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Superconductivity in systems exhibiting the Altshuler-Aronov anomaly
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Making use of generalized Eliashberg equations, we describe the Altshuler-Aronov (AA) effect and super-
conductivity on equal footing. We derive explicit expressions for the Coulomb pseudopotential in 3D, taking
into account also the anomalous diffusion. We present a full numerical solution for two normal-state and two
anomalous self-energies. In the normal state, we amend the known results for the purely electronic AA effect;
with electron-phonon coupling turned on, we find additional anomalies in the density of states close to the phonon
energy. We study how the critical temperature and density of states of strongly disordered 3D superconductors
change with normal-state resistivity. We find that the type of transition from the superconducting to the insulating
state depends on the strength of electron-phonon coupling: at weak coupling, there exists an intermediate normal
state, whereas at strong coupling the transition is direct.
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I. INTRODUCTION

One of the central questions which have not been answered
yet in the context of high-temperature superconductivity is
that about the origin of the so-called pseudogap. Under the
pseudogap, a complex of phenomena in the nonsuperconduct-
ing state of lightly doped cuprates is understood, among which
a prominent place is taken by the suppression of the number
of states in the vicinity of the Fermi level, documented by
thermodynamic as well as spectroscopic methods [1].

Several candidate explanations have been proposed for the
pseudogap in the cuprates, which can be classified into two
large groups. In the first type of theories, the pseudogap is
understood as a consequence of some symmetry-breaking
phase transition leading to the formation of a “competing
order.” In moderate theories of this type, it is assumed that the
competing order is not static, but only fluctuating. The second
type of theories views the pseudogap as a consequence of the
proximity of the cuprates to a Mott insulating state. It is the
latter type of theories which motivates the present work.

If one assumes that the superconductor is close to being in-
sulating, then there are again two pictures of how the pseudo-
gap may arise, which have been widely studied also in systems
other (and presumably simpler) than the cuprates [2,3]. The
first (so-called bosonic) picture builds on the observation that
the superfluid stiffness should be small in the vicinity of the
insulating state, leading to strong phase fluctuations. Within
this picture, the pseudogap appears due to the presence of
Cooper pairs that have not condensed into a single macroscop-
ically occupied state [4]. The second (so-called fermionic)
picture starts from the observation that the screening of the
Coulomb interactions should become progressively weaker
and weaker as the insulating state is approached, and therefore
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the consequences of such interactions should become visible
in the metallic state, irrespective of whether it ultimately
becomes superconducting at low temperatures [5].

On the experimental side, pseudogap has been observed
in several low-temperature superconductors which are close
to being insulating. Among the first observations predating
the cuprate era were those in granular aluminum [6] and in
the alloy Nb1−xSix [7]. More recently, pseudogap has been
observed in very diverse systems such as TiN [8], InOx [9],
NbN [10], BaPb1−xBixO3 [11], and CuxTiSe2 [12].

A mere observation of the pseudogap does not allow us
to distinguish between the bosonic and fermionic scenaria,
and therefore more quantitative predictions of the theory are
needed. Far away from the transition, a perturbative calcu-
lation within the fermionic scenario due to Altshuler and
Aronov (AA) [13] suggests that the density of states N (ω)
in the vicinity of the Fermi level of a 3D metal should be
suppressed according to

N (ω) = N (0)(1 +
√

ω/�AA). (1)

In several papers, Eq. (1) has in fact been observed experi-
mentally [6,7,11,12]. However, as we will show, the observed
magnitude of �AA is orders of magnitude smaller than pre-
dicted by a straightforward extrapolation of the AA theory.

In this paper we will demonstrate that a generalization of
the AA theory due to Anderson, Muttalib, and Ramakrishnan
(AMR) [14], which takes into account the scale dependence
of the diffusion constant predicted by the scaling theory of
localization [15], also leads to a density of states of the form
of Eq. (1), but with an energy scale �AA, which is compatible
with the experiments. A similar observation has been made
also previously [16,17].

Our next goal is to apply the AA theory, as modified by
AMR, to the superconducting state and to check whether
the results of Refs. [6,7,11,12] can in fact be explained
within the fermionic theory. To this end, we will study the
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generalized Eliashberg equations in the exact eigenstate basis.
Our approach is quite similar in spirit to the pioneering
work of Belitz [18], the main technical difference being that
we work on the imaginary axis. Moreover, unlike Belitz,
we will present the results of a full numerical solution of
the Eliashberg equations. Thus we have access not only to
thermodynamics, but, after analytic continuation, also to the
superconducting density of states.

The outline of this paper is as follows. Following AMR, in
Sec. II, we determine the energy dependence of the Coulomb
pseudopotential μ(ε). We show that in addition to the log-
arithmic regime at intermediate ε discovered by AMR in
strongly disordered systems, at the lowest ε, the pseudopoten-
tial always varies as

√
ε, but the relevant energy scale varies

by orders of magnitude between the weakly and strongly
disordered systems. In Sec. III, we write down the Eliashberg
equations in the exact eigenstate basis and in Sec. IV, we show
that their solution in the normal state always leads to a density
of states of the form (1) in the low-energy limit. Furthermore,
we show that, in the strongly disordered limit, the energy scale
�AA can become arbitrarily small, in qualitative agreement
with Refs. [6,7]. We also show here that, in the presence of the
AA effect, coupling to phonons leads to additional features of
the density of states (in the nonsuperconducting state) close to
the phonon energy. Finally, in Sec. V, we present the results
of the numerical solution of the Eliashberg equations in the
superconducting state.

II. COULOMB PSEUDOPOTENTIAL

Within the Eliashberg theory, the exchange contribution to
the bare Coulomb pseudopotential is calculated as a Fermi-
surface average of the screened Coulomb interaction. If we
consider the static screening with inverse screening length ks ,
one can show readily that the formula

μ(ε) = e2

2π3ε0

∫ 2kF

0

dqq2

q2 + k2
s

h̄Dqq
2

(h̄Dqq2)2 + ε2
, (2)

wherein we take Dq = 2vF /(πq ) with vF the Fermi velocity,
does lead—at zero energy transfer ε = 0—to the well-known
Coulomb pseudopotential μ0 = α

2π
ln(1 + π/α) of a clean

system with isotropic quadratic dispersion [19]. Here we have
introduced the “fine structure” constant α = e2/(4πε0h̄vF ) of
the electron gas [20] and we have made use of the relation
2kF /ks = (π/α)1/2. Note that in a typical metal α ∼ 1.

On the other hand, as shown by Refs. [13,18], Eq. (2) is
applicable also to weakly disordered systems, and in this case
one has to take Dq = D0, where D0 = 1

3vF � is the diffusion
constant of the dirty system characterized by the mean free
path �. This result can be most simply shown in the basis of
exact Hartree-Fock eigenstates of the disordered system, in
which the exchange contribution to the self-energy χ (ε) of an
eigenstate with bare energy ε reads as χ (ε) = − ∫

dε′μ(ε −
ε′)f (ε′), where f (x) is the Fermi function. We deliberately
neglect all Hartree contributions to the self-energy, although
in a more complete treatment of a disordered system they may
be present [18].

The goal of this section, which represents a generalization
of the insightful AMR paper [14], is to study the evolution
of the Coulomb pseudopotential μ(ε) with the amount of

disorder: from the clean case, via weakly disordered systems,
up to the strongly disordered (but still metallic) case.

Before proceeding, it is useful to introduce a sharp cri-
terion which enables us to distinguish between weak and
strong disorder. It is well known that the naive formula
for the conductivity, σ = g0k

2
F � with g0 = e2/(3π2h̄) and

what AMR call the local mean free path �, should not be
applied too close to the localized regime, because in that
case localization corrections enter the expression for σ (�).
Instead, the scaling theory of localization [15] suggests to
introduce a different length scale Ls such that σ = gc/Ls ,
where gc ∼ g0 is the critical conductance. Following AMR,
we will call systems with Ls < � weakly disordered, and
those with Ls > � strongly disordered. It turns out that it is
advantageous to discuss these two cases separately.

A. Weak disorder, Ls < �

In the weakly disordered case, one can identify two qual-
itatively different contributions to Eq. (2). Namely, at short
distances (i.e., for wave vectors q∗ < q < 2kF ), the electron
motion should be ballistic and we should therefore use the
clean-limit expression [21] Dq = 2vF /(πq ). On the other
hand, at long length scales (i.e., for wave vectors 0 < q < q∗),
the electron motion is diffusive and we should take Dq = D0.
Note that in doing so, we reduce the diffusion constant with
respect to its ballistic value, which in turn leads to an increase
of the Coulomb pseudopotential. In the spirit of AMR, we
assume that the short- and long-distance forms are valid up
to the crossover scale q∗. Requiring that the function Dq is
continuous leads us then to the identification q∗ = 6/(π�).
Note that the inequality q∗ < 2kF implies that we have to
require kF � > 3/π .

With this choice of the function Dq , the integral in Eq. (2)
can be taken exactly, but it leads to a bulky formula. We
find that the result can be written with good accuracy by the
following expression:

μ(ε) =
{
μ0 + 1

2(kF �)2

[
1 − δ − √

ε
�

]
, ε < εmax,

μ0, ε > εmax,
(3)

where we have introduced the energy � = 2εF /(3kF �) and
the dimensionless number δ,

δ = α(kF �)2

6
ln

[
1 + 1

α(kF �)2

]
.

Note that δ < 0.17, i.e., δ is always small. The energy scale
εmax can be found by requiring that μ(ε) should not drop
below its value μ0 in the clean metal.

Note that Eq. (3) looks reasonable: the Coulomb pseudopo-
tential μ(ε) of a disordered system is larger than μ0, at small
energy transfers it exhibits the expected

√
ε dependence, and

in the clean limit, kF � → ∞, it reduces to μ0. In Sec. IV,
we will demonstrate that the well-known AA depression of
the density of states at the Fermi level [13] is a simple
consequence of Eq. (3).

B. Strong disorder, � < Ls

Also, in this case we will construct, following AMR,
the simplest scale-dependent diffusion coefficient Dq that
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is consistent with the known physical constraints. Let us
start at the largest length scales, where, as noted by AMR,
the macroscopic diffusion constant of a strongly disordered
system with � < Ls is reduced from its local estimate D0

to D0�/Ls . Therefore in the region 0 < q < L−1
s we will

assume that Dq = D0�/Ls . At intermediate length scales,
AMR have identified a region of anomalous diffusion [22],
where Dq = D0q� and the diffusion constant increases with
decreasing length scale, ultimately approaching its local limit

D0. This functional form will therefore be assumed to be valid
at momenta L−1

s < q < �−1. Since the diffusion constant of
a dirty system can not exceed its local limit, at still shorter
length scales �−1 < q < q∗, we have to assume that Dq = D0,
until ultimately at the shortest length scales q∗ < q < 2kF the
electrons move ballistically and therefore Dq = 2vF /(πq ).

With the above choice of the function Dq , the integral
in Eq. (2) can again be taken exactly. The result can be
reasonably well described by the following function:

μ(ε)=

⎧⎪⎨
⎪⎩

μ0 + 1
2(kF �)2

[
1 + ln

(
Ls

�

) − δ − √
ε
ε∗

]
, ε < ε∗,

μ0 + 1
2(kF �)2

[
1
3 ln

(
�
ε

) − δ
]
, ε∗ < ε < εmax,

μ0, εmax < ε,

(4)

where ε∗ = (�/Ls )3 × � is a new energy scale. Note that in
a strongly disordered metal ε∗ � �. Requiring that μ(ε) is
continuous we find εmax = �e−3δ .

When Eq. (4) is compared with the result (3) for the
weakly disordered case, one can notice that the low-energy
enhancement of the Coulomb pseudopotential is much larger
in the present case. There are two reasons for this: first, the
factor kF � ∼ 1 is much smaller than kF � 	 1 in the weakly
disordered case. Second and less trivially, due to anomalous
diffusion, at intermediate energy transfers, ε∗ < ε < �, the
Coulomb pseudopotential exhibits a large logarithmic in-
crease, in qualitative agreement with the result of AMR.

It should be pointed out that at the lowest energy trans-
fers ε < ε∗, which have not been considered by AMR, the
Coulomb pseudopotential μ(ε) still exhibits the standard AA-
type behavior, but the associated energy scale is ε∗ instead of
�, i.e., it may be much smaller than in the weakly disordered
systems. This has observable consequences, as explained in
Sec. IV.

III. ELIASHBERG EQUATIONS

In the basis of exact eigenstates of the disordered system,
the Eliashberg equations can be written in the imaginary-time
Nambu-Gorkov formalism in a very compact form:

�̂(ε, ω) = T
∑
ω′

∫
dε′[−μ(ε′ − ε)

+ g(ω′ − ω)]τ3Ĝ(ε′, ω′)τ3,

where τ3 is the Pauli matrix and the 2 × 2 matrices �̂(ε, ω)
and Ĝ(ε, ω) are the self-energy and the Green function for a
time-reversal related pair of eigenstates characterized by bare
energy ε; ω is the Matsubara frequency. In what follows we do
distinguish between energy and frequency; however, both will
be measured in the same units, i.e., we set h̄ = 1. Note that in
a disordered system, ε plays the same role as momentum k in
a clean system. That is also the reason why the Coulomb pseu-
dopotential (in a theory with static screening) is a function of
transferred energy and not frequency.

The Eliashberg equations describe the contributions of self-
consistent rainbow diagrams to the self-energy, where the in-
teraction lines are either due to screened Coulomb interactions

described by the Coulomb pseudopotential μ(ε) introduced in
the previous section, or due to electron-electron interactions
generated by the exchange of phonons and described by the
function g(ω). In what follows, we will assume a simple
Debye model for the phonons, and the resulting function g(ω)
reads as [23]

g(ω) = λ

[
1 − ω2

�2
ln

(
1 + �2

ω2

)]
, (5)

where λ is the dimensionless electron-phonon coupling and
� is the Debye energy. Following the arguments of AMR
[14,24], in what follows, we neglect the effect of disorder on
λ, since we intend to concentrate on strongly disordered super-
conductors, where the effect of the Coulomb pseudopotential
should dominate. For the same reason we keep neglecting all
possible Hartree-type contributions to the self-energy.

The most general ansatz for the self-energy �̂(ε, ω) can be
written as

�̂(ε, ω) = �(ε, ω)τ0 + χ (ε, ω)τ3 + �(ε, ω)τ1, (6)

where τi are the Pauli matrices and the functions �(ε, ω) and
�(ε, ω) are the normal and anomalous self-energies, respec-
tively. In clean particle-hole symmetric metals, the τ3 compo-
nent of the self-energy can be ignored, because the Coulomb
pseudopotential can be taken as energy-independent. How-
ever, as explained in the previous section, in disordered sys-
tems, μ(ε) is not a constant function, and therefore in addition
to �(ε, ω) and �(ε, ω), also the function χ (ε, ω) has to be
determined self-consistently. Moreover, the ε dependence can
not be simply ignored as in the clean case. These points have
been emphasized by Belitz early in Ref. [18].

In what follows, it is useful to define also the functions
Z(ε, ω) = 1 + �(ε, ω)/(iω) and R(ε, ω) = 1 + χ (ε, ω)/ε.
Inserting the ansatz (6) into the Eliashberg equations and
making use of the fact that the functions μ(ε) and g(ω) are
even, one can show that also Z, R, and � can be chosen as
even functions of ε, ω. Making use of this observation one
finds readily that �(ω) and Z(ω) are independent of ε, and
similarly χ (ε) and R(ε) do not depend on ω. The Eliashberg
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equations for a system at temperature T therefore simplify to
the following form:

�(ω) = T
∑
ω′

∫
dε′g(ω′ − ω)iω′Z′

(ω′Z′)2 + (ε′R′)2 + �2(ε′, ω′)
, (7)

χ (ε) = T
∑
ω′

∫
dε′μ(ε′ − ε)ε′R′

(ω′Z′)2 + (ε′R′)2 + �2(ε′, ω′)
, (8)

φ(ω) = T
∑
ω′

∫
dε′g(ω′ − ω)�(ε′, ω′)

(ω′Z′)2 + (ε′R′)2 + �2(ε′, ω′)
, (9)

ψ (ε) = T
∑
ω′

∫
dε′μ(ε′ − ε)�(ε′, ω′)

(ω′Z′)2 + (ε′R′)2 + �2(ε′, ω′)
, (10)

where we have introduced the abbreviations Z′ = Z(ω′) and
R′ = R(ε′). We have also observed that the anomalous self-
energy can be written as �(ε, ω) = φ(ω) − ψ (ε).

In the rest of this paper, we will be concerned with
the solution of Eqs. (7)–(10) with interactions given by
Eqs. (3)–(5). Both in the Matsubara frequency space, as well
as in the energy space, we will assume that there is a finite
cutoff �, which restricts the studied states to the vicinity of
the Fermi energy, |ω|, |ε| � �. We will take � much larger
than the Debye energy �, in order to have a valid description
of the electron-phonon interaction.

In the special case when μ(ε) is a constant, one can easily
observe that Eq. (8) implies that χ = 0 and one ends up with
the usual Eliashberg equations. The Coulomb pseudopotential
enters only Eq. (10) in this case. Strictly speaking, we should
not assume that it equals the bare value μ0, since our cutoff
� is much smaller than the Fermi energy (or bandwidth),
and we should rather use an appropriately renormalized value.
Nevertheless, since this is a minor correction, we have decided
to use the bare value of μ0 instead. On the other hand, we em-
phasize that the renormalization of the Coulomb interaction
from the scale � to the phonon scale � is implicitly present
in our self-consistent calculations.

Once the Eliashberg equations are solved, the Matsubara
Green function Ĝ(ε, ω) of the superconductor can be deter-
mined from the Dyson equation

Ĝ−1(ε, ω) = iωτ0 − ετ3 − �̂(ε, ω).

The density of states N (ω) in the superconducting state can
be obtained from the textbook formula

N (ω) = − 1

π
N0

∫
dεImGR

11(ε, ω), (11)

where GR
11(ε, ω) is the upper left component of the retarded

Green function ĜR(ε, ω), and N0 is the density of the bare
levels ε.

IV. NORMAL STATE

In this section, we will investigate the implications of
the Eliashberg equations for the normal-state properties of
disordered metals. Since in the normal state � = 0, we have
to solve Eqs. (7) and (8) for the self-energies χ (ε) and �(ω).
We will be especially interested in the tunneling density of
states. We will start by discussing the case when the electron-
phonon coupling is turned off and we will show that the AA

anomaly exhibits novel features in the limit of strong disorder.
Next, we will show how switching on a finite electron-phonon
interaction leads to additional structure in the density of states.

A. Systems without electron-phonon coupling

In this case, the self-energy due to phonons vanishes,
�(ω) = 0 and Z = 1. Assuming a sufficiently large cutoff
�, the sum over the Matsubara frequencies in Eq. (8) can be
performed explicitly and we find a self-consistent equation for
the self-energy χ (ε),

χ (ε) = 1

2

∫ �

−�

dε′μ(ε′ − ε) tanh
ε′ + χ (ε′)

2T
.

In order to proceed, let us take into account that the Coulomb
pseudopotential can be written as μ(ε) = μ0 + δμ(ε), where
the function δμ(ε) vanishes for ε > εmax. For the sake of
simplicity, let us specialize to the case of T = 0. A simple
calculation shows that in this case

χ (ε) =
∫ ε

0
dEδμ(E),

a result which is valid for ε < εmax. On the other hand, for
ε > εmax we find that χ (ε) = χ (εmax) is a constant.

From Eq. (11), it follows that the density of states N (ω) of
an interacting disordered system is given by

N (ω) = N0

∫
dEδ[E + χ (E) − ω] = N0

1 + δμ(E0)
,

where E0 is the solution of the equation E0 + χ (E0) = ω.
In the weakly disordered regime where Eq. (3) applies, we

thus find that the density of states in the low-frequency limit
ω � � can be described (to order

√
ω/�) by Eq. (1) with

N (0) = N0

1 + 1−δ
2(kF �)2

, �AA = 8

3

(
kF � + 1 − δ

2kF �

)3

εF ,

a well-known result due to Altshuler and Aronov [13]. How-
ever, since throughout the weakly disordered regime we have
1 � kF �, the AA energy scale �AA is at least of order εF ,
and therefore not directly observable on the meV scale of
typical tunneling experiments. This suggests that the exper-
imental findings of Refs. [6,7,11,12] can not be explained by
a straightforward application of Altshuler-Aronov physics.

On the other hand, in the strongly disordered regime, the
energy scale �AA can be reduced substantially. In fact, for
ω � ε∗, the density of states can be again written in the form
of Eq. (1), and from Eq. (3) it follows that

N (0) = N0

1 + 1−δ+ln(Ls/�)
2(kF �)2

,

�AA = 8

3

[
kF � + 1 − δ + ln(Ls/�)

2kF �

]3(
�

Ls

)3

εF .

Note that in the strongly disordered regime, kF � ∼ 1. Since
we can write Ls/� = ρ/ρc where ρc = �/gc, in the immediate
vicinity of the metal-insulator transition (where the resis-
tivity ρ blows up), the AA energy scale �AA can become
arbitrarily small, �AA ∝ [ln(ρ/ρc )/(ρ/ρc )]3, and this scaling
is not inconsistent with the scaling found experimentally in
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Refs. [6,7]. A similar result for the energy scale �AA, except
for the logarithmic correction, has been found previously
[16,17].

As regards the density of states right at the Fermi energy,
N (0), in perturbative calculations it is typically identified with
the bare value N0 [17]. Also in our self-consistent calculation,
N (0) differs only weakly from the bare value N0, if the system
is weakly disordered. However, in the strongly disordered
regime, we find that N (0) becomes heavily suppressed when
ρ → ∞ and the insulating state is approached, and it varies
ultimately as N (0) ∼ N0/ ln(ρ/ρc ). It is worth pointing out
that the ratio N (0)/N0 is measurable and experiments with
2D systems [25] do find that N (0)/N0 < 1.

Finally, for the sake of completeness let us note that in the
limit Ls/� → ∞ the density of states exhibits a logarithmic
correction in the limit of small frequencies:

N (ω) = N0

1 + 1
6(kF �)2 ln �

6(kF �)2ω

.

Logarithmic scaling of the density of states in the critical
regime has been found also earlier [16,17].

B. Finite electron-phonon coupling

For a finite coupling between the electrons and phonons,
an analytic solution can be found for a constant Coulomb
pseudopotential, since in this case χ = 0 and R = 1. If we
furthermore assume that T = 0 and ω � �, a standard calcu-
lation shows that the real part of the retarded wave-function
renormalization is

ReZ(ω) − 1 = λ

3

(
1 + �

ω
ln

∣∣∣∣ω + �

ω − �

∣∣∣∣ + ω2

�2
ln

∣∣∣∣1 − �2

ω2

∣∣∣∣
)

,

which, inter alia, implies the well-known result for the mass
enhancement Z(0) = 1 + λ.

In presence of both, a finite electron-phonon coupling
λ and an energy-dependent Coulomb pseudopotential μ(ε),
we have solved the coupled Eqs. (7) and (8) numerically.
The analytic continuation from the Matsubara frequencies
to the real axis has been carried out by means of the Padé
approximation [26].

As a typical example of the results which we find, in Fig. 1,
we present the density of states calculated using Eq. (11) for a

N

FIG. 1. Density of states of a strongly disordered AA metal with
kF � = 1.8 and Ls/� = 3 in the normal state at temperature T =
0.01� for three values of the electron-phonon coupling constant λ.

FIG. 2. Normalized self-energy χ (ε)/ε for the same set of pa-
rameters as used in Fig. 1.

strongly disordered metal with kF � = 1.8 (close to the critical
value) and Ls/� = 3. For the fine-structure constant, we take
α = 1.3, implying that the bare Coulomb pseudopotential of
the clean system is μ0 ≈ 0.25. For this choice of parameters,
we find that the dimensionless number δ ≈ 0.15.

Throughout this paper, energies will be measured in units
of the Debye energy �. For the Fermi energy and the cut-
off we take εF = 50� and � = 10�, respectively, so that
the set of inequalities � � � � εF is well satisfied. For
our choice of parameters we have � = 2εF /(3kF �) ≈ 18.5�

and εmax = �e−3δ ≈ 11.8�. This implies that essentially the
whole anomalous part of the Coulomb pseudopotential is
within the cutoff, except for a small tail which can be ne-
glected.

Figure 1 shows that, without coupling to phonons (i.e.,
for λ = 0), the density of states exhibits a strong AA-type
singularity at low frequencies, as well as a feature close to
the energy scale ε∗ ≈ 0.69�, as should have been expected.
When a finite λ is turned on, two new effects become apparent.

First, for frequencies close to the Debye energy, ω ≈ �, an
additional feature of the density of states starts to develop,
and its strength grows with the magnitude of λ. This is
very similar to the phonon features in the density of states
of strong-coupling superconductors. We emphasize, however,
that our theory predicts that the typical frequencies of phonons
coupled to electrons can be measured already in the normal,
nonsuperconducting state of a strongly disordered metal.

Second, when λ increases, the dip in the density of states at
the Fermi level weakens. This effect is due to an anticorrela-
tion between the effects of the Coulomb pseudopotential and
of the electron-phonon coupling: increasing λ diminishes the
self-energy χ (ε), see Fig. 2, while increasing μ(ε) diminishes
the self-energy �(ω), see Fig. 6. Looking at the Eliashberg
equations Eqs. (7) and (8), the origin of the anticorrelation
can be traced back to the simultaneous presence of both
�(ω) and χ (ε) in the denominators of the right-hand sides
of both equations. Both Figs. 2 and 6 show, however, that the
anticorrelation is relatively weak and to a first approximation
it can be neglected.

V. SUPERCONDUCTING STATE

Finally, we address the main subject of this paper, namely
superconductors with a sizable AA anomaly in their normal
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Ls

T
c

FIG. 3. Critical temperature Tc of strongly disordered AA super-
conductors with two different electron-phonon coupling constants λ

as a function of Ls/� = ρ/ρc, where ρc = �/gc. In both cases, we
take the same parameters α = 1.3, εF = 50�, and � = 10�. The
lines are guides to the eye.

state. As explained in the previous section, the requirement
of experimental observability of AA-type anomalies forces
us to concentrate on the strongly disordered regime with the
Coulomb pseudopotential described by Eq. (4). Unless stated
otherwise, in our numerical calculations, we assume the same
set of parameters as in the previous section: kF � = 1.8, the
fine-structure constant α = 1.3, the Fermi energy εF = 50�,
and the cutoff � = 10�. For the electron-phonon coupling
we take λ = 1.0, and the length scale Ls � � is taken as a
free parameter corresponding to the sample resistivity ρ via
Ls = gcρ.

The Eliashberg equations Eqs. (7)–(10) have been solved
numerically. In a clean system with a constant Coulomb
pseudopotential μ(ε) = μ0, our choice of parameters leads
to a reasonable critical temperature Tc0 ≈ 0.033�. With in-
creasing disorder, Tc drops and, when entering the strongly
disordered regime, Tc ≈ 0.02�. Further decrease of Tc as a
function of Ls/� in the strongly disordered regime is shown
in Fig. 3. In the same figure, we also plot Tc for a somewhat
smaller electron-phonon coupling constant, λ = 0.8.

An unexpected observation is that, although the insulating
state is approached as Ls → ∞, the critical temperature does
not drop to zero in this limit and it stays constant. Of course,
the mean-field Eliashberg equations can not be quantitatively
correct for Ls → ∞, since fluctuation effects should be large
close to the insulating phase. Nevertheless, our fermionic
theory is certainly consistent with a direct superconductor-
insulator transition in 3D, without any intervening metallic
phase.

In order to understand Fig. 3, we have calculated the
critical temperature for a set of metals with fixed electronic
parameters and varying electron-phonon coupling λ. We have
considered two opposite limits for each λ: the metal was
assumed to be either extremely clean, kF � = 108, or nearly
localized, kF � = 1.8 and Ls/� = 7. The results are plotted
in Fig. 4. As expected, the critical temperature grows with
λ. Moreover, in both limits, Tc seems to be finite only for
λ larger than a critical coupling strength λc. This was also
to be expected, since the phonon-mediated attraction has to
overcome the Coulomb repulsion.

T
c

FIG. 4. Critical temperature Tc as a function of the electron-
phonon coupling λ for extremely clean and nearly localized metals.
The lines are fits described in the text.

Surprisingly, both data sets in Fig. 4 can be fitted well by
the simple formula Tc = a exp ( − b/(λ − λc )). From these
fits we estimate that in the extremely clean case the critical
coupling strength λc1 ≈ 0.15, whereas in the nearly localized
case λc2 ≈ 0.46. Note that λc2 > λc1, since the Coulomb
repulsion is obviously stronger in the nearly localized case.
It follows that three scenaria for the metal-insulator transition
are possible: (i) for λ < λc1 the metal never becomes super-
conducting. (ii) For λc1 < λ < λc2, the metal can be super-
conducting, provided it is sufficiently clean. Upon increasing
disorder, superconductivity disappears before entering the in-
sulating state [27]. (iii) For λ > λc2, all metallic states become
superconducting at low temperatures.

In the rest of this paper, we concentrate on the physi-
cal properties of strongly disordered AA superconductors.
In Fig. 5, we plot the spectral gap � = �(0, 0)/Z(0) as
a function of temperature for an AA superconductor with
Ls/� = 5. We find that the numerical data can be fitted well by
the formula �(T ) = �(0) tanh[α(Tc/T − 1)1/2], compatible
with simple BCS theory. From the fit we obtain α ≈ 1.77,
�(0) ≈ 0.0190�, and Tc ≈ 0.0107�, implying that the ratio
2�(0)/Tc ≈ 3.55, slightly smaller than the clean-limit value
for which we find 3.79.

In what follows, we will compare the properties of two
AA superconductors, one with Ls/� = 1, i.e., on the border

FIG. 5. Temperature dependence of the spectral gap � =
�(0, 0)/Z(0) for an AA superconductor with Ls/� = 5. The dots
are numerical data and the dashed line is a fit described in the text.
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Ls

Ls

FIG. 6. The real part of the retarded wave-function renormaliza-
tion Z(ω) for AA superconductors with Ls/� = 1 and Ls/� = 5 at
temperature T = 0.003�.

between weak and strong disorder, and another one with
Ls/� = 5, i.e., deeply within the strongly disordered regime.

In Fig. 6, we plot the real part of the retarded wave-function
renormalization Z(ω), obtained by analytic continuation from
the imaginary axis. The overall shape of Z(ω) is in good
agreement with the phonon-only analytic result. One can
observe that the phonon-related function Z(ω) exhibits only
small changes with Ls/�. This is an example of the weak an-
ticorrelation between Z(ω) and the Coulomb pseudopotential
described in the previous section.

On the other hand, as shown in Fig. 7, the Coulomb
pseudopotential-related self-energy χ (ε) strongly increases
with increasing Ls/�. This was, of course, to be expected.
As explained in Sec. IV, larger values of χ (ε) imply stronger
depression of the density of states at the Fermi level in
the hypothetical normal (nonsuperconducting) state, see also
Figs. 10 and 11. It is also worth pointing out that, as usual at
moderate coupling, the self-energies Z(ω) and χ (ε) change
only little between the normal and superconducting states.

The anomalous self-energy �(ε, ω) = φ(ω) − ψ (ε) is
given by the difference between an ω-dependent part φ(ω)
due to the phonons, and an ε-dependent part ψ (ε) due to
the Coulomb pseudopotential. As shown in Fig. 8, the func-
tion φ(ω) exhibits the standard shape expected for boson
exchange. When Ls/� grows, the overall scale of φ(ω) de-
creases, but its shape remains roughly intact. This can again be

Ls

Ls

FIG. 7. Normalized self-energy χ (ε)/ε for AA superconductors
with Ls/� = 1 and Ls/� = 5 at temperature T = 0.003�.

Ls

Ls

FIG. 8. The real part of the frequency-dependent anomalous self-
energy φ(ω) on the real frequency axis for AA superconductors with
Ls/� = 1 and Ls/� = 5 at temperature T = 0.003�.

interpreted as an anticorrelation effect. In fact, the dominant
effect of increasing Ls/� is that R(ε) = 1 + χ (ε)/ε grows,
but from Eq. (9) it therefore follows that φ(ω) has to decrease.

The function ψ (ε) is the superconducting analog of the
normal-state self-energy χ (ε). However, there is an impor-
tant difference between the two functions: for an energy-
independent Coulomb pseudopotential, we have χ = 0, but
ψ is a nonzero constant even in this case. If μ(ε) is not
constant, then ψ (ε) acquires a finite energy dependence, as
demonstrated in Fig. 9. Note that with increasing Ls/�, the
energy dependence of ψ (ε) becomes more prominent.

A very rough estimate of the magnitude of ψ can be
obtained from Bogoliubov’s two-gap model: let us assume
that φ(ω) is a finite constant for ω < � and zero outside
this interval, and let ψ (ε) be a constant up to the cutoff �.
Moreover, let us assume the presence of featureless electron-
phonon and Coulomb couplings λ and μ, where μ is an
appropriately taken average of μ(ε). Then we find that ψ ∼
(μ∗/λ)φ, where μ∗ = μ/[1 + μ ln(�/�)] is the renormal-
ized Coulomb pseudopotential. The data in Fig. 9 are roughly
consistent with this estimate.

Finally, the superconducting density of states of AA su-
perconductors with Ls/� = 1 and Ls/� = 5, calculated using
Eq. (11), is shown in Figs. 10 and 11. As expected, the
pseudogap grows with increasing Ls/�. Figure 11 shows that
the phonon-related peak at ω ≈ �, visible already in the

Ls

Ls

FIG. 9. The energy-dependent anomalous self-energy ψ (ε) for
AA superconductors with Ls/� = 1 and Ls/� = 5 at temperature
T = 0.003�.
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N

Ls

Ls

Ls

Ls

FIG. 10. Superconducting and (hypothetical) normal density of
states for AA superconductors with Ls/� = 1 and Ls/� = 5 at
temperature T = 0.003�.

normal state, acquires additional structure in the supercon-
ducting state, in complete analogy with what is observed in
superconductors with a constant Coulomb pseudopotential.

In Fig. 12, we show the temperature dependence of the
density of states of a strongly disordered AA superconductor
with Ls/� = 5. A pure

√
ω behavior takes place only for

T � ω � ε∗, and at low energies the normal-state singularity
at ω = 0 is either cut off by the finite temperature T (above
Tc), or completely masked by the superconducting gap below
Tc. Thus weak-coupling superconductors with Tc � � offer
the most favorable conditions to simultaneously observe both,
the AA effect and the superconducting gap in N (ω).

Let us comment on the relation of our theory to ex-
periments. In this work we have studied 3D superconduc-
tors and we have assumed that the only effect of disorder
is to introduce additional electron scattering. This means,
however, that our theory can not be directly compared with
Refs. [6,7,11,12]. In fact, in order to interpret Refs. [7,11,12],
at the very least it would be necessary to take into account
the changes of the electron density, but this is by no means
straightforward, since not only the fine-structure constant
α, but also εF , N0, and even λ will change in that case.
Similar complications are to be expected also when varying
the grain size of granular aluminum [6]. Moreover, large phase
fluctuations typical of the bosonic scenario are expected in the
latter case.

N

Ls

Ls

Ls

Ls

FIG. 11. The same as Fig. 10, but in a logarithmic scale of ω.

N

FIG. 12. Temperature dependence of the density of states of a
strongly disordered AA superconductor with Ls/� = 5. At temper-
atures below Tc, N (ω) is shown only for |ω| > � for the sake of
clarity.

It seems that the best example of AA superconductivity
might be provided by materials in which radiation damage
causes large resistivity enhancements, such as the A15 super-
conductors [28,29]. In order to check whether our picture for
the suppression of Tc is valid in this group of materials, one
should start by looking for an AA anomaly in the normal state
of the high-resistivity samples. Tunneling data on the A15
compounds are in fact available [30,31], but unfortunately the
authors concentrate on the McMillan-Rowell inversion and do
not report the normal-state data [32].

In order to estimate the order of magnitude of the changes
in N (ω) to be expected in the tunneling experiments, let us
take for the Debye frequency a typical value of � = 40 meV,
which for our choice of parameters implies εF = 2 eV and
Tc0 ≈ 15 K. From Fig. 12, it then follows that in a strongly
disordered AA superconductor with Ls/� = 5 the density of
states at a temperature T ≈ Tc ≈ 5 K can change by r ≈ 12%
between ω = 0 and ω = 20 meV, and for the AA energy scale
we get �AA ≈ 650 meV. These estimates are quite similar to
r ≈ 14% and �AA ≈ 520 meV, which have been measured for
the x = 0.02 sample of Ref. [12]. Therefore such changes of
N (ω) should be observable.

VI. CONCLUSIONS

Building on the pioneering work of Belitz [18], in this
paper we have developed a formalism that can deal with
both, the AA effect and superconductivity, on equal footing.
In particular, this enables us to study the superconducting
instability of systems with a pseudogap caused by the AA
effect in their normal state.

The set of generalized Eliashberg equations (7)–(10) has
been complemented by the simplest but physically well moti-
vated explicit expressions for the Coulomb pseudopotential in
3D, Eqs. (3) and (4), and for the phonon-mediated electron-
electron interaction, Eq. (5). Following AMR [14], we dis-
tinguish between weakly and strongly disordered conductors.
In both cases, our expressions for the Coulomb pseudopo-
tential μ(ε) take into account the

√
ε-type enhancement at

the lowest energy transfers ε. In the strongly disordered case,
μ(ε) in addition exhibits a logarithmic regime at intermediate
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energies, predicted by AMR as a consequence of the anoma-
lous diffusion [14].

A complete numerical solution of the imaginary-time
Eliashberg equations has been presented, with emphasis on
the parameter values representative of strongly disordered AA
superconductors. This point is crucially different from the
approach of Belitz [18,33], who postulates a simple functional
form for the self-energy χ (ε) that does not allow for the AA
anomaly, and solves the Eliashberg equations in the simple
two-square-well approximation.

Keeping the full energy dependence of the self-energy χ (ε)
allows us to show that the low-frequency behavior of the
density of states in the normal (nonsuperconducting) state
is well described by Eq. (1). We have also calculated the
energy scale �AA and the density of states at the Fermi level
N (0) in both, the weakly and strongly disordered regimes.
In agreement with earlier work [16,17], we find that the
AA anomalies are best observable in the strongly disor-
dered regime. When the electron-phonon coupling is turned
on, we find (still in the normal state!) additional anomalies
in the density of states at ω ≈ �, where � is the Debye
energy.

Numerical solution of the Eliashberg equations sug-
gests there are two possible scenaria for disorder-controlled
superconductor-insulator transition. If the electron-phonon
coupling is weak, then the transition proceeds via an inter-
mediate metallic phase, in agreement with the approximate
theory of AMR [14]. On the other hand, for sufficiently strong
electron-phonon coupling, the transition occurs without any
intermediate phases. It should be pointed out, however, that
the superconducting state in the vicinity of the insulator is pre-
sumably fragile, and sufficiently strong extrinsic pair breaking
[34] may result in stabilization of an intermediate metallic
phase. If this happens, then the transition again proceeds via
an intermediate metallic phase.

A straightforward comparison of our results to experimen-
tal data is not possible at the moment, since in all available
experiments on 3D disordered superconductors [6,7,11,12]
introduction of disorder led, in addition to increased scatter-
ing, also to a change of other relevant electronic parameters,
such as the Fermi velocity. In order to circumvent such
difficulties, we have instead proposed to search for the AA
effect by tunneling spectroscopy of radiation-damaged A15
superconductors.

Our assumption that the electron-phonon coupling λ does
not change with disorder is by no means obvious. The most
complete discussion of disorder-induced renormalization of
the electron-phonon coupling is due to Keck and Schmid
[24]. These authors study interaction between electrons and
long-wavelength acoustic modes and find that the coupling

to longitudinal (transverse) modes decreases (increases) with
increasing disorder strength. Making use of these results,
Belitz argues that the total electron-phonon coupling strength
increases with disorder [18]. There are, however, several
caveats in this line of reasoning. First, when treating the
transverse phonons, Keck and Schmid consider only the so-
called collision-drag mechanism, and they neglect the elec-
tromagnetic mechanism [35] with a different dependence on
disorder. Moreover, the effect of disorder on the phonons is
not taken into account. Second, to the best of our knowledge,
disorder-dependence of the coupling to the optical phonons
has not been studied yet. Since the electron-optical phonon
interaction is essentially due to electrostatics as for the longi-
tudinal acoustic modes, we expect a decrease of the coupling
strength with increasing disorder also in this case. Whether the
total λ increases or decreases with disorder should therefore
depend on the relative contribution of the acoustic and optical
phonons to the electron-phonon coupling strength. Third, no
systematic treatment of the electron-phonon coupling taking
into account the anomalous diffusion of electrons is available
at present. Weak-localization effects have been treated in the
literature, but very different conclusions have been reached:
within a wave function-based approach, it was argued that λ

decreases [36], whereas the σ -model renormalization-group
framework predicts an enhancement of the interaction matrix
elements [37]. Further work is therefore clearly needed to
arrive at definitive conclusions about the disorder dependence
of the electron-phonon coupling function g(ω). In any case,
the formalism developed in the present paper will allow
for a simple accommodation of the results of such studies
in a unified description of the Altshuler-Aronov effect and
superconductivity.

Further extensions of our theory are possible in several
ways: a procedure analogous to the McMillan-Rowell inver-
sion, but taking into account the AA effect, should be worked
out. 2D systems should be studied, since in 2D one can make
use of surface disorder, which should be free of the unwanted
side effects; moreover, high-quality data are available in this
case [8,9]. Finally and most ambitiously, it remains to be seen
whether the AA effect proper or some analogous effect play
any role in the physics of the cuprates.
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