσ,σ ′δ(τ − τ ′)
[(∂τ − μ)δi,j + hi,j ] and the interacting part Sint describes
a local interaction, which does not break U(1) symmetry
nor SU(2) spin symmetry nor does it violate translational
invariance in space and imaginary time.

We focus in the following on the U(1) symmetry leading
to particle number conservation but note that exactly the same
argument can be used for SU(2) spin symmetry.

A second-order diagram contributing to the self-energy for
this model is given in Fig. 10(a). We only consider the labels
of the diagram due to the U(1) symmetry where incoming
lines denote ψ and outgoing lines denote ψ̄ . Due to the U(1)
symmetry particle number is conserved and the number of
ingoing lines equals the number of outgoing lines. Taking
the derivative of this diagram with respect to G

ψ̄ψ

0 we obtain
the diagram in Fig. 10(b), which contributes to the four-point
correlation function. The diagram in Fig. 10(a) is not the only
diagram which upon cutting a single propagator line leads to
the diagram in Fig. 10(b). If we allow for U(1) symmetry
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(a) (b) (c)

FIG. 10. Feynman diagrams for the fermionic model with free
action (B10) and Hubbard type interactions. The lines represent
noninteracting two-point correlation functions G0, whereas the inter-
action vertex is represented by the dot. The diagrams are only labeled
by the arrows on the lines which corresponds to U(1) symmetry.
Further labels are suppressed. Incoming lines represent ψ̄ fields and
outgoing lines represent ψ fields. As the Hubbard type density-
density interaction preserves U(1) symmetry the number of ingoing
and the number of outgoing lines on each vertex have to be equal.
(a) The second-order diagram contributing to the diagonal part of the
self-energy. The number of incoming and outgoing lines are equal
and therefore the diagram contributes to the diagonal component of
the self energy. (b) A second-order diagram contributing to the four-
point vertex function. (c) The second-order diagram contributing to
the off-diagonal part of the self-energy. There are two incoming lines
but no outgoing lines therefore the diagram contributes only in the
case of broken U(1) symmetry.

breaking we can also consider the diagram in Fig. 10(c),
which contributes to the off-diagonal part of the self-energy.
The particle number is not conserved for this diagram as there
are two incoming lines but no outgoing lines. The diagram
includes a off-diagonal G0 line, G

ψ̄ψ̄

0 , which is indicated
by two arrows on that line pointing in different directions.
Cutting this G0 line also leads to the diagram in Fig. 10(b),
which preserves particle number conservation. This example
shows, in analogy with translational invariance, that in an
intermediate stage of the calculation U(1) symmetry can be
broken and only after the derivative has been taken all sym-
metries of the action have to be respected.

Concluding, we showed that in general G−1
0 has to be de-

fined outside the subspace of physical inverse noninteracting
two-point correlation functions. The full space is given by a
collective index space such that the free part of the action can
be written as

S0[φ] = 1

2

∑
i,j

φiG
−1
0;i,j φj . (B11)

The collective index i summarizes all possible field labels
of the considered model. For (B10) i = (±, τ, xi, σ ) where
i = (+, τ, xi, σ ) labels ψ̄xi ,σ (τ ) and i = (−, τ, xi, σ ) labels
ψxi,σ (τ ). The inverse noninteracting two-point correlation
function G−1

0;i,j is therefore defined in this collective index
space with properties discussed in the following.

2. Dyson-Schwinger equations

We start with the most general form of the action of a
many-body system with arbitrary two-body interactions:

S[φ] = 1

2
φi1G

−1
0;i1,i2

φi2 + 1

4!
Vi1,...,i4φi1φi2φi3φi4 ,

Z =
∫

d(φ)e−S[φ]. (B12)

The fields φi are either complex numbers if they represent
bosonic degrees of freedom or anticommuting Grassmann

numbers for fermionic degrees of freedom. They are labeled
by a single collective index i, which summarizes all possible
labels for the fields as introduced in Sec. 1. The action can be
formally defined on a lattice or in continuous space, where x is
taken to be a discrete variable or a continuous variable, respec-
tively. The inverse of the noninteracting Greens function G−1

0
should be thought of as a symmetric/antisymmetric matrix
(for bosons/fermions) in the space of the collective index i and
the matrix elements of the two-body interaction are given by
a fully symmetric/antisymmetric tensor V . Summation over
repeated indices is implicitly assumed.

The Dyson-Schwinger equation for model (B12) can be
derived by introducing the generating functional of the n-point
correlation functions:

Z[J ] =
∫

d(φ)e−S[φ]+∑
i Jiφi . (B13)

For bosons the source fields Ji are complex numbers, while
for fermions they are Grassmann numbers anticommuting
with itself and with the fields φi . The measure of the func-
tional integral is denoted by d(φ). All n-point correlation
functions can be generated by functional derivatives of the
generating functional with respect to the source fields,

G
(n)
i1,...,in

= 〈φi1 . . . φin〉 = 1

Z

δ(n)Z[J ]

δJi1 . . . δJin

∣∣∣∣
J=0

. (B14)

The Dyson-Schwinger equation is derived by considering a
linear shift � of a single field variable in the functional inte-
gral for the generating functional. For fermions, � has to be a
Grassmann number, while for bosons, � is a complex number.
The elements in the functional integral for the generating
functional transform under this shift as

φi1 → φi1 + �,

d(φ) → d(φ),

S[φ] → S[φ] + �
δS[φ]

δφi1

+ O(�2). (B15)

Therefore the generating functional is given by

Z[J ] =
∫

d(φ)e
−S[φ]+∑

i Jiφi−�
δS[φ]
δφi1

±�Ji1 +O(�2 )

=
∫

d(φ)

(
1 + �

[
±Ji1 − δS[φ]

δφi1

]
+ O(�2)

)

× e−S[φ]+∑
i Jiφi . (B16)

Here and in the following, the upper sign in ± or ∓ is for
the bosonic case where the lower sign is for the fermionic
case. The differential form of the Dyson-Schwinger equation
is obtained by equating the above expression in powers of �,(

±Ji1 − δS

δφi1

[
δ

δJ

])
Z[J ] = 0. (B17)

This is a functional integro-differential equation for the
generating functional Z[J ]. This equation can be formally
solved by using the Taylor series expansion of the generating
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functional in terms of the source fields Ji around Ji = 0,

Z[J ] =
∑

n

1

n!

∑
i1,...,in

G
(n)
i1,...,in

Jin . . . Ji1 . (B18)

The relations between the expansion coefficients, i.e., the
n-point correlation functions, can be obtained by successive
differentiation of (B17) with respect to the source fields Ji

and setting the sources to Ji = 0 afterwards. This yields an
infinite tower of integral equations for the n-point correlation
functions. The equation obtained by differentiating (B17)
once is given by

±G−1
0;i1,i3

Gi3,i2 + 1

6
Vi1,i3,i4,i5G

(4)
i5,i4,i3,i2

= ±δi1,i2 . (B19)

This equation relates the two-point correlation function with
the four-point correlation function. The four-point correlation
function can be split into a disconnected part and a con-
nected part which on the other hand can be factorized into
a contribution coming from the two-point correlation function
and a genuine four-point contribution, the four-point vertex
function. Therefore we rewrite (B19) such that it relates the
two-point correlation function G with the four-point vertex
function �. In principle, this can be done by introducing
further generating functionals for one-particle irreducible cor-
relation functions but as we only need the connection between
correlation functions on the four-point level we will directly
introduce the relations between them.

The connected four-point correlation function G(4)
c is

given by

G
(4)
c;i1,i2,i3,i4

= G
(4)
i1,i2,i3,i4

− Gi1,i2Gi3,i4

∓Gi1,i3Gi2,i4 − Gi1,i4Gi2,i3 (B20)

and the four-point vertex function is related to G(4)
c by

�1,2,3,4 = −G−1
1,5G

−1
2,6G

−1
3,7G

−1
4,8G

(4)
c;5,6,7,8. (B21)

Here and in the following, we use the short hand notation
in = n for the collective index in. Plugging this relations into
(B19) and solving for the inverse of the two-point correlation
function, we obtain

G−1
1,2 = G−1

0;1,2 − �1,2,

�1,2 = ∓1

2
V1,2,3,4G4,3 + 1

6
V1,3,4,5G5,6G4,7G3,8�6,7,8,2.

(B22)

The self-energy �1,2 has been introduced as a short hand
notation for the contributions coming from the interaction
part. The above equation is a single equation for two unknown
correlation functions and therefore constitutes an underdeter-
mined set of equations. In the following section, we derive a
closed set of equations.

3. Functional closure of Dyson-Schwinger equations

Based on the Dyson-Schwinger equation (B22), which
relates the inverse two-point correlation function with the
four-point vertex function, we derive a closed set of func-
tional integro-differential equations. The solution of this set
of differential equations gives direct excess to the two-

point correlation function G and to the four-point vertex
function �.

We start the derivation with the identity

δG1,2

δG−1
0;3,4

= δ

δG−1
0;3,4

[
1

Z[G−1
0 ]

∫
d(φ)e−S[φ,G−1

0 ]φ2φ1

]

= 1

2
G3,4G1,2 − 1

2
G

(4)
1,2,3,4. (B23)

We have used that

δG−1
0;1,2

δG−1
0;3,4

= 1

2
(δ1,3δ2,4 ± δ1,4δ2,3). (B24)

This functional derivative identity together with the relation
between the correlation functions (B20) yields

G
(4)
1,2,3,4 = −2

δG1,2

δG−1
0;3,4

+ G1,2G3,4. (B25)

The four-point vertex function can also be written as a func-
tional derivative with respect to G−1

0 by plugging the above
identity (B25) into the definition of the four-point vertex
function (B21). The final result is

�1,2,3,4 = 2 G−1
3,5

δ�1,2

δG−1
0,5,6

G−1
6,4, (B26)

where we have used the functional chain rule

δG1,2

δG−1
0;3,4

= −G1,5
δG−1

5,6

δG−1
0;3,4

G6,2. (B27)

Up to now, all identities are only based on the general rules
of functional differentiation and are not specific to any form
of the action S[φ]. To make the connection to the considered
model (B12) we can in principle use the identity (B26) in the
Dyson-Schwinger equation (B22) to define a coupled set of
equations for a functional G[G0]. Numerically more favorable
is a universal function �[G]. Therefore, in the following,
we will use the self-energy �1,2 obtained from the Dyson-
Schwinger equation (B22) and plug this expression into the
identity (B26).

We obtain the following expression after a long but
straightforward calculation:

�1,2,3,4 = V1,2,3,4 − 1

2
V1,2,5,6G5,8G6,7�7,8,3,4

∓ 1

2
V1,3,5,6G5,8G6,7�7,8,2,4

∓ 1

2
V1,4,5,6G5,8G6,7�7,8,3,2

+ 1

2
V1,5,6,7G7,10�10,12,3,4G12,11G5,8G6,9�8,2,11,9

+ 1

3
V1,7,8,9G9,10G8,11G7,12G

−1
3,5

δ�10,2,11,12

δG−1
0,5,6

G−1
6,4.

(B28)

The last term can be simplified by noting that second order
functional derivatives commute. The following commutator
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identity can be derived using this property,[
G−1

11,5G
−1
6,12

δ�10,2,3,4

δG−1
0,5,6

− G−1
3,5G

−1
6,4

δ�10,2,11,12

δG−1
0,5,6

]

= 2G−1
11,5G

−1
6,12

δ

δG−1
0;5,6

[
G−1

3,9

δ�10,2

δG−1
0;9,13

G−1
13,4

]

− 2G−1
3,5G

−1
6,4

δ

δG−1
0;5,6

[
G−1

11,9

δ�10,2

δG−1
0;9,13

G−1
13,12

]

= −1

2
�3,α,11,12Gα,β�10,2,β,4 − 1

2
�11,4,α,12Gα,β�10,2,3,β

+ 1

2
�11,α,3,4Gα,β�10,2,β,12 + 1

2
�12,α,3,4Gα,β�10,2,11,β .

(B29)

This identity is used to rewrite the last term in (B28) such that
the four-point vertex is given by

�1,2,3,4 = V1,2,3,4 − 1

2
V1,2,5,6G5,8G6,7�7,8,3,4

∓ 1

2
V1,3,5,6G5,8G6,7�7,8,2,4

∓ 1

2
V1,4,5,6G5,8G6,7�7,8,3,2

+ 1

3
V1,5,6,7G5,8

δ�8,2,3,4

δG−1
0;6,7

+ 1

6
V1,5,6,7G7,10�10,12,3,4G12,11G5,8G6,9�8,2,11,9

± 1

6
V1,5,6,7G7,10�10,12,2,4G12,11G5,8G6,9�8,3,11,9

± 1

6
V1,5,6,7G7,10�10,12,3,2G12,11G5,8G6,9�8,4,11,9.

(B30)

Formally, (B22) and (B30) form a closed set of equations
where the four-point vertex function should be thought of
as a functional of the inverse of the noninteracting two-point
correlation function. It is much more desirable to defined the
four-point vertex function as a functional of the two-point
correlation function. This functional is obtained by using
again the functional chain rule,

δ

δG−1
0;6,7

=
(

δG9,10

δG−1
0;6,7

)
δ

δG9,10
. (B31)

With (B25) the first term in the product can be expanded to

δG9,10

δG−1
0;6,7

= 1

2
G9,aG10,bG6,cG7,d�a,b,c,d

− 1

2
G7,9G6,10 ∓ 1

2
G7,10G6,9. (B32)

This relations transforms (B30) into a definition of the
four-point vertex function as a universal functional �[G]
in the language of a functional integro-differential equation.
The complete set of closed Dyson-Schwinger equations is
given by

G−1
1,2 = G−1

0;1,2 − �1,2,

�1,2 = ∓1

2
V1,2,3,4G4,3 + 1

6
V1,3,4,5G5,6G4,7G3,8�6,7,8,2,

�1,2,3,4 = V1,2,3,4 − 1

2
V1,2,5,6G5,8G6,7�7,8,3,4

∓ 1

2
V1,3,5,6G5,8G6,7�7,8,2,4

∓ 1

2
V1,4,5,6G5,8G6,7�7,8,3,2

+ 1

6
V1,5,6,7G7,10�10,12,3,4G12,11G5,8G6,9�8,2,11,9

± 1

6
V1,5,6,7G7,10�10,12,2,4G12,11G5,8G6,9�8,3,11,9

± 1

6
V1,5,6,7G7,10�10,12,3,2G12,11G5,8G6,9�8,4,11,9

∓ 1

3
V1,5,6,7G5,8G6,9G7,10

δ�8,2,3,4

δG9,10

+ 1

6
V1,5,6,7G5,8G6,11G7,14�11,12,13,14

×G12,9G13,10
δ�8,2,3,4

δG9,10
. (B33)

The equations are diagrammatically depicted in Fig. 2.

APPENDIX C: NUMERICAL IMPLEMENTATION

In this section, we discuss the numerical implementation
for the solution of the functional integro-differential equation
in (B33) for the Z2 symmetric φ4 model in 2D, cf. (B4).
Thus, in the following, we consider model (B12) for the case
where the collective index i just consists of the labels of the
discrete lattice sites i = (xi ) of the 2D square lattice. We will
see in the following that adding additional field labels to the
collective index i in principle does not change the algorithm
but complicates the already complex bookkeeping of indices
in the algorithm.

For model (12) G−1
0;i,j = −�i,j + m2δi,j , where � is the

discretized Laplace operator in D dimensions and the fully
symmetric tensor is given by the on-site interaction Vi,j,k,l =
λ δi,j δi,kδi,l . We consider the construction of the universal
functional �[G] through the solution of the vertex equation in
(B33) in momentum space. In the following, the momentum
variables are denoted by pi = i and the linear combination
of momentum variables by, e.g., pi + pj = i + j . In this
representation, the integro-differential equation in (B33) can
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be written as

�1,2,3,4 = λδ1+2+3,−4 − λ

2

∑
5,6,7

G5,6
[
G1+2−5,7�−7,−6,3,4 + G1+3−5,7�−7,−6,2,4 + G1+4−5,7�−7,−6,3,2

]

+λ

6

∑
5,...,12

G1−5−7,11G5,6G7,8G9,10
[
�−6,2,−9,−8�−11,−10,3,4 + �−6,3,−9,−8�−11,−10,2,4 + �−6,4,−9,−8�−11,−10,3,2

]

−λ

3

∑
5,...,9

G1−5−6,7G5,8G6,9
δ�−7,2,3,4

δG8,9
+ λ

6

∑
5,...,13

G1−5−6,7G5,8G6,9�−8,−11,−13,−9G10,11G12,13
δ�−7,2,3,4

δG10,12
. (C1)

The universal functional �[G] has to be constructed as the
solution of (C1) for arbitrary G ∈ RL×L, i.e., not restricted
to the subspace of physical correlation functions which sat-
isfy translational symmetry. Thus, going into the momentum
representation does not diagonalize the two-point correla-
tion function, G(1, 2) �= G(1)δ1,−2 and also �(1, 2, 3, 4) �=
�(1, 2, 3,−1 − 2 − 3)δ4,−1−2−3. Only the evaluation of �[G]
in the physical subspace of translational invariant solutions
will give a translational invariant four-point vertex function
�(1, 2, 3, 4) = �(1, 2, 3,−1 − 2 − 3)δ4,−1−2−3.

We show in the following that it is possible to construct
the solution in the absence of translational symmetry and si-
multaneously evaluate the solution �[G] only in the restricted
physical subspace of translational invariant G.

1. Homotopy analysis method

In this section, the semianalytic HAM is used to solve the
functional integro-differential equation (C1). As discussed in
Sec. III the starting point of the HAM is the construction of
the homotopy

(1 − q )L[φ[G, q] − u�,0[G]] + qc0N [φ[G, q]] = 0. (C2)

N [�[G]] = 0 is the nonlinear differential operator defin-
ing (C1) and L is an arbitrary linear operator with the

property L[0] = 0. The homotopy (C2) includes the defor-
mation parameter q ∈ [0, 1], which deforms the solution of
L, φ[G, 0] = u�,0[G], at q = 0 to the solution of the dif-
ferential equation (C1), φ[G, 1] = �[G], at q = 1. u�,0[G]
is the initial guess for the solution of N [�[G]] = 0. The
convergence control parameter c0 controls the rate at which
the deformation takes place. The HAM tries to find the
solution of (C2) through a Taylor series expansion in q,
i.e., φ[G, q] = u�,0[G] + ∑

m=1 u�,m[G] qm. The expansion
coefficients are given by u�,m[G] = φ(m)[G, q = 0]/m! and
can be obtained by the mth derivative of (C2) with respect to
q. Therefore the HAM gives a series solution of the functional
integro-differential equation (C1) in terms of the deformation
coefficients u�,m[G],

�[G] = u�,0[G] +
∑
m=1

u�,m[G]. (C3)

In the following, we use the easiest possible linear operator
L[φ[G, q] − u�,0[G]] = φ[G, q] − u�,0[G], which we ulti-
mately use in the final calculations. More complicated linear
operators, such as the ladder summation, will be left to future
work. Differentiating (C1) m times with respect to q and
setting q = 0 gives the mth-order deformation equation

u�,m(p) = χmu�,m−1(p) − c0

⎡
⎣u�,m−1(p) − λδ(p)χ̃m + λ

2

∑
c

∑
5,6,7

K (1)
c (pc, 5, 6, 7)u�,m−1(−7,−6, pc̄ )

− λ

6

∑
c

∑
5,...,11

K (2)
c (pc, 5, . . . , 11)

m−1∑
k=0

u�,k (−11,−10, pc̄ ) u�,m−1−k (−6, pc,−9,−8)

+ λ

3

∑
5,...,9

K (3)(1, 5, . . . , 9)
δu�,m−1(−7, 2, 3, 4)

δG8,9

− λ

6

∑
5,...,13

K (4)(1, 5, . . . , 13)
m−1∑

k

u�,m−1−k (−8,−11,−13,−9)
δu�,k (−7, 2, 3, 4)

δG10,12

⎤
⎦. (C4)

We have introduced the following notations: (1) u�,m(p)
denotes the deformation u�,m[G] at external variables p =
(1, 2, 3, 4). (2) The sum

∑
c runs over the three possi-

ble permutations of external legs, cf. Eq. (C1). We intro-
duce the following abbreviations for the permutations: s
= {1,2,3,4}, t={1,3,2,4}, u={1,4,3,2}. (3) The contribu-
tions coming from G in (C1) are collected in the kernel

functions K (i)
c , i ∈ {1, 2} and K (3), K (4). The various ker-

nel functions are explicitly summarized in Appendix D.
(4) The projection of the 4D vector of external variables
p onto a 2D subspace and its complement is denoted
by pc, pc̄, respectively: pc=s = (1, 2), pc̄=s̄ = (3, 4); pc=t =
(1, 3), pc̄=t̄ = (2, 4); pc=u = (1, 4), pc̄=ū = (3, 2). (5) The
projection of the 4D vector of external variables p onto a
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D dimensional vector is denoted by pc: pc=s = 2; pc=t =
3; pc=u = 4. (6) χm = 1 − δm,1 and χ̃m = δm,1. (7) δ(p) =
δ4,−1−2−3 denotes the momentum conservation at the bare
vertex.

The equation for the m-th-order deformation equation is
the starting point for the tree expansion developed in Ref. [17]
for a truncated functional �[G]. In the next section, we will
summarize the main ideas of the tree expansion and extend
these ideas to account for the functional derivatives in (C4).

2. Tree expansion

The mth-order deformation equation (C4) gives the mth
term in the series solution (C3) of the HAM. In order to
calculate the mth deformation, all previous deformations and
their functional derivatives have to be known. Neglecting the
functional dependence on the unknown G for a moment,
already the full storage of a single deformation is a formidable
task as the deformations themselves depend on four external
indices, which are D-dimensional vectors, i.e., u�,m(p) is a
rank-4D tensor. Including the functional derivatives seems
to make a numerical calculation of (C4) an impossible task.
The tree expansion developed in Ref. [17] solves this ap-
parently impossible task by a stochastic interpretation. The
basic idea of the tree expansion is that in order to calculate
the mth-order deformation with (C4), (C4) is used again on
the right-hand side to get rid off the explicit dependence of
all deformations and functional derivatives with k < m. This
procedure is recursively repeated until all deformations u�,m

with m > 0 are eliminated on the right-hand side. The result
is a complicated expression, the tree expansion, which only
depends explicitly on the deformation u�,0. We will develop
a diagrammatic language which captures all possible terms in
the tree expansion and introduce a Monte Carlo algorithm to
stochastically sum all terms. Each term in the tree expansion
will be represented in the diagrammatic language of rooted
trees which will be introduced in the following. Therefore the
tree expansion for u�,m is given by the sum of all possible
rooted tree diagrams, which can be constructed with respect
to a certain fixed set of rules.

We start the discussion with the rooted tree diagram in
Fig. 11(a). It corresponds to a single term in the tree expan-
sion. For the moment, we are neglecting the labeling of the
rooted tree and consider only the overall structure of the tree
and its corresponding analytic expression. After the general
structure is introduced, we discuss its labeling, i.e., how
momentum variables and additional labels, e.g., external leg
permutations, are taken into account. The rooted tree and the
structure of the corresponding analytic expression is obtained
from the following procedure.

The uppermost circle, the root of the rooted tree, corre-
sponds to the left-hand side of (C4). In the case of Fig. 11(a),
u�,3 should be expanded. The branch, indicated by a straight
line, growing from the root leading to two leafs, represented
by the circles, diagrammatically depicts that u�,3 is expanded
in the first stage with respect to the third line in (C4), i.e.,

K (2)
c

m−1∑
k=0

u�,ku�,m−1−k. (C5)

(a) (b) (c) (d)

FIG. 11. Examples of rooted tree diagrams, which are con-
structed by expanding the HAM in the tree expansion. The different
diagrammatic elements are explained in the main text and listed in
Fig. 12. The rooted tree diagrams in (a) and (d) do not include func-
tional derivatives. The rooted trees in (b) and (c) include functional
derivatives, which are indicated by the arc lines closing on a branch.
The additional red line is introduced for the bookkeeping of excess
momenta carried by the functional derivative. The different stages in
the tree expansion leading to the rooted trees in (a)–(d) are explained
in the main text.

Thus, the branch corresponds to the integral kernel K (2)
c and

the two leafs corresponds to the product of deformations
u�,ku�,m−1−k . A single term in the sum over deformations
is chosen. In Fig. 11(a), k = 1 has been picked leading to
u�,1u�,1. In the second stage, the above procedure is repeated
by considering each leaf as a new individual root. In case of
Fig. 11(a), the left leaf has been expanded with respect to the
second line in (C4), i.e.,

K (1)
c u�,0, (C6)

and the right leaf corresponds to the first line, i.e.,

χ1u�,0 − c0[u�,0 − λχ̃1] = −c0[u�,0 − λ]. (C7)

For that case, there is no contribution from an integral kernel.
This is indicated by drawing the leaf as a star instead of a
circle. Gathering all contributions, the structure of the analytic
expression corresponding to the rooted tree in the example of
Fig. 11(a) is

K (2)
c K (1)

c u�,0(−c0[u�,0 − λ]). (C8)

This is a single term in the tree expansion and illustrates
that the rooted trees depend explicitly only on the kernel
functions and on the initial guess u�,0, which is the starting
point of the series solution (C3). The discussion also shows
that in (C4) there are five different possibilities to expand
u�,m, which lead to the five different branch types. All branch
types with their respective leafs are shown in Fig. 12. In the
diagrammatic expressions the branch type is determined by
the leafs on the lower end of the branch. The branch type in
Figs. 12(d) and 12(e) correspond to the expansion with respect
to the functional derivative terms. The leafs with functional
derivatives are drawn by boxes and the additional dangling
line is introduced. It indicates the action of the functional
derivative on a consecutive element in the rooted tree.

On the basis of Fig. 11(c), we discuss the structure of
the analytic expression corresponding to a rooted tree with
functional derivatives. In the first stage of the tree expansion,
the root u�,4 is expanded with respect to the branch type
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(a) (b) (c) d) (e)

FIG. 12. The possible branch types of the rooted trees. Each
branch type corresponds to a single line on the right-hand side of
(C4). The straight line, the branch itself, represents the corresponding
kernel function K (i )

c , i ∈ {1, 2} or K (i ), i ∈ {3, 4} for the respective
branch type. The star, circle, and box indicate the leaf grown from
the branch. They represent the contribution from the deformation
u�,m for the specific branch type. The star contributes no integration
variable to the tree, cf. first line in (C4). The box corresponds to a leaf
at which a functional derivative is introduced. The branch type can
be read off from the combination of leafs grown on the lower end
of the branch. The leaf types (c) and (e) consists of two individual
single leafs because each can be individually expanded further in the
tree expansion. The dangling lines on the leafs of (d) and (e) are
representing the not yet completed action of the functional derivative
on a consecutive branch.

Fig. 12(d), which includes a single leaf with a functional
derivative. The structure of the analytic expression in this
expansion stage is given by

K (3) δu�,3

δG
. (C9)

In the next stage, u�,3 is expanded with respect to the branch
type Fig. 12(e). This gives the analytic expression

K (3) δ

δG

(
K (4) δu�,1

δG
u�,1

)
. (C10)

Due to the product rule of functional derivatives there are three
possibilities for the action of the outer functional derivative.
The first possibility is that the functional derivative is acting
on the kernel function of the second expansion stage, i.e., the
branch directly after the deformation u�,3 is differentiated.
The second possibility is that the outer derivative is acting on
the leaf with the functional derivative and therefore a second-
order functional derivative is produced. The third possibility
is that it acts on the deformation u�,1. From Fig. 11(c), we
see that the dangling line is completed to an arc line, which
indicates that the derivative introduced in the first stage of the
tree expansion is differentiating a branch grown after the leaf
without a functional derivative. Therefore the third possibility
is represented by the rooted tree in Fig. 11(c) and the analytic
expression for the rooted tree in this expansion stage is

K (3)K (4) δu�,1

δG

δu�,1

δG
. (C11)

In the next two expansion stages, the deformations u�,1 are
further expanded. In both cases with respect to the branch type
Fig. 12(b). This gives the analytic expression

K (3)K (4) δ

δG

(
K (1)

c u�,0
) δ

δG

(
K (1)

c u�,0
)
. (C12)

Here and in the following, we consider only initial guesses
u�,0, which have no explicit G dependence, i.e.,

δu�,0

δG
= 0. (C13)

Taking this into account the structure of the analytic expres-
sion corresponding to the fully grown root tree in Fig. 11(c) is
given by

K (3)K (4) δK
(1)
c

δG
u�,0

δK (1)
c

δG
u�,0. (C14)

From this discussion, we see that functional derivatives can
only act on the branches of a fully grown rooted tree. Never-
theless, in intermediate stages of the tree expansion the func-
tional derivatives can act on the deformations with u�,m, m >

0. These have to be expanded further in later stages of the tree
expansion and therefore the analytic expression correspond-
ing to a fully grown rooted tree involves only u�,0, kernel
functions and functional derivatives of the kernel functions.
Moreover, as we see from the above discussion the derivatives
can only act on branches, which are grown from a leaf consec-
utive to a functional derivative leaf. Examples of valid rooted
trees with functional derivatives are shown in Figs. 11(b) and
11(c). In these fully grown rooted trees, the dangling lines,
which indicate the action of the functional derivative form
closed arc lines connecting a functional derivative leaf to a
branch. This denotes which branch is differentiated by the
functional derivative. We will see later that each branch can
only be differentiated a finite amount of times and therefore
all possible functional derivatives on all possible branches can
be tabulated, cf. Appendix E.

We have introduced the general structure of the rooted
trees in the framework of the tree expansion on the basis
of the examples in Fig. 11. In the following, we discuss the
labeling and the specific analytic expressions of the diagram-
matic elements in the rooted tree diagrams. The universal
functional �[G] is a functional with respect to an arbitrary
G ∈ RL×L, which is not necessary defined inside the physical,
translational invariant subspace. Nevertheless, we finally want
to evaluate �[G] in the subspace of physical G. We showed
that �[G] can be constructed by drawing all possible rooted
tree diagrams in the tree expansion of the HAM. Therefore,
in order to evaluate �[G] at a physical G, the diagrammatic
elements of the rooted tree diagrams, i.e., the kernel functions
and their derivatives have to be build up from the physical,
translational invariant two-point correlation functions. In the
following, we show how this leads to the correct labeling of
the rooted tree diagrams.

Consider the rooted tree diagram in the tree expansion for
u�,3 depicted in Fig. 11(d). We fix the external momentum of
the root, u�,3(p), to be p = (p1, p2, p3,−p1 − p2 − p3), i.e.,
the rooted tree diagram is evaluated inside the translational
invariant subspace. The first stage in the tree expansion for
the rooted tree in Fig. 11(d) is graphically illustrated in
Fig. 13(a). In the example, the expansion is performed in
the t-permutation channel, cf. (C4). The analytic expression
corresponding to this expansion stage is diagrammatically
illustrated on the right-hand side of the arrow in Fig. 13(a)
and can be read off as∑

5,6,7

K
(1)
c=t (pc=t , 5, 6, 7)u�,2(−7,−6, pc̄=t̄ )

= G5,6G1+3−5,7 u�,2(−7,−6, 2, 4)

G=Gphys= G5G1+3−5u�,2(p′). (C15)

195104-14



FULL AND UNBIASED SOLUTION OF THE DYSON- … PHYSICAL REVIEW B 98, 195104 (2018)

(a)

u2

u1 u0

u2 u1

u0

p5

p6

p7

p8

p9

p10

p11

(b)

u3

p1

p2 p3

p4

u3

u2 p1

p2p3

p4

u2

p5
p6

p7p1+p3−p5

= =

p1−p5−p7

p1

p2 p3

p4

p1

p2

p3

p4

FIG. 13. Two consecutive stages of expansions in the tree expansion leading to the full rooted tree in Fig. 11(d). The two-point correlation
functions contribution to the kernel are not yet evaluated in the physical, translational invariant subspace. Therefore G still depends on two
momentum variables, which are indicated by two arrows on top of the G lines. The new external momentum carried by the leafs is determined
by the kernel functions in (C4) and the specific random permutation of external legs picked for this expansion stage. Diagrammatically, the
contributing kernel functions together with the respective deformations are depicted on the right-hand side of the arrow. (a) The deformation
u�,3 is expanded with respect to the second line in (C4) leading to a new leaf, u�,2. The branch corresponds to the kernel function depending on
two two-point correlation functions, which lead to a evaluation of the lower-order deformation at a new external momentum. In this example,
the t channel is considered. (b) In the next expansion stage, the leaf u�,2 is expanded further with respect to the third line in (C4) in the u
permutation. In this case, the kernel function depends on four two-point correlation functions and the leafs corresponds to two lower order
deformations each evaluated at a new external momentum.

Here and in the following, summation over repeated indices
is assumed implicitly. Obviously, the kernel function can be
evaluated in the physical subspace of translational invariant
G, Gphys,1,2 = G1δ1,−2. Consequently, the new external mo-
mentum for u�,2(p′) is p′ = (p′

1, p
′
2, p

′
3, p

′
4) = (p1 + p3 −

p5, p5, p2,−p1 − p2 − p3) and therefore momentum conser-
vation is fulfilled and the procedure of the tree expansion can
be recursively repeated without leaving the physical subspace.

The same holds for the expansion with respect to the
branch type Fig. 12(c). For the example of Fig. 11(d), the
second stage of the tree expansion is illustrated in Fig. 13(b).
In this case, assuming that the u permutation has been chosen,∑

5,...,11

K (2)
u (p′

c=u, 5, . . . , 11)u�,1(−11,−10, p′
c̄=ū)

× u�,0(−6, pc=u,−9,−8)

= G1′−5−7,11G5,6G7,8G9,10u�,1(−11,−10, 3′, 2′)

× u�,0(−6, 4′,−9,−8)

G=Gphys= G5G6G−4′−5+6G1′+4′−6u�,0(p′′)u�,1(p′′′). (C16)

The external momentum variables for the leafs u�,0(p′′) and
u�,1(p′′′) are after the evaluation of G in the physical sub-
space, p′′ = (p5, p

′
4,−p6,−p′

4 − p5 + p6) and p′′′ = (p′
1 +

p′
4 − p6, p6, p

′
3, p

′
2). Therefore the evaluation of the defor-

mations u�,0, u�,1 is again in the physical subspace. We are
choosing the convention that the leaf on the left-hand side of
the grown branch of type Fig. 12(c) corresponds to the defor-
mation depending on two external variables. In the example,
the deformation u�,1, depending on two external variables,
is represented by the left leaf, whereas u�,0, depending on
one external variables, is represented by the right leaf, cf.
Fig. 13(b).

In conclusion, we see from this example that there are no
further complications in evaluating the rooted tree diagram
at G = Gphys if the diagram contains no elements with func-
tional derivatives. In this case, the only information needed in
each expansion stage is (1) the external momentum variables
of the leaf which is expanded, (2) the branch type into which
the leaf is expanded, and (3) the internal momentum variables

over which is integrated. This provides enough information to
compute in each expansion stage the new external momentum
variables for the newly grown leafs and therefore the tree
expansion can be carried out recursively.

Rooted tree diagrams with elements of type Figs. 12(d)
and 12(e) need some further consideration. As an example
consider Fig. 11(b), which contains a functional derivative.

As in the previous example, the rooted tree is evaluated
in the physical subspace by fixing the external momentum of
the root to be p = (p1, p2, p3,−p1 − p2 − p3) and evaluate
the kernel function corresponding to the branch of the cor-
responding branch type, Fig. 12(d), at translational invariant
G.This is illustrated in Fig. 14(a).

∑
5,...,9

K (3)(1, 5, . . . , 9)
δu�,1(−7, 2, 3, 4)

δG8,9

= G1−5−6,7G5,8G6,9
δu�,1(−7, 2, 3,−1−2−3)

δG8,9

G=Gphys= G1−5−6G5G6
δu�,1(p′)
δG−5,−6

. (C17)

The additional arrowheads on the two-point correlation func-
tion lines in Fig. 14(a) are indicating the connection to the
functional derivative. Note that only the G lines contributing
to the kernel function are evaluated in the physical subspace.
The functional derivative still depends on two momentum
variables. We will show later how this has to be understood
by considering the differentiation of a kernel function. The G

lines without additional arrowheads are connected to the de-
formation such that the momentum carried by this line is con-
tributing to the new external momentum of the newly grown
leaf. In contrast to the previous examples without functional
derivatives, the external momentum p′ = (p′

1, p
′
2, p

′
3, p

′
4) =

(1−5−6, 2, 3,−1−2−3) for u�,1 does not automatically sat-
isfy momentum conservation after the kernel function has
been evaluated in the physical subspace of translational invari-
ant G. There is an excess momentum carried by the functional
derivative. Only if this excess momentum is taken correctly
into account the momentum variables sum up to zero. The
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FIG. 14. Two consecutive stages in the tree expansion leading to the full rooted tree in Fig. 11(c). In this case both expansion stages involve
functional derivatives. In order to indicate the correct momentum conservation (C19), the legs of the leaf corresponding to the momentum
variables of the functional derivatives carry additional arrows. (a) The first stage of the expansion of u�,4 is carried out with respect to the
fourth line in (C4). The dangling line on the leaf indicates the functional derivative whereas the red line indicates the bookkeeping of excess
momentum carried by the derivative as discussed in the main text. (b) In the second stage of the tree expansion, u�,3 is expanded with respect
to the fifth line. The dangling functional derivative is not directly acting on the newly grown branch. Therefore the red bookkeeping line goes
straight through the leaf. In the diagrammatic expansion for the kernel, this is indicated as an additional derivative for the leaf on the lower
right-hand side, cf. the fifth line in (C4), which includes only the derivative of the upper leaf.

correct momentum conservation at the functional derivative
terms can be found from the following argument.

The functional derivative of the four-point vertex function
with respect to G gives a term which account for correlation
functions on the six-point level. We write this as

O�(6) (i1, i2, i3, i4; i5, i6)

≡ δ�(i1, i2, i3, i4)

δG(i5, i6)

= δ�(p1, p2, p3, p4)

δG(p5, p6)
e−i

∑4
n=1 pninei

∑6
n=5 pnin . (C18)

In the subspace of physical correlation functions, O�(6) de-
pends only on the relative distances between the lattice sites
i1, . . . , i6. Therefore, in order to evaluate rooted trees with
functional derivatives in the translational invariant subspace,
the correct momentum conservation at the functional deriva-
tive is δ(p1 + p2 + p3 + p4 − p5 − p6). We will also need
the more general result for the momentum conservation with
multiple functional derivatives

O�(4+N ) (p1, p2, p3, p4; l0, l1, . . . , l2N, l2N−1)

= δ�(p1, p2, p3, p4)

δG(l0, l1) . . . G(l2N, l2N−1)

× δ

(
p1 + p2 + p3 + p4 −

2N−1∑
n=0

ln

)
. (C19)

The functional derivative terms explicitly break momentum
conservation on the four-point level but on a higher correlation
function level it must always be satisfied with respect to the
extended momentum conservation rule (C19). The additional
arrowheads on the G lines, cf. Fig. 14(a), can also be viewed
as indicating that these momenta are contributing with a
minus sign in the extended momentum conservation rule. This
consideration shows that (C17) is a valid projection into the
physical subspace and the tree expansion can now be carried
on if the momentum conservation rule (C19) is taken into
account.

Diagrammatically the excess momenta carried by the func-
tional derivatives are depicted as the previously introduced
additional arcs which originate from leafs with functional
derivatives and close on a branch, cf. Fig. 11(c). We show in
the following that once an arc closes on a branch, i.e., after the
functional derivative acted on a kernel function, momentum
conservation will be automatically restored on the four-point
level.

We consider the example in Fig. 11(c). The analytic expres-
sion obtained in the first stage of the expansion of u�,4 at fixed
external momentum variables compatible with translational
invariance p = (p1, p2, p3,−p1 − p2 − p3) is already given
in (C17) and illustrated in Fig. 14(a). In the second stage in
Fig. 11(c), the leaf u�,3 is further expanded with respect to the
branch of type Fig. 12(e). This expansion process is illustrated
in Fig. 14(b). The external momentum variables for u�,3(p′)
are given by p′ = (p′

1, p
′
2, p

′
3, p

′
4) = (1−5−6, 2, 3,−1−2−

3). The functional derivative with respect to the momentum
variable (p′

5, p
′
6) = (−p5,−p6) does not act directly on the

branch grown after the leaf with the functional derivative
u�,3, but it acts on a branch grown from a consecutive leaf.
If the functional derivative would act on the branch grown
from the functional derivative leaf, represented by the box,
it would yield a second-order functional derivative. However,
from Fig. 11(c), we see that it acts on the branch grown from
the leaf without functional derivative. Therefore we obtain an
expression with two first order functional derivatives, which
is diagrammatically depicted in Fig. 14(b). The functional
derivative with respect to G(p10, p12) originates from u�,1,
i.e., from the current branch type, whereas the derivative with
respect to G(p′

5, p
′
6) originates from u�,3. We consider the

extended momentum conservation rule (C19). The analytic
expression corresponding to this expansion step is given by

∑
5,...,13

K (4)(1, 5, . . . , 13)
δu�,1(−8,−11,−13,−9)

G5′,6′

× δu�,1(−7, 2′, 3′, 4′)
δG10,12
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p6p5

=

p5 p6

δu1

δG

u1

u0

u0

p5 p6
p1

p2 p3

p4p1

p2
p3

p4

FIG. 15. A functional derivative is acting on a branch. In this
stage of the tree expansion, the grown branch corresponds to the
second line in (C4). Therefore the functional derivative can act on
one of the two G lines, which is equivalent to cutting out one of them.
The momentum carried by the functional derivative is assigned to the
open ends produced in that way.

= G1′−5−6,7G10,11G12,13G5,8G6,9
δu�,1(−7, 2′, 3′, 4′)

δG10,12

× δu�,1(−8,−11,−13,−9)

δG5′,6′

G=Gphys= G1′−7−8G9G1′+2′+3′+4′−7−8−9G7G8

×δu�,1(7, 9, 1′ + 2′ + 3′ + 4′ − 7 − 8 − 9, 8)

δG5′,6′

×δu�,1(1′−7−8, 2′, 3′, 4′)
δG9,1′+2′+3′+4′−7−8−9

, (C20)

where we have established the generalized momentum con-
servation rule for p12 = p′

1 + p′
2 + p′

3 + p′
4 − p5 − p6 − p10

and renamed in the last equality the integration variables in
order to distinguish them from the integration variables of
the previous expansion stage. This example shows that even
though the functional derivative with respect to G(5′, 6′) only
acts on a branch consecutive to the leaf u�,1 which for itself
is not a leaf with a functional derivative the information
about the excess momentum running over this leaf has to
be stored. Therefore an additional line through the rooted
tree is drawn, which indicates that the excess momentum has
to be accounted for on the intermediate leafs by using the
extended momentum conservation (C19). The excess momen-
tum is removed if the arc line meets the additional line. This
additional diagrammatic element is shown as the red line in
Figs. 11(b), 11(c), 14(a), and 14(b).

Finally, in the next two expansion stages, the functional
derivatives act on the branches. The functional derivative
acting on a branch can be graphically depicted as just cutting
out one of the two-point correlation function lines. This is
shown in Fig. 15 for a particular example. It corresponds to
the last expansion stage in Fig. 11(c) where the right leaf
u�,1 is expanded. It is assumed that the t-permutation chan-
nel is picked. The external momentum of the leaf u�,1(p′′)
is p′′ = (7, 9, 1′ + 2′ + 3′ + 4′ − 7 − 8 − 9, 8). The analytic
expression for the differentiated branch is given by(

δ

δG(5′, 6′)
G5,6G1+3−5,7

)
u�,0(−6,−7, 2′′, 4′′)

G=Gphys= G1′′+3′′−5′u�,0(p′′′). (C21)

The new external variable for the leaf grown from the differ-
entiated branch u�,0(p′′′) is p′′′ = (−6′, 1′′+3′′−10, 2′′, 4′′).
Inserting the expression for the primed variables we find that
u�,0 is evaluated at p′′′ = (6,−6−8−9, 9, 8). Therefore, after
the functional derivative has acted on the branch, the excess
momentum is annihilated and momentum conservation at the
four-point level is restored.

The discussion of the examples in Fig. 11 provides enough
information to write down a set of rules to construct and label
all possible rooted trees. A second set of rules assigns to each
diagrammatic element in a rooted tree an analytic weight. This
makes it possible to design a Monte Carlo algorithm in the
space of rooted trees which directly evaluates �[G] in the
subspace of translational invariant G. In the following, we
first write down the set of rules to construct and label a ran-
dom rooted tree. The complete list of diagrammatic elements
with their respective weights are tabulated in Appendixes D
and E.

We would also like to note that the above examples only
discuss the case where the physical subspace is defined by
translational invariance. With the same line of arguments it
is possible to obtain the construction and evaluation of �[G]
in a physical subspace for general symmetries defined by the
collective index space, cf. (B12) and (B33).

The HAM gives a series solution for �[G], which sums
over all deformations u�,m. Thus rooted trees of arbitrary ex-
pansion order m have to be considered. The rules to generate
a random rooted tree in the tree expansion of an arbitrary u�,m

with external momentum variables p are. (1) Grow a random
branch from the root, i.e., select the expansion of the root
into one of the branch types in Fig. 12. For this choice, we
assign the labels (k,b,d). The label k stands for the number of
leafs grown from the branch, k=1, 2. The label b = bare, bold
for whether the analytic expression for the branch involves
contributions from two-point correlation functions and d =
True, False whether one of the leafs is a functional derivative.
Thus the respective labeling for the branch types in Fig. 12
are (a) (1,bare,False), (b) (1,bold,False), (c) (2,bold,False), (d)
(1,bold,True), and (e) (2,bold,True). The probability to select
the chosen (k,b,d) is stored in pa priori in order to obtain the
a priori probability for the fully grown rooted tree which
is needed for the Monte Carlo process. (2) According to
the randomly picked branch type add the respective number
of leafs with their given type to the tree. If a branch type
with k=2 was picked one term in the sum

∑m−1
i=0 has to be

chosen randomly, cf. (C4), and the probability for that choice
is multiplied to pa priori. If a branch type with b=bold and d
= False was pick one channel of external leg permutations
in the sum

∑
c has to be chosen randomly, cf. (C4), and the

probability for that choice is multiplied to pa priori. Depending
on the branch type new momentum variables have to be
seeded randomly. These are D-dimensional random vectors
in the first Brillouin zone. The number of new momentum
variables for the possible types are: (a) 0, (b) 1, (c) 2, (d) 2, and
(e) 3. The probability for the choice of momentum variables
is multiplied to pa priori.

For the branch types (c) and (e), there are two newly grown
leafs. For (c), there are two new momentum variables. We
assign the left leaf to represent the deformation evaluated at
two external momentum variables and the right leaf depending
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on only one. We choose the convention that the first of the two
momentum variables is assigned to the left leaf whereas the
right leaf depends on both variables.

For (e), there are three momentum variables. The leaf
with the functional derivative depends only on two of the
three randomly seeded momentum variables. We choose the
convention that the first two of these variables are assigned to
the functional derivative leaf and the right leaf depends on all
three variables.

(3) For each of the new leafs, u�,m′ , if m′ > 0 consider this
leaf as a new root and go to 2. If m′ = 0, a new branch can not
be grown.

(4) Start a search through the fully grown rooted tree.
For each functional derivative encountered, choose randomly
a branch consecutive to the functional derivative leaf. This
branch will be differentiated by the functional derivative and
therefore the additional bookkeeping line is established. The
probability for each choice is multiplied to pa priori.

(5) Start a search through the fully grown rooted tree. If a
differentiated branch is encountered pick randomly a term in
the respective list of differentiated kernel functions, cf. Ap-
pendix E. Correspondingly, reduce the number of momentum
variables of the differentiated branch. The probability for each
choice is multiplied to pa priori.

(6) Start a search through the fully grown rooted tree. For
each expansion stage, determine the new external momentum
variables of the leafs grown in this expansion stage. This is
done with respect to the extended momentum conservation
rule (C19), cf. also Appendixes D and E.

(7) Start a search through the fully grown rooted tree.
As the momentum variables are now correctly assigned the
complete weight of the rooted tree can be determined by
multiplying the contributions from the kernel functions and
from u�,0 at each expansion into a variable wtree.

Therefore, after having applied the above rules, a randomly
grown rooted tree is obtained with a corresponding weight
wtree. Together with the a priori generation probability pa priori

this is sufficient to perform a direct sampling of the tree
expansion by the rules of detailed balance. Therefore we
obtain a stochastic summation of the HAM series solution for
the functional integro-differential equation defining �[G].

We find it convenient to extend the direct sampling of
diagram topologies with a Markov chain sampling of the
integration variables. For that, we randomly pick a single
integration variable of a rooted tree and suggest to update
this integration variable by adding a random shift in that
momentum variable. After the integration variable has been
changed, we start from step 2 in the above set of rules to
generate a new weight for the tree with the new integra-
tion variable. Together with detailed balance, this is used to

perform a Markov chain sampling of the integration variables.
In order to achieve good acceptance ratios for the direct
sampling of rooted tree topologies, we restrict the randomly
seeded integration variables in each stage of the tree expansion
to belong to a small region around zero momentum. Therefore
we rely on the Markov chain sampling of integration variables
to obtain the integration over the complete first Brillouin
zone. This leads to sampling problems for higher deformation
orders because the sampling can get stuck in a random rooted
tree topology. A Markov chain Monte Carlo algorithm has
to be used, which also samples diagram topologies and not
only integration variables. Therefore a better starting point to
include the functional derivatives, compared to randomly sug-
gesting a rooted tree, is the algorithm developed in Ref. [17].

APPENDIX D: KERNEL FUNCTIONS

In this section, we list the analytic expressions for the
different branch types and the new external momentum vari-
ables for the corresponding leafs grown from these branches.
The analytic expressions give directly the projection into the
physical subspace of translational invariant G. We denote
the external momentum variables at the leaf from which the
branch is grown as p = (p1, p2, p3, p4) and assume that this
leaf corresponds to a deformation u�,m. We again use the
shorthand notation pi = i and pi + pj = i + j and implicitly
assume summation over repeated indices.

Figure 12 lists all possible branch types where each branch
type accounts for a single line in (C4). Furthermore, we
consider functional derivatives in intermediate stages which
directly act on the leafs and which have to be accounted for
by the momentum conservation rule (C19). These additional
functional derivatives are highlighted by the momentum labels
li . Diagrammatically the branch types are depicted in Fig. 16.
The analytic expressions for the different branch types, in-
cluding the intermediate functional derivatives, are given by
(a) the analytic expression for the branch type in Fig. 12(a):

(i) m �= 1,

(1 − c0)
δpu�,m−1(1, 2, 3, 4)

δG(l0, l1) . . . δG(l2p−2, l2p−1)
, (D1)

(ii) m = 1,

−c0(u0(1, 2, 3, 4) − λ). (D2)

In this case, by definition, there are no intermediate functional
derivatives, which directly act on the leaf because δu�,0

δG
= 0.

(2) The analytic expression for the branch type in
Fig. 12(b): (i) c = s,

K (1)
c=s (pc=s , 5, 6, 7) = G(1 + 2 − 5, 7)G(5, 6). (D3)

Therefore, at G(1, 2) = G(1)δ1,−2,

∑
5,6,7

K (1)
c=s (pc=s , 5, 6, 7)

δpu�,m−1(−7,−6, pc̄=s̄ )

δG(l0, l1) . . . δG(l2p−2, l2p−1)

G=Gphys=
∑

5

G(5)G(1+2−5)
δpu�,m−1(1+2−5, 5, 3, 4)

δG(l0, l1) . . . δG(l2p−2, l2p−1)
. (D4)

(ii) c = t, 2 ↔ 3; (iii) c = u, 2 ↔ 4.
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p1

p2

p3

p4

p5

(b)

;
p1

p2 p3

p4

δpum

δGp

. . .

l0 l2p−1

l0

l2p−1
...

δpum−1

δGp

(c)

;
p1

p2 p3

p4

δpum

δGp

. . .

l0 l2p−1

p2

p1

p3

p4

δquk

δGq

δrus

δGr

...

l0

l2q−1

. . .

l2q

l2p−1

(d)

p1

p2 p3

p4

;
p1−p5−p6

(e)

;
p5

p6

p1

p2 p3

p4

δpum

δGp

. . .

l0 l2p−1

p1

p2 p3

p4

δpum

δGp

. . .

l0 l2p−1

p5 p6

. . .
l0 l2p−1 . . .

p3

p4

p2

p1

p1−p5−p6

l2q l2p−1

x

...

l0

l2q−1

δp+1um−1

δGδGp

p5

p9

x

p1 − p5 − x

p10

(a)

;
p1

p2 p3

p4

δpum

δGp

. . .

l0 l2p−1

p1

p2 p3

p4. . .

l0 l2p−1

δpum−1

δGp

p1 + p2 − p5

x = −p2 − p5 + p9 +
2p−1

i=2q

li

δr+1uk

δGδGr

δqus

δGq

x =
4

i=1

pi − p5 − p6 − p10 −
2p−1

i=2q

li

FIG. 16. The diagrammatic expressions for the kernel functions corresponding to each branch type in Fig. 12 in the presence of p

intermediate derivatives. In the diagrammatic expressions, the lines correspond to two-point correlation functions with momentum labeled
by the arrow. The analytic expression for the contributing kernel function for each branch type can be read off by standard diagrammatic
rules. The new external momentum at the newly grown leafs can also be read off by standard diagrammatic rules and taking the extended
momentum conservation (C19) rule into account as explained in the main text. The dot represents a bare vertex and therefore ordinary
momentum conservation at the four-point level holds there. The momentum variables for the p intermediate derivatives are indicated by l,
i.e., G(l2i , l2i+1) with i ∈ {0, . . . , p − 1}. These intermediate derivatives are diagrammatically depicted as the additional lines with arrows on
the lines. These arrows indicate that the respective momentum on that line has to be taken into account with an additional minus sign in the
extended momentum conservation rule. (a) The branch corresponds to the expansion with respect to the first line in (C4). It contributes with
a trivial factor to the rooted tree expansion and does not introduce new integration variables. Therefore the external momentum variables stay
the same and the deformation order is reduced from m to m − 1. (b) The branch corresponds to the expansion with respect to the second line in
(C4) and an external leg permutation has to be chosen. In this example, the s channel is chosen. Due to the momentum conservation at the bare
vertex the internal momentum variables for the two-point correlation functions are independent of the momentum variables contributing from
the intermediate derivatives. (c) The branch corresponds to the expansion with respect to the third line in (C4) and a external leg permutation
has to be chosen. In this example, the s channel is chosen. For that branch type, the internal lines depend on the momentum variables of the
intermediate derivatives. The convention is picked such that the extended momentum conservation is taken at us . In this case, there are two
newly grown leafs which can be expanded further and therefore the p intermediate derivatives are distributed randomly such that r + q = p.
(d) The branch corresponds to the expansion with respect to the fourth line in (C4) and contributes an additional functional derivative. (e)
The branch corresponds to the expansion with respect to the fourth line in (C4) and contributes an additional functional derivative on the leaf
connected to three external lines. For that branch type, the internal lines depend on the momentum variables of the intermediate derivatives.
The convention is picked such that the extended momentum conservation is taken at uk . In this case, there are two newly grown leafs which
can be expanded further and therefore the p intermediate derivatives are distributed randomly such that r + q = p.

(c) The analytic expression for the branch type in Fig. 12(c): (i) c = s,

K (2)
c=s (pc=s , 5, . . . , 11) = G(1 − 5 − 7, 11)G(5, 6)G(7, 8)G(9, 10). (D5)
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Therefore, at G(1, 2) = G(1)δ1,−2 and taking into account the extended momentum conservation (C19) at u�,k ,∑
5,...,11

K (2)
c=s (pc=s , 5, . . . , 11)

δru�,s (−6,−8, pc=s ,−9)

δG(l2q, l2q+1) . . . δG(l2p−2, l2p−1)

δqu�,k (−11,−10, pc̄=s̄ )

δG(l0, l1) . . . δG(l2q−2, l2q−1)

G=Gphys=
∑
5,9

G(5)G(9)G(x)G(1 − 5 − x)
δru�,s (5, 2,−9, x)

δG(l2q, l2q+1) . . . δG(l2p−2, l2p−1)

δqu�,k (1 − 5 − x, 9, 3, 4)

δG(l0, l1) . . . δG(l2q−2, l2q−1)
, (D6)

where

x = −p2 − p5 + p9 +
2p−1∑
i=2q

li . (D7)

(ii) c = t, 2 ↔ 3; (iii) c = u, 2 ↔ 4; where s = m − 1 − k with k ∈ {0, . . . , m − 1} and r + q = p with q ∈ {0, . . . , p}.
(d) The analytic expression for the branch type in Fig. 12(d):

K (3)(1, 5, . . . , 9) = G(1 − 5 − 6, 7)G(5, 8)G(6, 9). (D8)

Therefore, evaluating the kernel function at G(1, 2) = G(1)δ1,−2,

∑
5,...,9

K (3)(1, 5, . . . , 9)
δp+1u�,m−1(−7, 2, 3, 4)

δG(8, 9)δG(l0, l1) . . . G(l2p−2, l2p−1)

G=Gphys=
∑
5,6

G(1 − 5 − 6)G(5)G(6)
δp+1u�,m−1(1 − 5 − 6, 2, 3, 4)

δG(−5,−6)δG(l0, l1) . . . G(l2p−2, l2p−1)
. (D9)

(e) The analytic expression for the branch type in Fig. 12(e):

K (4)(1, 5, . . . , 13) = G(1 − 5 − 6, 7)G(5, 8)G(6, 9)G(10, 11)G(12, 13). (D10)

Therefore, evaluating the kernel function at G(1, 2) = G(1)δ1,−2,

∑
5,...,13

K (4)(1, 5, . . . , 13)
δr+1u�,k (−7, 2, 3, 4)

δG(10, 12)δG(l2q , l2q+1) . . . G(l2p−2, l2p−1)

δqu�,s (−8,−11,−13,−9)

δG(l0, l1) . . . G(l2q−2, l2q−1)

G=Gphys=
∑

5,6,10

G(1 − 5 − 6)G(5)G(6)G(10)G(x)
δr+1u�,k (1 − 5 − 6, 2, 3, 4)

δG(10, x)δG(l2q , l2q+1) . . . G(l2p−2, l2p−1)

δqu�,s (5, 10, x, 6)

δG(l0, l1) . . . G(l2q−2, l2q−1)
,

(D11)

where

x =
4∑

i=1

pi − p5 − p6 − p10 −
2p−1∑
i=2q

li , (D12)

and s = m − 1 − k with k ∈ {0, . . . , m − 1}, r + q = p with q ∈ {0, . . . , p}.

APPENDIX E: FUNCTIONAL DERIVATIVES OF KERNEL FUNCTIONS

In this section, we list the analytic expressions for the functional derivative of the different branch types and the resulting
new external momentum variables for the corresponding leafs grown from these differentiated branches in the presence of
intermediate functional derivatives. The momentum variables of the functional derivative differentiating the considered branch
are denoted by l0, l1 if there is a single derivative acting on the branch and l0, . . . , l3 if there are two derivatives. Further p

intermediate derivatives are labeled with consecutive numbers l2, . . . , l2p+1 and l4, . . . , l2p+3, respectively. During the Monte
Carlo run we measure the average number of functional derivatives. We find that this number is around unity for the parameter
range considered in Fig. 3 and the maximal expansion order m = 6 reached in our Monte Carlo algorithm. Therefore we list
here the kernel functions up to second order derivatives for the branch types Figs. 12(b) and 12(c), which contribute itself
no functional derivative and up to first order for the branch types Figs. 12(d) and 12(e), which contribute itself a functional
derivative to the rooted tree. We note that we do not restrict the maximal number of functional derivative in a rooted tree but only
the number of derivative, which can act on a single branch. Bookkeeping of higher order derivatives of the kernel function, i.e.,
up to a maximum of 5 for Fig. 12(e) will become increasingly difficult.

The analytic expressions for the derivatives of the various branches are the following. (a) This branch contributes with a trivial
factor and therefore can not be differentiated, i.e., the derivative on that branch yields a zero contribution.
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;
p1

p2 p3

p4. . .

l0

δp+1um

δGδGp

l2p+1

p1

p2
p3

p4

...
δpum−1

δGp

l0 l1
l2

l2p+1

p2

p4

;
p1

p2 p3

p4. . .

l0

...
δpum−1

δGp

l1

δp+2um

G2δGp

l2p+3

p1

p3

l0

l2 l2p+3l3

l4

(a) (b)

22

p1 + p2 − l0

FIG. 17. The first and second functional derivatives of the branch Fig. 12(b) with respect to G(l0, l1) and G(l0, l1)G(l2, l3), respectively.
Whereas the first derivative eliminates the integration variable of the differentiated branch, the second derivative contributes a delta function.
Therefore the integration variable of the branch on which l0 or l2 depends has to be changed such that the delta constrain is satisfied.
Alternatively, the integration variable of the branch on which l1 or l3 depends can be changed such that the extended momentum conservation
rule (C19) is satisfied at the new leaf. In this case also the constrain by the delta function is met automatically.

(b) The diagrammatic expression for the first and second derivative are shown in Fig. 17.
(1) (i) c = s,

∑
5,6,7

(
δ

δG(l0, l1)
K (1)

c=s (pc=s , 5, 6, 7)

)
δpu�,m−1(−7,−6, pc̄=s̄ )

δG(l2, l3) . . . δG(l2p, l2p+1)

G=Gphys= 2G(1 + 2 − l0)
δpum−1(−l1, 1 + 2 − l0, 3, 4)

δG(l2, l3) . . . δG(l2p, l2p+1)
. (E1)

(ii) c = t, 2 ↔ 3. (iii) c = u, 2 ↔ 4.
(2) (i) c = s,

∑
5,6,7

(
δ

δG(l0, l1)δG(l2, l3)
K (1)

c=s (pc=s , 5, 6, 7)

)
δpu�,m−1(−7,−6, pc̄=s̄ )

δG(l4, l5) . . . δG(l2p+1, l2p+3)

G=Gphys= 2δ(1 + 2 − l0 − l2)
δpu�,m−1(−l1,−l3, 3, 4)

δG(l4, l5) . . . δG(l2p+1, l2p+3)
. (E2)

(ii) c = t, 2 ↔ 3. (iii) c = u, 2 ↔ 4.
(c) The diagrammatic expressions for the first and second derivative are shown in Figs. 18 and 19. Due to the product rule,

the differentiation of the branch yields 4 possible terms where 2 are symmetric to each other. A random rooted tree corresponds
to the random choice of a single term.

(1) (i) c = s,

∑
5,...,11

(
δ

δG(l0, l1)
K (2)

c=s (pc=s , 5, . . . , 11)

)
δru�,s (−6, pc=s ,−9,−8)

δG(l2q+2, l2q+3) . . . δG(l2p, l2p+1)

δqu�,k (−11,−10, pc̄=s̄ )

δG(l2, l3) . . . δG(l2q, l2q+1)

G=Gphys=
∑

5

G(5)G(x)G(1 − l0 − x)
δru�,s (−l1, 2,−5, 1 − l0 − x)

δG(l2q+2, l2q+3) . . . δG(l2p, l2p+1)

δqu�,k (x, 5, 3, 4)

δG(l2, l3) . . . δG(l2q, l2q+1)

+
∑

5

G(5)G(y)G(α)
δru�,s (5, 2,−α, y)

δG(l2q+2, l2q+3) . . . δG(l2p, l2p+1)

δqu�,k (l1, α, 3, 4)

δG(l2, l3) . . . δG(l2q, l2q+1)

+
∑

5

G(5)G(z)G(1 − 5 − z)
δru�,s (−l1, 2,−5, 1 − l0 − x)

δG(l2q+2, l2q+3) . . . δG(l2p, l2p+1)

δqu�,k (x, 5, 3, 4)

δG(l2, l3) . . . δG(l2q, l2q+1)
, (E3)

+ +

p5

;
p1

p2 p3

p4. . .

l0

δp+1um

δGδGp

l2p+1

p1

p4

δrus

δGr

p2

p3

δquk

δGq

...

. . .

l0

l1

l2

2

p1

p4

δrus

δGr

p2

p3

δquk

δGq

...

. . .

l0

l1

l2

p1

p4

δrus

δGr

p2

p3

δquk

δGq

...

. . .

l0
l1

l2

l2p+1 l2p+1

l2p+1

p5
p5

p1−l0−x
y

y = p1 − l0 − p5

p1 − p5 − z

z
l2q+1 l2q+1

l2q+1

l2q+2
l2q+2l2q+2

x = −p3 − p4 − p5 +
2q+1

i=2

li

z = −p2 − p5 + l0 +
2p+1

i=2q+2

li

α = p2 + p5 + y −
2p+1

i=2q+2

li

FIG. 18. The first functional derivative of the branch Fig. 12(c) with respect to G(l0, l1). Due to the product rule of functional derivatives
the differentiation of the branch yields four terms. As two of the terms are symmetric to each other three distinct terms are generated.

195104-21



TOBIAS PFEFFER AND LODE POLLET PHYSICAL REVIEW B 98, 195104 (2018)

;
p1

p2 p3

p4. . .

l0
p1

p4

δrus

δGr

p2

p3

δquk

δGq

...

. . .

l0
l1

p1

p4

δrus

δGr

p2

p3

δquk

δGq

...

. . .

l0

l12

p1

p4

δrus

δGr

p2

p3

δquk

δGq

...

. . .

l0

l1

+ +2 x 2 2 x 2

p1

p4

δrus

δGr

p2

p3

δquk

δGq

...

. . .

l0

l1

+ p52

δp+2um

G2δGp

l2p+3

l2p+3 l2p+3
l2p+3

l2p+3

l4l4l4

l4

l2

l3

l2

l3
l3

l2

l2

l3

p1−l0−l2

l2q+3 l2q+3
l2q+3

l2q+3

l2q+4 l2q+4
l2q+4

l2q+4

y = p1 − l0 − l2

y α

α = p1 − β − l2

γ = p1 − l0 − p5

γ

x = p2 − l1 − l3 −
2p+3

i=2q+4

li z = −p3 − p4 + l1 +
2q+3

i=4

li

β = −p3 − p4 + l1 +
2q+3

i=4

li

FIG. 19. The second functional derivative of the branch Fig. 12(c) with respect to G(l0, l1)G(l2, l3). Due to the product rule of functional
derivatives the differentiation of the branch yields 12 terms. Due to symmetry considerations there are only four distinct terms. Additional
factors of 2 in the least three terms are due to the fact that second-order derivatives commute.

where

x = −p3 − p4 − p5 +
2q+1∑
i=2

li , y = p1 − l0 − p5, z = −p4 − p5 + l0 +
2p+1∑

i=2q+2

li , α = p2 + p5 + y −
2p+1∑

i=2q+2

li . (E4)

(ii) c = t, 2 ↔ 3. (iii) c = u, 2 ↔ 4, where s = m − 1 − k with k ∈ {0, . . . , m − 1} and r + q = p with q ∈ {0, . . . , p}.
(2) (i) c = s,∑

5,...,11

(
δ

δG(l0, l1)δG(l2, l3)
K (2)

c=s (pc=s , 5, . . . , 11)

)
δru�,s (−6, pc=s ,−9,−8)

δG(l2q+4, l2q+5) . . . δG(l2p+2, l2p+3)

δqu�,k (−11,−10, pc̄=s̄ )

δG(l4, l5) . . . δG(l2q+2, l2q+3)

G=Gphys= 2G(1 − l0 − l2)G(x)
δru�,s (−l1, 2,−x, p1 − l0 − x)

δG(l2q+4, l2q+5) . . . δG(l2p+2, l2p+3)

δqu�,k (1 − l0 − l2, x, 3, 4)

δG(l4, l5) . . . δG(l2q+2, l2q+3)

+ 4G(y)G(z)
δru�,s (−l3, 2,−z, y)

δG(l2q+4, l2q+5) . . . δG(l2p+2, l2p+3)

δqu�,k (−l1, z, 3, 4)

δG(l4, l5) . . . δG(l2q+2, l2q+3)

+ 4G(α)G(β )
δru�,s (−l3, 2,−l0, α)

δG(l2q+4, l2q+5) . . . δG(l2p+2, l2p+3)

δqu�,k (β,−l1, 3, 4)

δG(l4, l5) . . . δG(l2q+2, l2q+3)

+ 2
∑

5

G(5)G(γ )
δru�,s (5, 2,−l2, γ )

δG(l2q+4, l2q+5) . . . δG(l2p+2, l2p+3)

δqu�,k (−l1,−l3, 3, 4)

δG(l4, l5) . . . δG(l2q+2, l2q+3)
δ

(
p3 + p4 − l1 − l3 −

2q+3∑
i=4

li

)
,

(E5)

where

x = p2 − l1 − l3 −
2p+3∑

i=2q+4

li , y = p1 − l0 − l2, z = −p3 − p4 + l1 +
2q+3∑
i=4

li , α = p1 − β − l2,

β = −p3 − p4 + l1 +
2q+3∑
i=4

li , γ = p1 − l0 − p5. (E6)
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p1

p2 p3

p4. . .

l0

δp+1um

δGδGp

l2p+1

;

p1

p2 p3

p4

p5

. . .
l2p+1

l0

l1

l2

p1−p5−l0 p5
+ 2

p1

p2 p3

p4

. . .
l2p+1

l0

l1

l2

p1−p5−l0

δp+1um−1

δGδGp

δp+1um−1

δGδGp

FIG. 20. The first functional derivative of the branch Fig. 12(d) with respect to G(l0, l1). This branch type contributes itself a further
functional derivative.

(ii) c = t, 2 ↔ 3. (iii) c = u, 2 ↔ 4, where s = m − 1 − k with k ∈ {0, . . . , m − 1} and r + q = p with q ∈ {0, . . . , p}.
(d) The diagrammatic expression for the first derivative is shown in Fig. 20.
(1)

∑
5,...,9

(
δ

δG(l0, l1)
K (3)(1, 5, . . . , 9)

)
δp+1u�,m−1(−7, 2, 3, 4)

δG(8, 9)δG(l2, l3) . . . G(l2p, l2p+1)

G=Gphys=
∑

5

G(5)G(1 − 5 − l0)
δp+1um−1(l1, 2, 3, 4)

δG(−5,−1 + 5 + l0)δG(l2, l3) . . . G(l2p, l2p+1)

+ 2
∑

5

G(5)G(1 − 5 − l0)
δp+1um−1(1 − 5 − l0, 2, 3, 4)

δG(−5, l1)δG(l2, l3) . . . G(l2p, l2p+1)
. (E7)

(e) The diagrammatic expression for the first derivative is shown in Fig. 21.
(1)

∑
5,...,13

(
δ

δG(l0, l1)
K (4)(1, 5, . . . , 13)

)
δqu�,s (−8,−11,−13,−9)

δG(l2, l3) . . . G(l2q, l2q+1)

δr+1u�,k (−7, 2, 3, 4)

δG(10, 12)δG(l2q+2, l2q+3) . . . G(l2p, l2p+1)

G=Gphys=
∑
5,7

G(5)G(7)G(1 − 5 − l0)G(x)
δqu�,s (5, 7, x, 1 − 5 − l0)

δG(l2, l3) . . . G(l2p, l2p+1)

δr+1u�,k (−l1, 2, 3, 4)

δG(7, x)δG(l2q+2, l2q+3) . . . G(l2p, l2p+1)

p1

p2 p3

p4. . .

l0

δp+1um

δGδGp

l2p+1

;
p5

p6

. . .
p3

p4

p2

p1

...

p5

. . .
p3

p4

p2

p1

p7

...

+  2
p5

. . .
p3

p4

p2

p1

p7

x

...

+  2

l0

l1

l0
l1

l0

l1

l2p+1 l2p+1 l2p+1

l2 l2 l2

l2q+1

l2q+2 l2q+2 l2q+2

l2q+1
l2q+1

p1 − p5 − l0

x = −p1 − p7 + l0 +
2q+1

i=2

li
y = p1 − p5 − l0

y

z

α β

z = −p1 − p7 + l0 +
2q+1

i=2

li

α = p1 − p5 − p6

β = −p5 − p6 + l0 +
2q+1

i=2

li

δr+1uk

δGδGr

δqus

δGq

δr+1uk

δGδGr

δr+1uk

δGδGr

δqus

δGq

δqus

δGq

FIG. 21. The first functional derivative of the branch Fig. 12(e) with respect to G(l0, l1). This branch type contributes itself a further
functional derivative.
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+ 2
∑
5,7

G(5)G(7)G(y)G(z)
δqu�,s (5, 7, z,−l1)

δG(l2, l3) . . . G(l2p, l2p+1)

δr+1u�,k (y, 2, 3, 4)

δG(7, z)δG(l2q+2, l2q+3) . . . G(l2p, l2p+1)

+ 2
∑
5,6

G(5)G(6)G(α)G(β )
δqu�,s (5, β,−l0, 6)

δG(l2, l3) . . . G(l2p, l2p+1)

δr+1u�,k (y, 2, 3, 4)

δG(β, l1)δG(l2q+2, l2q+3) . . . G(l2p, l2p+1)
, (E8)

where

x = −p1 − p7 + l0 +
2q+1∑
i=2

li , y = p1 − p5 − l0, z = −p1 − p7 + l0 +
2q+1∑
i=2

li ,

α = p1 − p5 − p6, β = −p5 − p6 + l0 +
2q+1∑
i=2

li , (E9)

where s = m − 1 − k with k ∈ {0, . . . , m − 1} and r + q = p with q ∈ {0, . . . , p}.
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