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Renormalization group analysis for the quasi-one-dimensional superconductor BaFe2S3
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Motivated by the discovery of superconductivity in the two-leg, quasi-one-dimensional ladder compound
BaFe2S3, we present a renormalization group study of electrons moving on a two-leg, two-orbital ladder,
subjected to Hubbard repulsion U and Hund’s coupling J . In our calculations, we adopt tight-binding parameters
obtained from ab initio studies on this material. At incommensurate filling, the long-wavelength analysis
displays four phases as a function of 0 � J/U < 1. We show that a fully gapped superconductor is stabilized
at sufficiently large Hund’s coupling, the relative phases at the three Fermi points are “+, −, −”. By contrast,
when the system is tuned to half-filling, umklapp scattering gives rise to Mott insulating phases. We discuss the
general implications of our study for the broad class of iron-based superconductors.
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I. INTRODUCTION

The origin of the superconducting phase of iron pnictides
and iron chalcogenides remains an open and fascinating puz-
zle. The robust nature of iron-based superconductivity, found
in both tetrahedral iron-pnictide and iron-selenide structures,
despite a wide variation in Fermi-surface geometries and
crystal structures, is particularly striking [1–4]. The transition
temperatures appear to be broadly independent of whether
the particular compound displays hole pockets, electron pock-
ets, or both types of carrier. In view of substantial onsite
Coulomb repulsion, this makes the quest for a generic pairing
mechanism particularly challenging. Moreover, superconduc-
tivity has been reported in systems in both tetragonal and
orthorhombic phases.

A particularly exotic example of this superconducting ro-
bustness within the zoo of iron-based materials is BaFe2S3

under pressure [5]. While the sulfide shares the same stag-
gered tetrahedral structure as its quasi-two-dimensional (q2D)
cousins, with a band of delocalized d electrons forming
between Fe2+ ions, here the tetrahedra are organized into two-
leg ladders, forming a quasi-one-dimensional (q1D) structure
(see Fig. 1). One of the fascinating aspects of this system
is that it opens up the possibility of analyzing the physics
of iron-based superconductivity using the powerful tools of
one-dimensional renormalization group and bosonization.

The experimentally observed phase diagram [6–8] resem-
bles that of q2D materials, with a superconducting dome
developing at the end point of an antiferromagnetic (AF)
phase. A further analogy is the “stripe” ordering of spins; in
the ladder system this corresponds to a ferromagnetic ordering
on the rungs and AF ordering along the legs [5]. On the other
hand, a major difference between BaFe2S3 and the q2D ma-
terials is the insulating nature of the antiferromagnet, which
contrasts with the bad metal behavior in more conventional
materials. Three years after the discovery of superconductivity
in BaFe2S3, theoretical studies of this novel superconductor
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FIG. 1. (a) Ladder structure of BaFe2S3 shown running along Z

axis, with sulfur tetrahedra (gold) surrounding iron atoms (blue).
(b) Staggered antiferromagnetic “stripe” structure along ladder in
magnetic phase at ambient pressure. (c) Following ab initio calcula-
tions [9,10] we consider an effective two-orbital tight-binding model
composed from the dx2−y2 ≡ |a〉 orbital and a |b〉 orbital composed
of a superposition of dxz and dxy orbitals.

are still relatively sparse. Two groups [9,10] reported ab initio
calculations extracting an effective two-orbital tight-binding
model. The dispersion relation in ladder direction and the
orbital content near the Fermi surface (see also Fig. 4)1

1The plot of the dispersion relation in Fig. 4 using the parameters
from Ref. [10] is inconsistent with Fig. 2(b) of the same reference.
In contrast to the original reference, we find that the level crossing at
k ∼ π/3 is avoided. Note that Figs. 2(a), 3(a) and 3(b) of Ref. [10] do
report an avoided level crossing near π/3 and are thus qualitatively
equivalent to our plot.
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qualitatively agree in both studies. A rough summary of
energy scales follows: the Hubbard U ∼ 3 eV, the bandwidth
(intraladder hopping) � ∼ 2 eV, the Hund’s coupling J ∼
0.5 eV, the interladder hopping t⊥ ∼ 0.25 eV. The effects
of interactions on this compound are discussed in Ref. [9]
based on the analysis of the Lindhard function, while the
authors of Ref. [10] investigate the interplay of Hubbard and
Hund’s coupling using density matrix renormalization group.
Both papers correctly reproduce the “striped” AF state, which
was also reported in earlier density functional theory stud-
ies [11]. A slave-spin approach [12] based on the tight-binding
model of Ref. [9] reveals orbital selective correlations. The
first-order, pressure-induced magnetic transition was recently
scrutinized [13] for BaFe2S3 and related materials. We note
that stripe order may also be understood in terms of a J1-J2

AF Heisenberg model: as soon as the diagonal coupling J2

exceeds J1/2, stripe order is energetically favored over a Néel-
type order [14]. Superconductivity is discussed qualitatively
in Ref. [9] and the calculation of Ref. [10] indicates a pairing
tendency in hole-doped systems at sufficiently strong interac-
tions. In a recent followup [15], the same group reports pairing
tendencies in single-leg chains with the same orbital content
and the importance of Hund’s coupling was emphasized. It is
important to realize that density matrix renormalization group
studies for multiorbital Hamiltonians are numerically costly
and thus restricted to small systems.

Motivated by these recent experimental and theoretical
advances, here we present a weak-coupling renormalization
group (RG) study of a two-orbital, two-leg ladder with onsite
Hubbard and Hund interactions. The orbital content of Fermi-
surface excitations is chosen in accordance with Refs. [9,10]
and we employ the same tight-binding parameters as in [10]
to determine the Fermi velocities at three pairs of Fermi
momenta. A crucial step in our approach is the reformulation
of the onsite Coulomb and Hund’s interactions as a set of 18
interaction parameters gμ [μ ∈ (1, 18)] defining the strength
of interaction between the left- and right-moving spin and
charge currents in the various orbitals. From this formulation,
we are able to construct a set of coupled RG equations that
have the general form

dgμ(y)

dy
= βμνρgν (y)gρ (y), (1)

where y = ln � is the logarithm of the energy cutoff. Our
analysis of coupled RG equations for the ladder model is the
1D analog of the parquet-RG approach to q2D iron-based
superconductors [16–18] and, being a weak-coupling, long-
wavelength study it provides a complementary perspective
to the strong-coupling density matrix renormalization group
(DMRG) computations on finite ladders [10].

The key result of our paper is the identification of four sta-
ble ground-state phases which fan out from a central quantum
critical point (QCP) described by a gapless Luttinger liquid
(LL). Crucially, it is the strength of the Hund’s coupling which
tunes between the four phases. (see Figs. 2 and 3). Moreover,
by analyzing the effect of umklapp scattering at half-filling
we can show that these phases emerge from a Mott insulating
phase that develops at half-filling.

To characterize the excitation spectrum of these phases,
we have used bosonization to perform a semiclassical strong-
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FIG. 2. Phase diagram and critical temperature as a function of
U . As explained in the main text, the nature of the ground state
depends on the ratio J/U only. The numerical solutions of the
RG equations presented here were obtained for Fermi velocities
as defined by Fig. 4. (a) Phase diagram for three values of U/�,
data points are marked by dots (C3S2), squares (C2S1a), diamonds
(C2S1b), and triangles (C1S0) corresponding to four different phases
in ascending order of J/U . (b) The critical temperature Tc(U )
associated to the instability of RG equations. Straight solid lines are
obtained using Eq. (13) with Tc(�) as the only numerical input;
additional numerical solutions are again presented as dot, square,
diamond, and triangle, respectively. We used � = v̄/ã and assumed
� ∼ 1 eV to estimate Tc in Kelvin on the right vertical axis.

coupling analysis which permits a characterization of the
gapless modes that dominate the quasi-long-range order. Fol-
lowing the convention of 1D ladder systems, we use the
notation “CmSn” to describe a phase with m gapless boson
modes in the charge sector and n gapless modes in the spin
sector. The four stable phases can be summarized as follows:

J/U
spinful LL with
Kσ

αβ=δαβ, Kρ
αβ-δαβ<0

C
3S

2

C2S1a C2S1b

C
1S0

QCP (C3S3): 

FIG. 3. Schematic summary of the RG flow obtained numeri-
cally in Figs. 8–11 of the Appendix. At the initial stage, coupling
constants flow towards a quantum critical point (QCP), which in the
present 1D study is just a spinful Luttinger liquid (LL) with three
charge and three spin modes (C3S3). Near the QCP, the flows diverge
towards four possible attractive fixed points (phases), discussed in
Fig. 2. At intermediate J/U , the RG flow approaches the QCP very
closely; it therefore slows down and Tc is suppressed in the phases
C2S1a and C2S1b.
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(i) C1S0 (J/U > 0.55): Orbitally selective singlet super-
conductor, characterized by strong intraband pairing with
relative phases +,−,− on the three Fermi momenta.

(ii) C2S1b (J/U ∈ [0.45, 0.55]): Singlet, equal sign, in-
traband superconductor at two Fermi momenta decoupled
from a LL at the third Fermi momentum.

(iii) C2S1a (J/U ∈ [0.18, 0.42]): Orbitally ordered
charge density wave decoupled from a LL.

(iv) C3S2 (J/U � 0.18): Long-range superconducting
and charge density wave correlations stemming from one out
of the three Fermi momenta.

The structure of the paper is as follows: The microscopic
model is introduced in Sec. II, the RG analysis and the
discussion of the rich phase diagram are presented in Sec. III.
We conclude with a summary and outlook. Full details on the
model and the RG calculation are included in Appendices A,
B, and C.

II. MODEL

In this section we present the model under investigation.
At each rung of the ladder (see Fig. 1), there are eight degrees
of freedom: the chain index τ = 1, 2, the orbital quantum
number γ = a, b, and the spin z component σ =↑,↓. The
corresponding electron annihilation operator at site j is then
written dτγσ (j ). We incorporate the chain and orbital indices
into a four-component spinor, defined for each site j and spin
component σ as follows:

dσ (j ) =

⎛
⎜⎜⎝

d1aσ (j )
d1bσ (j )
d2aσ (j )
d2bσ (j )

⎞
⎟⎟⎠. (2)

A. Kinetic term

The dispersion relations presented in Refs. [9,10] are qual-
itatively similar to Fig. 4. For details of the tight-binding
model, see Appendix A 1. The important, robust features of
the model are as follows:

(1) In the interval k ∈ [0, π ], there are two Fermi points
of right movers at kI, kII and one left mover at −kIII. For
each of them, time-reversal symmetry imposes Fermi points
of opposite velocity at the reversed momentum.

(2) The excitations near kII and kIII are even parity under
reflections in the mirror plane running along the ladder (Y →
−Y ), whereas the excitations near kI are odd parity under this
reflection.

(3) The excitations near ±kII or ±kIII approximate pure
orbital states a and b, respectively, while excitations near ±kI

are in an orbital superposition (|a〉 ± i |b〉)/
√

2.
(4) At half-filling the integration over filled states implies

kI + kII + kIII = 0 (we took into account that crystal momenta
of 0 and 2π are equivalent).

In the continuum limit, this motivates an expansion in
low-energy modes. For convenience, we label the continuous
position along the chain by xj = ãj and set the lattice con-
stant ã = 1 everywhere in the paper. [Note that by using x, we
have tacitly rotated the coordinate system relative to Fig. 1 and
introduced (x, y, z) = (Z,X, Y ).] In the continuum limit, we

kI kII -kIII

E[eV]
1

-1

k-

+kIII

FIG. 4. Dispersion relation using the tight-binding parameters
determined in Ref. [10] for an applied pressure of 12.36 GPa and
including next-nearest-neighbor hopping. The dashed (solid) curves
correspond to states which are symmetric (antisymmetric) under
y → −y reflection and at the avoided crossing at k ≈ π/3 (k = 0),
the orbital character of the eigenstates changes. For the symmetric
states, we use dark green to represent orbital |a〉 and blue for
|b〉. For the antisymmetric states, the superposition [|a〉 + i |b〉]/√2
([|a〉 − i |b〉]/√2) is represented in red (cyan).

can factor out the rapidly varying components of the electron
field, and decompose it into right- (R) and left- (L) moving
components as follows:

d̂σ (x) =
∑

β∈[I,III]

[
eikβx�β âR

βσ (x) + e−ikβx�∗
β âL

βσ (x)
]
, (3)

where a
R,L
βσ (x) correspond to right- and left-moving compo-

nents of the fields and the three Fermi momenta are kβ =
(kI, kII, kIII ). The spinor components of the wave functions are

�I =
(

1/
√

2

−1/
√

2

)
τ

⊗
(

1/
√

2

i/
√

2

)
γ

=

⎛
⎜⎜⎝

1/2
i/2

−1/2
−i/2

⎞
⎟⎟⎠,

�II =
(

1/
√

2

1/
√

2

)
τ

⊗
(

1
0

)
γ

=

⎛
⎜⎜⎝

1/
√

2
0

1/
√

2
0

⎞
⎟⎟⎠,

�III =
(

1/
√

2

1/
√

2

)
τ

⊗
(

0
1

)
γ

=

⎛
⎜⎜⎝

0

1/
√

2
0

1/
√

2

⎞
⎟⎟⎠. (4)

The kinetic part of the long-wavelength Hamiltonian is then

Hkin = −ivβ

∫
dx
[
aR

βσ

†∇xa
R
βσ − aL

βσ

†∇xa
L
βσ

]
, (5)

where we use an index notation for summation over the
repeated variables β = (I, II, III) and σ = (↑,↓). The Fermi
velocities vI,II,III as well as the values kI,II,III are nonuniversal
and may continuously vary as a function of the microscopic
parameters.
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B. Interaction terms

We assume a simplified model of onsite Hubbard and Hund
interactions Hint = ∑

j HU (j ) + HJ (j ), where the interac-
tions at each site are

HU (j ) = U

2

∑
τ, γ, σ,

γ ′, σ ′

′
nτγσ (j )nτγ ′σ ′ (j ), (6a)

HJ (j ) = −4J
∑

τ

�Sτa (j ) · �Sτb(j ), (6b)

where the summation symbol
∑′ excludes (γ, σ ) = (γ ′, σ ′)

and we have introduced density and spin operators, defined as
follows:

nτγσ (j ) = d†
τγ σ (j )dτγσ (j ), (7)

�Sτγ (j ) =
∑
σ,σ ′

d†
τγ σ (j )

( �σ
2

)
σ,σ ′

dτγσ ′ (j ). (8)

More complicated Hubbard-Kanamori interactions with
nonequal intraorbital and interorbital repulsion do not alter the
main conclusions of our study and are therefore discussed in
Appendices A 2 and B 5. In the continuum limit, it is useful
to represent the interaction term in terms of scalar

J r
αβ (x) =

∑
σ

ar
ασ (x)†ar

βσ (x) (r ∈ {R,L}) (9)

and vector currents

�J r
αβ (x) =

∑
σ,σ ′

ar
ασ

†(x)
(σ

2

)
σ,σ ′

ar
β,σ ′ (x), (10)

involving states near the Fermi points α, β = I, II, III. Writing
Hint = ∫

dx Hint (x) in terms of the Hamiltonian density, then

Hint (x) = c̃
ρ
αβJ R

αβ (x)J L
αβ (x) + f̃

ρ
αβJ R

αα (x)J L
ββ (x)

− [
c̃σ
αβ

�J R
αβ (x) · �J L

αβ (x) + f̃ σ
αβ

�J R
αα (x) · �J L

ββ (x)
]
,

(11a)

where we have used an index summation on the indices α, β.
The bare interaction constants are given by

f̃
ρ
αβ = U

8

⎛
⎝0 3 3

3 0 4
3 4 0

⎞
⎠

αβ

, (11b)

f̃ σ
αβ = U

2

⎛
⎝0 1 1

1 0 0
1 0 0

⎞
⎠

αβ

+ J

⎛
⎝0 1 1

1 0 2
1 2 0

⎞
⎠

αβ

, (11c)

c̃
ρ
αβ = U

8

⎛
⎝8 1 1

1 4 0
1 0 4

⎞
⎠

αβ

− J

4

⎛
⎝3 0 0

0 0 0
0 0 0

⎞
⎠

αβ

, (11d)

c̃σ
αβ = U

2

⎛
⎝0 1 1

1 4 0
1 0 4

⎞
⎠

αβ

+ J

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠

αβ

(11e)

(see Appendix A 2 for derivation).

aLIII,σIII

aLII,σII

aLI,σI

aR,†III,σIII

aR,†II,σII

aR,†I,σI'

'

'
FIG. 5. For the model defined by Fig. 4, the umklapp process

at half-filling is a three-body interaction. On the tree level, such
processes are generated by means of two-body interactions and
involve one virtual state away from the Fermi energy. Note that
momentum is conserved modulo an inverse lattice vector only. This
diagram indicates that the bare coupling is of the order U 2/v̄.

By convention [19], the diagonal elements of forward scat-
tering amplitudes f̃αβ are chosen to vanish and are absorbed
into the Cooper channel constants c̃αβ . Completely chiral in-
teractions of the form (J R )αα (J R )ββ will also be disregarded
since they are not renormalized and do not renormalize the
above couplings at one loop order. Formally, the itinerant
approach assumes v̄ = ∑

α vα/3 � U/(2π ) and we consider
U > J .

C. Umklapp scattering

The effective low-energy Hamiltonian presented above is
restricted to two-body interactions, which are marginal op-
erators. Interactions involving a higher number of fermionic
operators are generated during RG but are irrelevant near the
noninteracting fixed point and therefore usually disregarded.
However, as the strong-coupling regime is approached, such
terms can become relevant.

An example of such a three-body interaction that encodes
qualitatively new physics is given by umklapp scattering.
It develops at commensurate filling, only, by means of the
processes represented in Fig. 5. In the present model, umklapp
scattering is a three-body interaction even at half-filling in
view of the aforementioned constraint

∑III
β=I kβ = 0: three

right movers, one for each Fermi point, have to conspire and
collectively transfer twice their total momentum (a crystal
momentum) to the lattice. The difference between our model
and more conventional Hubbard models, where umklapp scat-
tering is typically a two-body interaction, derives from the
detailed band structure of Fig. 4.

Umklapp scattering implies the following terms (see
Fig. 5):

Humklapp ∼ −gU

⎡
⎣ III∏

β=I

(
a

R†
βσ ′

β
aL

βσβ

)
e−i2kβx + H.c.

⎤
⎦. (12)

Note that momentum is conserved only modulo the reciprocal
lattice vector 2π . For the present model, there are a multitude
of such interactions which differ by dissimilar spin indices
(only the total spin is conserved). All of them have bare
coupling constants gU ∼ U 2/v̄.
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III. RG ANALYSIS AT INCOMMENSURATE FILLING

In this section we present the RG analysis for the model
defined in the previous section. We first concentrate on the
case of incommensurate filling.

The low-energy theory introduced above is analogous
to that of a three-leg ladder [20–22], albeit with rather
anisotropic interactions. It is known that the 18 independent
parameters c̃

σ,ρ
αβ and f̃

σ,ρ
αβ form a closed set of running cou-

pling constants under one-loop RG. The RG equations for a
generic N -leg ladder were derived in Ref. [19]. Collecting
the coupling constants into a single 18 component vector
gμ = (c̃ρ

αβ, f̃
ρ
αβ, c̃σ

αβ, f̃ σ
αβ )μ, the RG equations have the form of

Eq. (1). Physically, the logarithmic scale factor y = ln(�/T )
is determined by the ratio of the UV cutoff � ∼ v̄ and
temperature T . The detailed form of the structure factors βμνρ

is given in Appendix B. Typically, the coupling constants
diverge at a characteristic scale Tc. As a working definition
we associate this scale with the onset of a symmetry-broken
phase, bearing in mind that strictly speaking, the divergence
of one-loop RG in 1D marks the onset of the strong-coupling
regime and the development of gaps in some parts of the
spectrum. In view of the simple structure of one-loop equa-
tions (1), the critical temperature Tc(U ) has the following
functional form (see Appendix B):

Tc(U ) = �

(
�

Tc(�)

)− �
U

. (13)

The reference scale Tc(�) depends on J/U , therefore, both
the magnitude of U and of J/U determine the scale of the
instability. In contrast, rescaling of the running scale and cou-
pling constants demonstrates that the phase diagram depends
on the ratio J/U , only.

The RG equations were solved numerically using start-
ing values defined by Eqs. (11) and Fermi velocities vI ≈
0.80 eV, vII ≈ 0.86 eV, vIII ≈ 0.57 eV as obtained from
Fig. 4, restricting the values to the range J/U ∈ [0, 0.8]. We
considered a large variety of U/v̄ ∈ [0.02, 10], all leading
to the same phase diagram as presented for three exemplary
values of U/v̄ in Fig. 2. As we have mentioned above, the
Fermi velocities are nonuniversal and depend on the chosen
microscopic parameters. Therefore, a different set of Fermi
velocities is explored in Appendix B, yielding similar results.

Our analysis identifies four different phases, as illustrated
in Figs. 2 and 3. The distinguishing characteristic of each
phase is the set of coupling constants that diverges and the
signs of the divergences. Near the phase boundaries, large
finite values and true divergencies are numerically indistin-
guishable, leading to minor numerical uncertainties in Fig. 2.
In three out of four phases, several coupling constants diverge
at the same scale preserving a finite, often universal, ratio. We
derive these fixed ratios analytically: they imply an enhanced
symmetry [23] at the attractive fix point and a connection
to the integrable Gross-Neveu models discussed below. To
determine the physical meaning of the phases, we bosonize
the degrees of freedom

aR,L
α,σ ∼ ei

√
π (�α,σ ±�α,σ ) (14)

and perform a semiclassical strong-coupling analysis near the
instability. The latter allows to characterize gapful bosonic

modes and to classify the operators displaying quasi-long-
range order. Following the lingo of 1D ladder systems, we use
the notation “CmSn” for a phase with m (n) massless bosons
in the charge (spin) sector. Details on this procedure can be
found in Appendix B. Here, we summarize its outcome and
discuss the phases in ascending order of J/U .

A. Phase C3S2

For small Hund’s coupling J/U � 0.16 only c̃σ
I,I diverges

towards negative infinity (attraction in the Cooper channel),
while all other coupling constants remain featureless. This is
due to the small starting value of c̃σ

I,I = J which places the
system close to a Cooper instability and in turn is due to the
different orbital structure of left- and right-moving particles
near kI. A spin gap is developed near kI while all excitations
near kII,III remain gapless. Long-range correlations for singlet
superconducting (SS) and also of charge density wave (CDW)
order parameters occur in the C3S2 phase. When transformed
back to the orbital and chain space, the superconducting order
parameter takes the form

� ∼ �I�
R
I (x)[�L

I (x)]T = �I

4

(
1 −1

−1 1

)
τ

⊗
(

1 −i

i 1

)
γ

.

(15)

We have included indices τ and γ in the matrix representation
to clarify the direct product of chain and orbital spaces. Thus,
the gap function contains a significant amount of orbital
entanglement [24,25] and has opposite sign along the rung
and the steps of the ladder. As such, it could be referred to
as d wave, however, in 1D the notion of s-, d-, ... (p-, f -
...) wave pairing is not well defined and we use the term even-
(odd-) parity superconductivity instead. The gap function may
be transformed to a real matrix by means of a π/2 rotation
about the z axis in orbital space.

B. Phase C2S1a

At intermediate 0.16 � J/U � 0.41 coupling constants
involving only Fermi points kII and kIII diverge, while those
which involve Fermi point kI are unaffected. The coupling
constants scale as follows: c̃σ

αβ, f̃
ρ
αβ → +∞ and c̃

ρ
αβ, f̃ σ

αβ →
−∞ for α, β ∈ {II,III}. For all starting values within phase
C2S1a, the divergence of diagonal spin components is sub-
dominant, such that c̃σ

αα/c̃σ
II,III → 0, while the other coupling

constants diverge with a universal, finite ratio near the fix
point. This corresponds to the runaway flow in a certain,
well-defined direction of parameter space, such that the flow
becomes effectively one dimensional. In the Appendices, we
expand the full RG equations about this ray and determine the
ratios of divergence, amongst others c̃

ρ
II,III = −c̃σ

II,III/4.
As compared to the three other phases, C2S1a displays

repulsion in the Cooper channel. By means of the outlined
semiclassical evaluation of the bosonized theory we find that
the following bosonic modes are gapped:

�
ρ
II − �

ρ
III, �s

II − �s
III, �s

II + �s
III, (16)

where �ρ,s
α = (�α,↑ ± �α,↓)/

√
2 are charge and spin modes,

respectively. The refermionization of bosonic degrees of free-
dom in these three sectors yields a Gross-Neveu model and
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highlights the emergent SO(6) ∼ SU(4) symmetry (see Ap-
pendix B). Physically, the symmetry-broken state corresponds
to an orbitally ordered charge density wave. Returning to
orbital and chain space, the order parameter is

OCDW(x) =
(

1 1
1 1

)
τ

⊗ γy ⊗ 1σ e−i(kII+kIII−π )x. (17)

C. Phase C2S1b

A rather narrow phase occurs for 0.42 � J/U � 0.53.
Again, coupling constants involving only Fermi points kII

and kIII diverge, while those which involve Fermi point kI

are featureless. As in the C2S1a phase, the ratios of the
divergent coupling constants are universal and the effec-
tive one-dimensional RG flow is derived in Appendix B.
The divergent quantities are c̃

ρ,σ
αβ → −∞ and f̃

ρ
αβ → +∞,

while f̃ σ
αβ/c̃σ

αα → −0. Amongst the various finite ratios, we
remark that c̃σ

II,II/vII = c̃σ
III,III/vIII and c̃

ρ
II,III = c̃σ

II,III/4. Such a
phase was discussed in detail in Ref. [19] and contains two
massless charged and one massless spin mode while

�s
II, �s

III, �
ρ
II − �

ρ
III (18)

are gapped. Again, the connection to an SO(6) Gross-Neveu
model with enlarged symmetry can be obtained by refermion-
ization in the three sectors in which the bosons condense.
Physically, this phase corresponds to an intraband supercon-
ductor with gaps �II,�III on the Fermi points kII, kIII, in
which �II�III > 0. In orbital and chain space, the spin-singlet
gap function is the sum of the following contributions:

�II�
R
II (x)

[
�L

II (x)
]T = �II

2

(
1 1
1 1

)
τ

⊗
(

1 0
0 0

)
γ

, (19a)

�III�
R
III(x)

[
�L

III(x)
]T = �III

2

(
1 1
1 1

)
τ

⊗
(

0 0
0 1

)
γ

. (19b)

This superconducting state relies on intraorbital pairing
and has the same sign along and across the ladder.

D. Phase C1S0

Finally, for 0.53 � J/U , coupling constants involving
any Fermi surface diverge. The Cooper coupling con-
stants c̃

σ,ρ
I,II , c̃

σ,ρ
I,III → +∞ while all other c̃

σ,ρ
αβ → −∞. As

in the C2S1b phase, for nonequal α �= β the relation-
ship 4c̃

ρ
αβ/c̃σ

αβ → 1 holds. In the forward scattering channel
f̃ σ

αβ/c̃
σ,ρ
αβ → 0, while f̃

ρ
αβ/c̃σ

αβ approaches a small constant
value for α �= β. The C1S0 phase is the analog of the C2S1b
phase, with the only difference that now all three Fermi
points display an instability towards a symmetry-broken state
and that intraband Cooper couplings diverge independently
c̃σ

I,I/vI �= c̃σ
II,II/vII �= c̃σ

III,III/vIII. The semiclassical analysis of
the bosonized theory predicts spin gaps for all three spin
modes �s

i and charge gaps for the following two degrees of
freedom:

�
ρ
I − �

ρ
II, �

ρ
I − �

ρ
III. (20)

This state represents a fully gapped superconductor with gaps
�I,II,III and the charge modes lock in a manner such that

sign(�I�II ) = sign(�I�III ) = −sign(�II�III ). (21)

This follows from the positive signs of c̃
σ,ρ
I,III and c̃

σ,ρ
I,II . Such

a state may be called “s+−−”, its gap function is the sum of
Eqs. (15) and (19) with signs as imposed by Eq. (21). The only
massless bosonic mode is the overall phase of the superfluid.

E. Discussion

In this section we include a discussion of the results, in
particular of the superconducting phases.

1. RG flow

We begin with an examination of the RG flow. In this con-
text it is useful to introduce the Luttinger parameter matrices
K

ρ
αβ � δαβ − 2Cρ

αβ, Kσ
αβ � δαβ + Cσ

αβ/2 with

Cρ,σ
αβ = 1

π (vα + vβ )

⎛
⎜⎜⎝

c̃
ρ,σ
I,I f̃

ρ,σ
I,II f̃

ρ,σ
I,III

f̃
ρ,σ
I,II c̃

ρ,σ
II,II f̃

ρ,σ
II,III

f̃
ρ,σ
I,III f̃

ρ,σ
II,III c̃

ρ,σ
III,III

⎞
⎟⎟⎠

αβ

. (22)

The RG flow can be subdivided into two stages (see Fig. 3):
In a first step, Kσ

αβ renormalizes down towards δαβ with K
ρ
αβ

being barely affected. Technically, this is due to terms of the
standard Cooper form dCσ

αβ/d ln(�/T ) = −(Cσ
αβ )2 in the RG

equations (B1). This state corresponds to a spinful LL with
a noninteracting spin sector, as is customary. Its quantum
critical nature is crucial in the present context as it represents
a repulsive fixed point. Near the fixed point the flows diverge
and, in the second stage, the system flows towards one of
the four phases discussed above. By consequence, the set
of coupling constants (c̃ρ,σ

αβ , f̃
ρ,σ
αβ ) in the infrared bears very

little resemblance with the bare high-energy parameters. The
pattern of interactions is completely reshuffled by many-body
effects. Notably, Kρ

αα − 1 changes sign from intraband repul-
sion to intraband attraction for α = II, III (α = I,II,III) in the
superconducting phases C2S1b (C1S0) at lowest energies.

When a trajectory approaches the quantum critical point
very closely, the flow slows down and Tc shoots up; this is the
origin of the small Tc in the C2S1 phases. Furthermore, since
small starting values of U are closer to Kσ

αβ = δαβ , this also
explains the dependence Tc(U ) as found in Eq. (13). We also
note that the appearance of phases with gaps on a subset of the
Fermi points is rather generic in N -leg ladders [19].

More specific technical observations follow. The trajecto-
ries towards C3S2 and C1S0 do not approach the QCP so
closely leading to higher Tc. In particular, the vanishing bare
value c̃σ

I,I at J → 0 places the system close to the supercon-
ducting instability already. At larger J , the repulsive flow near
the QCP is driven by the RG equations (B1) which imply that
the initially vanishing c̃

σ,ρ
II,III are increasing in magnitude due to

finite f̃
σ,ρ
II,III.

Finally, the divergence of c̃
σ,ρ
II,III feeds back into the other

channels, which are small at intermediate scales. This pro-
vides a mechanism to explain the transition near J ∼ U/2
between phases C2S1a, in which c̃σ

II,III → +∞, and C2S1b,
in which c̃σ

II,III → −∞. Namely, the RG equation for c̃σ
II,III
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contains the term c̃σ
II,III[f̃

ρ
II,III − f̃ σ

II,III/2]. The square brackets
change sign at J = U/2 [see Eq. (11)]. It is important to
stress that c̃

σ,ρ
II,III have vanishing initial values, while the other

interpocket Cooper interactions c̃
σ,ρ
I,II and c̃

σ,ρ
I,III are repulsive

(positive). Even after renormalization, c̃
σ,ρ
I,II and c̃

σ,ρ
I,III retain

their positive sign, which ultimately leads to the s+−− super-
conductor in the C1S0 phase at largest Hund’s coupling J .

2. Physical implications and comparison to 2D

We now turn the attention towards the physical impli-
cations of the results. Based on Fig. 2(b), in which Tc is
estimated in Kelvin based on a bandwidth � ∼ 1 eV, we
conclude the following: First, none of the phases have an
experimentally relevant Tc (above 1 K) in the controlled
weak-coupling regime. We therefore extrapolate our analysis
to larger interaction amplitudes under the assumption that
the RG flow is at least qualitatively unchanged. Second,
the phases with realistically observable Tc at intermediate
coupling are C3S2 and C1S0, both of which have long-range
superconducting correlations. The orbital order charge density
wave C2S1a occurs at unrealistic energy scales only.

It is interesting to compare the present 1D RG for the
ladder material with previous studies of parquet RG [16,17]
designed for materials with cylindrical Fermi surfaces. Both
approaches involve weak-coupling theory, and the basic form
of RG equations [Eq. (1)] is the same, and thus Eq. (13) has
an analog in the 2D case. While the general observation that
many-body effects completely reshuffle the pattern of inter-
action constants persists to the higher-dimensional systems,
the clear two-stage RG as observed in Figs. 8–11 seems to be
specific to q1D. In contrast with our q1D study, the 2D kine-
matics implies a “parquet-to-ladder” crossover scale given by
EF � �, below which the general weak-coupling form (1)
(parquet) takes the simpler form βμνρ = δμνδνρβμ (ladder).
Finally, an important common observation valid both for q2D
and q1D is that intraband Coulomb interaction changes sign in
the last stages of RG. Hence, the RG predicts superconducting
pairing states with sign changes between Fermi surfaces.

In view of this last point, it is often assumed that RG re-
solves the “Coulomb problem”: the question of how Coulomb
repulsion is overcome in the superconducting state of iron
pnictides and chalcogenides in a wide variety of different
Fermi surface configurations, without a significant impact on
the transition temperature. We recently investigated this issue
in more detail [26] and came to the conclusion that generically
RG is not sufficient to explain the robustness of supercon-
ductivity against the Coulomb repulsion. In this study the
diverging Cooper attraction develops at the end of the scaling
trajectories in channels with small or even vanishing bare
couplings. The energy scale at which this occurs is strongly
dependent on detailed microscopic interactions, suggesting a
corresponding dependence of Tc on the microscopic details.
Consequently, although RG is able to account for the ap-
pearance of pairing in a variety of different Fermi surface
structures, it does not provide a natural explanation of the
robustness of the superconducting transition temperatures in
iron-based superconductors, and does not solve the Coulomb
problem. This unsolved problem, which lies at the heart of the

ubiquitous superconductivity in the family of iron-based su-
perconductors remains an important challenge for the future.

IV. HALF-FILLING: UMKLAPP SCATTERING

The goal of this section is to qualitatively discuss umklapp
operators [Eq. (12)] by analyzing their scaling dimension du.
We remind the reader that two electrons occupy each site at
half-filling (cf. Fig. 1), as a consequence umklapp scattering
involves six fermionic operators. Due to the different spin
structure discussed in Sec. II C, there are a total of 27 = 128
umklapp terms. Their coupling constants are most conve-
niently parametrized by seven complex numbers Aρ,As

α, Bs
α:

Hu = Re
[
Aρei

√
6π�

ρ
tot
] III∏

α=I

Re
[
As

αei
√

2π�s
α + Bs

αei
√

2π�s
α

]
.

(23)
We introduced �

ρ
tot = ∑

α �ρ
α/

√
3 in the sector of total

U(1) charge, the associated Luttinger parameter is K
ρ
tot =∑

αβ K
ρ
αβ/3. We discuss the scaling dimension of the umklapp

operators in the vicinity of the five fixed points presented
in Fig. 3; details are relegated to Appendix C. If umklapp
scattering is RG relevant, it can lock the bosonic field �

ρ
tot.

Then, the system becomes an insulator with respect to the
electromagnetic U(1) charge and all superconducting phases
are suppressed.

At the repulsive quantum critical point, the scaling dimen-
sions of the coupling constants are equal for all 128 umklapp
terms and

du = (
1 − 3K

ρ
tot

)
/2. (24)

Umklapp operators are relevant only at strong repulsion
K

ρ
tot < 1

3 . We also remark that for an n-body interaction du =
2 − n

n=3= −1 at the noninteracting fixed point.
In the phase C3S2, the phase �s

I condenses and therefore
the product in Eq. (23) involves α =II,III, only. Assuming
Kσ

αβ = δαβ for α, β ∈ {II, III} the scaling dimension becomes

du = 1 − 3K
ρ
tot/2. (25)

Mott localization occurs at intermediately strong coupling
K

ρ
tot < 2

3 only.
The phases C2S1a and C2S1b are characterized by a

spin gap near both Fermi points kII and kIII. Effectively, the
remaining umklapp terms have the form

Hu = Re
[
Aρei

√
6π�

ρ
tot
]
Re
[
As

I e
i
√

2π�s
I + Bs

I e
i
√

2π�s
I
]

(26)

and (for Kσ
II = 1) the scaling dimension

du = 3
(
1 − K

ρ
tot

)
/2. (27)

The transition occurs now at weak coupling K
ρ
tot = 1. Note,

however, that K
ρ
αβ flows to attractive values near the fixed

points. If Mott localization occurs C2S1a becomes a phase
C1S0a in which the long-range CDW correlations survive.
Similarly, C2S1b becomes C1S0b: here superconducting cor-
relations are suppressed but long-range CDW correlations
stemming from the Fermi point kI persist.

Finally, the phase C1S0 has a spin gap at all Fermi
momenta such that, effectively, Hu = Re[Aρei

√
6π�

ρ
tot ]. The
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FIG. 6. Phase diagram at J = 0.6U , taking umklapp scattering

into account. The quantity U/� = Uã/v̄ on the x axis decreases
with pressure, while the y-axis variable 1/ ln(�/T ) increases with
temperature. At large U/� and perfect commensuration, the super-
conducting Tc [numerical solution: brown dots; Eq. (13): dashed
brown] always lies below the Mott localization temperature TMott (n0)
defined heuristically by gu(yMott ) = (2π�) [numerical solution:
black squares; approximate solution, Eq. (30), valid for U/� �
1.6: black dotted-dashed line). Away from half-filling the Mott
phase boundary is modified by the finite-energy scale associated
with doping [purple, here (v̄|n − n0|/�)2 = 0.3] giving rise to a
superconductor-insulator transition.

effective scaling dimension of the umklapp terms at the C1S0
fixed point is thus

du = 2 − 3K
ρ
tot/2, (28)

and Mott localization occurs at K
ρ
tot < 4

3 , i.e., formally even
for attractive interaction. Then, the system is fully gapped. In
practice, the scaling dimension becomes relevant even before
the C1S0 fixed point is reached. As we show explicitly in
the Appendix, the dominant four umklapp operators have the
form

Hu = guRe
[
Aρei

√
6π�

ρ
tot
]
Re
[
Asei

√
6π�s

rel
]

(29)

with �s
rel = (�s

I − �s
II − �s

III )/
√

3. Even in the weak-
coupling limit, the scaling dimension of these operators
changes sign from irrelevant to relevant before reaching the
C1S0 fixed point (see Fig. 15 of the Appendix), and generate
a C2S2 Mott insulating phase.

In order to illustrate the appearance of a Mott phase, we
numerically solve Eq. (1) along with dgu/dy = du({gμ})gu in
the parameter regime of strong Hund’s coupling (see Fig. 6).
For sufficiently large U/� (e.g., U/� � 1.6 for J = 0.6U )
du > 0 even at the initial stage of RG. The divergence of the
coupling constant is then dominated by the repulsive quantum
critical fixed leading to

gu(y) ≈ gu(0)e[1−3K
ρ
tot (y=0)]y/2. (30)

In Fig. 6, we employ a working definition of the Mott acti-
vation gap TMott by means of the scale yMott = ln(�/TMott )
at which gu(yMott ) = (2π�) for starting value gu(0) =
U 2/(2π�). For a density n away from the density of half-
filling n0, the divergence of gu is cut at an energy scale

v̄|n − n0| leading to TMott (n) =
√

TMott (n0)2 − (v̄|n − n0|)2.
For clear illustration, we chose (v̄|n − n0|/�)2 = 0.3, i.e.,
a rather large value, in Fig. 6. We note that using � � 1
eV, the phase boundaries of 6 occur at unrealistically low
temperatures, which is a direct consequence of our weak-
coupling treatment. However, we conjecture that the qualita-
tive outcome of our controlled calculations still holds in the
strong-coupling limit.

All in all, we conclude that Mott physics can be important
for the present itinerant model. Umklapp scattering at half-
filling may be RG relevant near the attractive fixed points even
though it is strongly irrelevant at the noninteracting limit.

V. SUMMARY AND OUTLOOK

In summary, we have investigated a single ladder for the
quasi-1D iron-based superconductor BaFe2S3 on the basis
of the tight-binding model as suggested in Refs. [9,10] and
a simple onsite Hubbard and Hund interactions. The long-
wavelength low-temperature physics was studied using an
RG analysis of excitations close to the three pairs of Fermi
points.

In the case of incommensurate filling, the weak-coupling
RG analysis yields four phases depending on the ratio of
Hund J to Hubbard U interactions (see Fig. 2). We have
shown analytically and checked numerically that the absolute
value of the interaction U at given J/U does not affect the
ground state, but Tc increases rapidly as a function of U .
In particular, a fully gapped superconductor is stabilized at
sufficiently large ratio J/U � 0.53. The intraband pairing
gaps have signs +,−,− on the three pairs of Fermi points and
the critical temperature Tc is estimated to be of the order of
10 K for intermediately strong coupling. This theory provides
a way to understand the conducting high-pressure part of the
experimental phase diagram [6]. In order to account for the
observation of a Mott phase at low pressure, we furthermore
investigated umklapp scattering at half-filling. In our three-
band model, umklapp processes are represented by three-body
interactions and are hence irrelevant at weak coupling. How-
ever, we have shown that umklapp scattering does become
relevant near some of the strong-coupling fixed points. In this
circumstance a charge gap develops, giving rise to a correlated
insulator. Near commensurate filling, these results indicate
a Mott insulator-superconductor quantum phase transition
(see Fig. 6) into a Hund’s-driven superconducting phase at
intermediate repulsion. This corroborates DMRG studies on
very similar models [10,15].

One of the fascinating aspects of our model is that it is
able to realize several different ground states which develop
a dynamically enhanced symmetry, each characterized by
different universal fixed-point ratios of the coupling constants.
In the real 3D material, the 1D renormalization group flows
will be cut off by interchain hopping, which is a relevant
perturbation. In this spirit, this study provides insight into the
predilection towards certain superconducting and magnetic
states that the real material inherits from its 1D building
blocks.

There are various lessons that we have learned that are
relevant to the wider theoretical study of iron-based super-
conductors. First, we have seen that the orbital structure

184517-8



RENORMALIZATION GROUP ANALYSIS FOR THE QUASI- … PHYSICAL REVIEW B 98, 184517 (2018)

of wave functions near the Fermi surface plays a crucial
role in the formation of the order parameters. Second, the
interorbital and orbital selective pairings are ubiquitous as
soon as the orbital structure of the wave functions is taken
into account. Third, even in weak-coupling theories, the
Hund’s coupling has a dramatic impact. Finally, although
RG studies enable us to understand the appearance of pair-
ing in a wide variety of q1D Fermi-surface structures, this
pairing still requires a channel with a weak bare Coulomb
interaction, and a generic mechanism which accounts for the
weak bare repulsion in the iron-based superconductors is still
needed.
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APPENDIX A: MICROSCOPIC MODEL

1. Tight-binding model

In this appendix we present further details on the tight-
binding model [10], which we use to obtain input parameters
for the numerical integration of RG equations.

We consider a ladder as shown in Fig. 1. Our approach
employs the following notation for the 2 × 2 × 2 = 8 degrees
of freedom at each site: (a) Spin is represented by Pauli
matrices σ . Spin eigenvalues are ↑,↓. (b) Pauli matrices in
chain space are τ . We denote the chains by 1,2 (upper, lower
chain). Due to mirror symmetry along the chain direction,
τ̃ = ±1 is a good quantum number which corresponds to
parity eigenstates |1〉+τ̃ |2〉√

2
. (c) Pauli matrices in orbital space

are denoted by γ . The two orbitals are called a, b. The tight-
binding Hamiltonian contains nearest- and next-nearest rung
hopping:

Hkin =
∑
jσ

{[d+
j tZ1τ dj+1 + H.c.] + [d+

j t2Z1τ dj+2 + H.c.]

+ [d+
j tZ+Y τ1dj+1 + H.c.] + [d+

j t2Z+Y τ1dj+2 + H.c.]

+ d+
j tY τ1dj + �d+

j γ3dj − μd+
j dj }. (A1)

We note that tμ with μ = Z, Y,Z + Y, 2Z, 2Z + Y are 2 × 2
matrices in orbital space and that their off-diagonal parts are
antisymmetric and that we returned to the coordinate system
(X, Y,Z) to make contact with Ref. [10]. We omitted the spin
index for notational simplicity; following Ref. [10] tY is a
diagonal matrix.

We introduce the Fourier transform dj = 1
N

∑
k eikj dk and

perform a transformation in chain space into the basis of
bonding/antibonding states. We define

dk =
(

dk,τ̃=+1

dk,τ̃=−1

)
= τ1 + τ3√

2

(
ck,1

ck,2

)
, (A2)

where spin and orbital quantum numbers have been sup-
pressed for convenience. This leads to the following result:

Hkin =
∑

σ=↑↓,τ̃=±1

∫
(dk)d+

k,σ,τ̃

[ ∑
i=0,2,3

h
(i)
τ̃ γi

]
dk,σ,τ̃ ,

(A3a)
where dk,σ,τ̃ are two spinors in orbital space, γ0 = 1γ , and we
have introduced

h
(0)
τ̃ = 2 cos(k)

[
t

(0)
Z + τ̃ t

(0)
Z+Y

]+ 2 cos(2k)
[
t

(0)
2Z + τ̃ t

(0)
2Z+Y

]
− μ + τ̃ t

(0)
Y , (A3b)

h
(2)
τ̃ = 2i sin(k)

[
t

(2)
Z + τ̃ t

(2)
Z+Y

]+ 2i sin(2k)
[
t

(2)
2Z + τ̃ t

(2)
2Z+Y

]
,

(A3c)

h
(3)
τ̃ = 2 cos(k)

[
t

(3)
Z + τ̃ t

(3)
Z+Y

]+ 2 cos(2k)
[
t

(3)
2Z + τ̃ t

(3)
2Z+Y

]
+ � + τ̃ t

(3)
Y . (A3d)

We have also introduced t (i)
μ = tr[tμγi]/2 with μ = Z, Y,Z +

Y, 2Z, 2Z + Y and i = 0, 2, 3. In this notation, h
(2)
τ̃ is

real and the time-reversal symmetry [
∑

i=0,2,3 h
(i)
τ̃ γi]

T =
[
∑

i=0,2,3 h
(i)
τ̃ γi]k→−k

is apparent. The spectrum of the tight-
binding Hamiltonian is then

ετ̃ ,γ (k) = h
(0)
τ̃ + γ

√(
h

(2)
τ̃

)2 + (
h

(3)
τ̃

)2
. (A4)

The plot of the spectrum for the parameters given in Eq. (3) of
Ref. [10] is given in Fig. 4.

2. Interaction terms

Here, we provide more details about the interaction terms.
It is useful to disentangle interorbital from intraorbital contri-
butions in the Hubbard interaction, even though we set Ũ = U

in the main text. In the following Pγ,τ,σ are projectors onto a
given orbital, chain, and spin respectively:

HU = U
∑

j

∑
γ=a,b

∑
τ=1,2

(d†
j,↑PγPτ dj,↑)(d†

j,↓PγPτ dj,↓),

(A5)

HŨ = Ũ
∑

j

∑
τ=1,2

(d†
jPaPτ 1σ dj )(d†

jPbPτ 1σ dj ). (A6)

As a next step, we carry out the long-wavelength expan-
sion (3) into the interaction terms of the Hamiltonian. As
usual, the overall momentum conservation may be preserved
in three different manners, corresponding to direct, exchange,
and Cooper channels.

a. Intraorbital Hubbard interaction

We begin by rewriting the intraorbital Hubbard interac-
tion (A5) in terms of low-energy modes.

In the density channel we then obtain

H
(0)
U = U

8

∫
dx

∑
α=II,III

(∑
r

(
a

r,†
I,↑ar

I,↑ + 2a
r,†
α,↑ar

α,↑
))

×
(∑

r ′

(
a

r ′,†
I,↓ ar ′

I,↓ + 2a
r ′,†
α,↓ar ′

α,↓
))

, (A7a)
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while in the exchange channel the interaction takes the form

H
(X)
U = −U

8

∫
dx

∑
α=II,III

(∑
r

(
a

r,†
I,↑ar

I,↓ + 2a
r,†
α,↑ar

α,↓
))

×
(∑

r ′

(
a

r ′,†
I,↓ ar ′

I,↑ + 2a
r ′,†
α,↓ar ′

α,↑
))

. (A7b)

Finally, in the Cooper channel we obtain

H
(C)
U = U

8

∫
dx

∑
α=II,III

(∑
r

(
a

r,†
I,↑a

−r,†
I,↓ + 2a

r,†
α,↑a

−r,†
α,↓

))

×
(∑

r ′

(
ar ′

I,↓a−r ′
I,↑ + 2ar ′

α,↓a−r ′
α,↑
))

. (A7c)

b. Interorbital Hubbard interaction

Next, we look at the interorbital Hubbard term (A6). In the
density channel we obtain

H
(0)
Ũ

= Ũ

8

∫
dx

(∑
σ,r

(
a

r,†
I,σ ar

I,σ + 2a
r,†
II,σ ar

II,σ

))

×
(∑

σ ′,r ′

(
a

r ′,†
I,σ ′a

r ′
I,σ ′ + 2a

r ′,†
III,σ ′a

r ′
III,σ ′

))
, (A8a)

while in the exchange term,

H
(X)
Ũ

= − Ũ

8

∫
dx

∑
σ,σ ′

(∑
r

ra
r,†
I,σ ar

I,σ ′

)(∑
r ′

r ′ar ′,†
I,σ ′a

r ′
I,σ

)
.

(A8b)
In the Cooper channel

H
(C )
Ũ

= − Ũ

8

∫
dx

∑
σ,σ ′

(∑
r

ra
r,†
I,σ a

−r,†
I,σ ′

)(∑
r ′

r ′ar ′
I,σ ′a

−r ′
I,σ

)

(A8c)
where only operators from the Fermi point kI are involved.

c. Hund’s coupling

The treatment of Hund’s coupling is analogous to the
treatment of the interorbital Hubbard interaction.

In the density channel we obtain

H
(0)
J = −J

8

∫
dx

(∑
r

(
a

r,†
I �σar

I + 2a
r,†
II �σar

II

))

×
(∑

r ′

(
a

r ′,†
I �σar ′

I + 2a
r ′,†
III �σar ′

III

))
, (A9a)

while in the exchange,

H
(X)
J = J

8

∫
dx

∑
σ,σ ′

(∑
r

r �σar
I a

r,†
I

)
σσ ′

×
(∑

r ′
r ′ �σar ′

I a
r ′,†
I

)
σ ′,σ

(A9b)

and Cooper channel,

H
(C)
J = J

8

∫
dx

∑
σ,σ ′

∑
σ̃ ,σ̃ ′

(�σT )σ,σ̃ (�σ )σ ′,σ̃ ′

(∑
r

ra
r,†
I,σ̃ ′a

−r,†
I,σ

)

×
(∑

r ′
r ′ar ′

I,σ̃ ′a
−r ′
I,σ ′

)
, (A9c)

where only operators from the Fermi point kI are involved.
At U = Ũ , the interaction terms presented in this appendix

may be rearranged in the form of scalar and vector current
densities and ultimately yield Eq. (11) of the main text. In
contrast, if Ũ = U − J̃ , additions to the coupling constants
with the following form arise:

δf̃
ρ
αβ = − J̃

4

⎛
⎝0 1 1

1 0 2
1 2 0

⎞
⎠

αβ

, (A10a)

δf̃ σ
αβ = 0, (A10b)

δc̃
ρ
αβ = − J̃

4

⎛
⎝3 0 0

0 0 0
0 0 0

⎞
⎠

αβ

, (A10c)

δc̃σ
αβ = J̃

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠

αβ

. (A10d)

APPENDIX B: RG FLOW: INCOMMENSURATE FILLING

In this appendix we collect representative numerical solu-
tions of the RG equations for each of the four phases presented
in Fig. 2 of the main text. We also present some technical
details from the analysis of the phases, begining with the J̃ =
0 phases, in increasing order of J/U . In Fig. 7 we show the
phase diagram obtained for a different set of Fermi velocities
to those used in Fig. 2, showing how the phase boundaries
shift with velocities. We have left the discussion of finite J̃

for Appendix B 5.

1. RG equations

The RG equations for an N -leg ladder without umklapp
scattering were derived in Ref. [19]:

ḟ
ρ
αβ = (

c
ρ
αβ

)2 + 3

16

(
cσ
αβ

)2
, (B1a)

ḟ σ
αβ = −(f σ

αβ

)2 + 2c
ρ
αβcσ

αβ − 1

2

(
cσ
αβ

)2
, (B1b)

ċ
ρ
αβ = −

∑
γ

{
ααβ,γ

(
cρ
αγ c

ρ
γβ + 3

16
cσ
αγ cσ

γβ

)}
,

+
(

c
ρ
αβh

ρ
αβ + 3

16
cσ
αβhσ

αβ

)
, (B1c)
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FIG. 7. Phase diagram for small Hubbard U and Hund’s J � U ,
for the set of Fermi velocities used in Fig. 4 (top) and vI = vII =
0.8 eV, vIII = 0.6 eV (bottom). In the second case, the system at
U = 0.1v̄, J = 0.04v̄ and U = 0.12v̄, J = 0.05v̄ flows to the phase
C2S1b (dashed circles), thus the boundary between C2S1b and
C2S1a is shifted downwards.

ċσ
αβ = −

∑
γ

{
ααβ,γ

(
cρ
αγ cσ

γβ + cσ
αγ c

ρ
γβ + 1

2
cσ
αγ cσ

γβ

)}
,

+
(

c
ρ
αβhσ

αβ + cσ
αβh

ρ
αβ − 1

2
cσ
αβhσ

αβ

)
. (B1d)

Parameters without the tilde are defined by f
ρ
αβ =

f̃αβ/π (vα + vβ ), etc., the ratio ααβ,γ = (vα + vγ )(vβ +
vγ )/[2vγ (vα + vβ )] and h

ρ,σ
αβ = 2f

ρ,σ
αβ + δαβc

ρ,σ
αβ . The dot in-

dicates the derivative with respect to the running scale ċ =
dc/d ln(L/ã), where ã is the UV length scale.

2. Relationship Tc(U )

Here, we derive Eq. (13) of the main text. It is useful to
employ the schematic representation (1) of the RG equations.
If the coupling constants gμ(y) obey the RG equations, so do
ḡμ(y) = gμ(y/U )/U . Let gμ have an instability at yc(g0

μ),
where yc(g0

μ) is an unknown function of the bare values g0
μ.

Clearly, the instability of ḡμ occurs at yc(g0
μ/U ) and in view

of the relationship between gμ(y) and ḡμ(y) it follows that

yc

(
g0

μ/U
) = Uyc

(
g0

μ

)
. (B2)

FIG. 8. Numerical integration of RG equations for starting val-
ues determined by U/v̄ = 5 and J/U = 0.1. In this case, the system
flows to the C3S2 phase, which is characterized by divergent cσ

I,I.

Using yc = ln(�/Tc ), Eq. (13) of the main text follows.

3. Analysis of RG flow

a. C3S2 phase

The phase of smallest J/U is characterized by the lone
divergence of cσ

I,I → −∞, while all other coupling constants
remain featureless (see Fig. 8). Expanding the set of RG
equations in powers of cσ

I,I one we confirm that the flow of
cσ

I,I decouples from all other RG equations and diverges as
ċσ

I,I = −(cσ
I,I )

2.

b. C2S1a phase

The phase of second smallest J/U , plotted in light green
in Fig. 2, is characterized by a divergence of several coupling
constants, while the ratio to cσ

II,III → +∞ is fixed throughout
the phase:

c
ρ
II,II = c

ρ
III,III = −R1

8 cσ
II,III, (B3a)

c
ρ
II,III = − 1

4cσ
II,III, (B3b)

f
ρ
II,III = 1

8R2c
σ
II,III, (B3c)

f σ
II,III = −R3c

σ
II,III. (B3d)

The intraband, spin-spin interactions are equal and have a
subdominant divergence cσ

II,II = cσ
III,III → +∞ but are small

in comparison to the coupling constants of Eq. (B3), i.e.,
cσ

II,II/c
σ
II,III → 0. All other coupling constants remain small

(see Fig. 9). The ansatz (B3), when introduced into the full
RG equations, proves to be consistent provided (ζ = 1/2 +
vII/[4vIII] + vIII/[4vII] is nonuniversal)

R1 = ζR2, (B4a)

R2 = 2R3

R2
3 + 1

, (B4b)

R3 =
√√

8 + ζ 2

4
− ζ

2
. (B4c)
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FIG. 9. Numerical integration of RG equations for starting val-
ues determined by U/v̄ = 5 and J/U = 0.3. In this case, the system
flows to the C2S1a phase.

For vII → vIII, all R1,2,3 approach unity. The set of RG equa-
tions reduces to a single equation for one of the six parameters
ċσ

II,III = 2(cσ
II,III )

2/R2.

c. C2S1b phase

The C2S1b phase is characterized by the following diverg-
ing running coupling constants where the sign of cσ

II,III →
−∞ constitutes the key difference with the phase previously
discussed:

c
ρ
II,II = c

ρ
III,III = R1

8 cσ
II,III, (B5a)

cσ
II,II = cσ

III,III = R2c
σ
II,III, (B5b)

c
ρ
II,III = 1

4cσ
II,III, (B5c)

f
ρ
II,III = −R3

8 cσ
II,III. (B5d)

Although the coupling constants f σ
II,III increase near critical-

ity, they remain relatively small f σ
II,III/c

σ
II,III → 0. Again, the

ratios R1,2,3 are constant throughout the phase and given in
terms of α by the following functions which approach unity
as ζ → 1:

R1 = ζR3, (B6a)

c I,I

c II,II

c III,III

c I,II

c I,III

c II,III

c I,I

c II,II

c III,III

c I,II

c I,III

c II,III

f I,II

f I,III

f II,III

f I,II

f I,III

f II,III

ln(L/a)

FIG. 10. Numerical integration of RG equations for starting val-
ues determined by U/v̄ = 5 and J/U = 0.5. In this case, the system
flows to the C2S1b phase. Note that, as compared to Fig. 9, cσ

III,III

flows towards negative infinity.

R2 =
√√

8ζ 2 + 1

4
− 1

2
, (B6b)

R3 = 2R2

R2
2 + ζ

. (B6c)

The coupled divergences are captured by the single RG equa-
tion ċσ

II,III = −2(cσ
II,III )

2/R3.

d. C1S0 phase

Finally, at the largest J we considered, coupling constants
involving any of the three Fermi points diverge. As in the
C2S1b phase and in Ref. [19], the ratio c

ρ
αβ = cσ

αβ/4 for
α �= β is preserved and f σ

αβ → 0. In contrast with the previous
discussion, the divergence of the intra-Fermi-point couplings
cαα is generically i dependent. The sign of the diverging
coupling constants is

cσ
αα → −∞, (B7a)

cρ
αα → −∞, (B7b)

cσ
I,II = 4c

ρ
I,II → +∞, (B7c)

cσ
II,III = 4c

ρ
II,III → −∞, (B7d)

cσ
I,III = 4c

ρ
I,III → +∞, (B7e)

f
ρ
αβ → +∞. (B7f)

Once again, f σ
αβ > 0 is small as compared to the couplings

discussed in Eq. (B7) and formally f σ
αβ → 0 at the fixed point.

4. Physical meaning of the different phases

In the previous section, we analyzed the RG flow and
distinguished four different phases, characterized by the diver-
gence of four different sets of coupling constants at a critical,
exponentially large length scale L∗. Here, we study the physi-
cal implications of these four cases. In this analysis we follow
Ref. [19] and bosonize the theory near L∗ subsequently using
a semiclassical analysis.

a. Bosonization dictionary

For the bosonization we use the dictionary

ar
α,σ (x) = 1√

2πa
ηασ ei

√
4πφr

α,σ (x) (B8a)

with the following identities:

{ηα,σ , ηα′,σ ′ } = 2δαα′δσ,σ ′ , (B8b)

[
φr

α,σ (x), φr ′
α′,σ ′ (x ′)

] = ir

4
sign(x − x ′)δrr ′δαα′δσ,σ ′

+ ir

4
δr,−r ′δαα′δσ,σ ′ . (B8c)

The length scale a∗ is the UV cutoff of the renormalized
theory. Since we have assumed the same Majorana Klein
factor for creation and annihilation operators, normal ordering
must be imposed prior to bosonization in order to preserve
the consistency of signs. We assume that any operator under
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consideration contains an even number of fermionic operators
from each Fermi point β. Thus, in the Klein factor Hilbert
space, each operator involving Fermi point β contains one of
the following four operators at least once:

ηβ,↑ηβ,↑=1; ηβ,↓ηβ,↓=1; ηβ,↑ηβ,↓ ≡ gβ ; ηβ,↓ηβ,↑ ≡ −gβ.

(B9)
The algebra of gβ is g2

β = −1 and [gγ , gβ] = 0, a representa-
tion of this algebra is

gβ = i, ∀ j. (B10)

We introduce density and displacement fields

φR
α,σ = �α,σ + �α,σ

2
, (B11)

φL
α,σ = �α,σ − �α,σ

2
. (B12)

Spin charge separation is accounted for by the
parametrization

�ρ
α = �α,↑ + �α,↓√

2
, (B13)

�s
α = �α,↑ − �α,↓√

2
(B14)

and analogously for � variables. Using our bosonization
convention, �ρ

α turns out to be proportional to the collective
phase for a superconducting ground state.

b. Operators under consideration

The phases under consideration are of the superconducting
and charge density wave (CDW)/spin density wave (SDW)
type. We study correlation functions of CDW, SDWz (z com-
ponent of the SDW order parameter), singlet superconduc-
tivity (SS), and the z component of triplet superconductivity
(TSz). The phases under consideration regard the following
intraband operators:

O
(α)
CDW = (

a
R,†
α,↑aL

α,↑ + a
R,†
α,↓aL

α,↓
)
e−i2kαx ∼ 1

(πa)
e−i

√
2π�

ρ
α cos

(√
2π�s

α

)
e−i2kαx, (B15a)

O
(α)
SDWz

= (
a

R,†
α,↑aL

α,↑ − a
R,†
α,↓aL

α,↓
)
e−i2kαx ∼ 1

(πa)
e−i

√
2π�

ρ
α sin

(√
2π�s

α

)
e−i2kαx, (B15b)

O
(α)
SS = (

a
R,†
α,↑a

L,†
α,↓ − a

R,†
α,↓a

L,†
α,↑
) ∼ 1

(πa)
e−i

√
2π�

ρ
α cos

(√
2π�s

α

)
, (B15c)

O
(α)
TSz

= (
a

R,†
α,↑a

L,†
α,↓ + a

R,†
α,↓a

L,†
α,↑
) ∼ 1

(πa)
e−i

√
2π�

ρ
α sin

(√
2π�s

α

)
, (B15d)

as well as the following interband operators in the particle-hole channels:

O
(αβ )
CDW = 1

2

(
a

R,†
α,↑aL

β,↑ + a
R,†
α,↓aL

β,↓
)
e−i(kα+kβ )x + α ↔ β ∼ e−i(kα+kβ )x e−i

√
π�

ρ+
αβ

πa

× (
cos

(√
π�

ρ−
αβ

)
cos

(√
π�s+

αβ

)
sin

(√
π�s−

αβ

)− i sin
(√

π�
ρ−
αβ

)
sin

(√
π�s+

αβ

)
cos

(√
π�s−

αβ

))
, (B15e)

O
(αβ )
SDWz

= 1

2

(
a

R,†
α,↑aL

β,↑ − a
R,†
α,↓aL

β,↓
)
e−i(kα+kβ )x + α ↔ β ∼ e−i(kα+kβ )x e−i

√
π�

ρ+
αβ

πa

× (
cos

(√
π�

ρ−
αβ

)
sin

(√
π�s+

αβ

)
sin

(√
π�s−

αβ

)− i sin
(√

π�
ρ−
αβ

)
cos

(√
π�s+

αβ

)
cos

(√
π�s−

αβ

))
, (B15f)

O
[αβ]
CDW = 1

2

(
a

R,†
α,↑aL

β,↑ + a
R,†
α,↓aL

β,↓
)
e−i(kα+kβ )x − α ↔ β ∼ e−i(kα+kβ )x e−i

√
π�

ρ+
αβ

πa

× (
cos

(√
π�

ρ−
αβ

)
sin

(√
π�s+

αβ

)
cos

(√
π�s−

αβ

)− i sin
(√

π�
ρ−
αβ

)
cos

(√
π�s+

αβ

)
sin

(√
π�s−

αβ

))
, (B15g)

O
[αβ]
SDWz

= 1

2

(
a

R,†
α,↑aL

β,↑ − a
R,†
α,↓aL

β,↓
)
e−i(kα+kβ )x − α ↔ β ∼ e−i(kα+kβ )x e−i

√
π�

ρ+
αβ

πa

× (
cos

(√
π�

ρ−
αβ

)
cos

(√
π�s+

αβ

)
cos

(√
π�s−

αβ

)− i sin
(√

π�
ρ−
αβ

)
sin

(√
π�s+

αβ

)
sin

(√
π�s−

αβ

))
. (B15h)

c. Interactions

For the purposes of classifying the instabilities presented
in Figs. 8–11, it is sufficient to keep only those interactions
which generate potential terms (e.g., cosine terms) of bosonic

fields

Hint = −
∑
αβ

f̃ σ
αβ

2

∑
σ

aR,†
α,σ a

L,†
β,σ̄ aL

β,σ aR
α,σ̄
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FIG. 11. Numerical integration of RG equations for starting val-
ues determined by U/v̄ = 5 and J/U = 0.6. In this case, the system
flows to the C1S0 phase.

+
∑
α �=β

∑
σ,σ ′

(
c̃
ρ
αβ + c̃σ

αβ

4

)
aR,†

α,σ a
L,†
α,σ ′a

L
β,σ ′a

R
β,σ

−
∑

(α,σ )�=(β,σ ′ )

c̃σ
αβ

2
aR,†

α,σ a
L,†
α,σ ′a

L
β,σ aR

β,σ ′ , (B16)

where from now on c̃σ
αβ, etc., are to be understood as the

renormalized coupling constants. The notation σ̄ means ↓ (↑)
for σ =↑ (σ =↓). A bosonization of these terms is presented
for each phase separately.

In addition, interactions can generate gradient terms of
bosons

H∇2 = (vα + vβ )Cρ
αβ

2

[∇�ρ
α∇�

ρ
β − ∇�ρ

α∇�
ρ
β

]
+ (vα + vβ )Cσ

αβ

8

[∇�s
α∇�s

β − ∇�s
α∇�s

β

]
(B17a)

with

Cρ,σ
αβ =

⎛
⎜⎝

c
ρ,σ
I,I f

ρ,σ
I,II f

ρ,σ
I,III

f
ρ,σ
I,II c

ρ,σ
II,II f

ρ,σ
II,III

f
ρ,σ
I,III f

ρ,σ
II,III c

ρ,σ
III,III

⎞
⎟⎠

αβ

. (B17b)

For the RG procedure it is useful to express the contrac-
tions of fast fields in terms of a Luttinger parameter matrix

〈
�ρ,s

α �
ρ,s
β

〉
fast = 1

2π
ln(L/a∗)Kρ,σ

αβ , (B18)

〈
�ρ,s

α �
ρ,s
β

〉
fast = 1

2π
ln(L/a∗)[(Kρ,σ )−1]αβ, (B19)

where L is running length scale:

K
ρ
αβ � δαβ − 2Cρ

αβ, (B20a)

Kσ
αβ � δαβ + Cσ

αβ/2. (B20b)

d. Phases under consideration

We now investigate each of the four phases obtained from
the RG analysis.

(i) C3S2 phase. The potential part of the bosonized Hamil-
tonian in the C3S2 phase is

Hint ∼ 1

(2πa∗)2
cσ

I,I cos(
√

8π�I,s). (B21)

Since cσ
I,I < 0, the system locks into one of the minima√

2/π�s
I ∈ Z and thus only two out of three spin modes

remain gapless. Comparing with Eqs. (B15), we readily see
that O

(I)
CDW and O

(I)
SS have algebraic correlations, while SDW

and TS correlations are massive. Fermions near kII,III remain
unaffected of the condensation of �s

I .
(ii) C2S1a phase. Using Eqs. (B3), Eq. (B16) becomes

Hint = −1

2

∑
α �=β

{∑
σ

f̃ σ
αβaR,†

α,σ a
L,†
β,σ̄ aL

β,σ aR
α,σ̄

+
∑
σ,σ ′

c̃σ
αβ aR,†

α,σ a
L,†
α,σ ′a

L
β,σ aR

β,σ ′

}

∼ − 1

(2πa∗)2

∑
α �=β

{
f̃ σ

αβ cos
[
2
√

π
(
�s−

αβ + �s+
αβ

)]

+c̃σ
αβ cos

(
2
√

π�
ρ−
αβ

)
cos

(
2
√

π�s−
αβ

)
−c̃σ

αβ cos
(
2
√

π�
ρ−
αβ

)
cos

(
2
√

π�s+
αβ

)}
. (B22)

Here, we have introduced �
ρ±
αβ = (�ρ

α ± �
ρ
β )/

√
2 and analo-

gous notations for all other channels. Since f̃ σ
αβ → −∞ and

c̃σ
αβ → +∞, there are two sets of solutions which minimize

the potential energy for α, β ∈ {II,III}; α �= β:

�
ρ−
αβ /

√
π ∈ Z, �s−

αβ /
√

π ∈ Z,

�s+
αβ /

√
π ∈ Z + 1/2, (B23a)

�
ρ−
αβ /

√
π ∈ Z + 1/2, �s−

αβ /
√

π ∈ Z + 1/2,

�s+
αβ /

√
π ∈ Z. (B23b)

The low-energy theory perturbing about any of the given
minima is the same for either solution. Fermions with mo-
menta close to kI remain unaffected. Only two charge and
one spin mode remain gapless, hence the notation C2S1.
Comparison with Eqs. (B15) demonstrates that for any of the
two solutions of (B23) the operator O

[II,III]
CDW orders. Note that,

in view of the locking of �
ρ−
αβ into a minimum, the conjugate

variable �
ρ−
αβ is maximally uncertain and thus O

[II,III]
SS and

O
[II,III]
TSz

do not display long-range correlations in either case.
It is instructive to refermionize the interaction term of ex-
citations near Fermi points II, III in the basis of fermions
describing fluctuations in the relative charge, relative spin,
and total spin sectors. Assuming vII = vIII for simplicity,
Eq. (B22) may be written as

Hint = −|f̃ σ
II,III|[Ms−Ms+ − Mρ−Ms− + Ms+Mρ− ], (B24)
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where we introduce mass terms

Ma = aR,†
a aL

a + aL,†
a aR

a , with a = ρ−, s−, s+. (B25)

If we further perform a gauge transformation in the (s,+) sec-
tor, aL

s,+ → −aL
s,+, Eq. (B24) corresponds to the interaction

term of an SO(6) ∼ SU(4) Gross-Neveu model.
(iii) C2S1b and C1S0 phases. Again, we keep only the

dominant coupling constants and exploit c
ρ
αβ = cσ

αβ/4 for
α �= β. Then,

Hint = −
∑
α,σ

c̃σ
αα

2
aR,†

α,σ a
L,†
α,σ̄ aL

α,σ aR
α,σ̄

−
∑
α �=β

∑
σ

c̃σ
αβ

2
aR,†

α,σ a
L,†
α,σ̄

(
aL

β,σ aR
β,σ̄ − aL

β,σ̄ aR
β,σ

)

∼ 1

(2πa∗)2

{
c̃σ
αα cos

(√
8π�s

α

)
+ 4

∑
α<β

c̃σ
αβ cos

(√
4π�

ρ−
αβ

)
cos

(√
2π�s

α

)

× cos
(√

2π�s
β

)}
. (B26)

tWe note that in the C2S1b phase, c̃σ
αβ → −∞ for α, β =

II,III. Thus, the minimum of the potential is√
2/π�II,s ∈ Z,

√
2/π�III,s ∈ Z, �

ρ−
II,III/

√
π ∈ Z. (B27)

Thus, the C2S1b phase has two gapless charge modes and
one gapless spin mode. It is, in essence, a spinful Luttinger
liquid near Fermi point kI and a superconductor with equal
gaps (c̃σ

II,II = c̃σ
III,III) at Fermi points kII,III. Again, we can

refermionize the interaction term of the C2S1b phase in the
same channels as in the case of C2S1a. At vII = vIII we obtain

Hint = −2|c̃II,II|[Ms+Ms− + Mρ− (Ms+ + Ms− )], (B28)

which represents an SO(6) Gross-Neveu model, albeit in a
different phase than in the case of C2S1a.
The C1S0 phase is characterized by c̃σ

αα → −∞, c̃σ
II,III →

−∞, and c̃σ
I,II → ∞, c̃σ

I,III → ∞. Therefore, the minimum
occurs at

√
2/π�α,s ∈ Z, �

ρ−
I,II/

√
π ∈ Z + 1/2, (B29)

�
ρ−
I,III/

√
π ∈ Z + 1/2, �

ρ−
II,III/

√
π ∈ Z. (B30)

Since �
ρ−
I,II = �

ρ−
I,III − �

ρ−
II,III there are two independent con-

straints on bosons in the charge sector and three independent
constraints on bosons in the spin sector, justifying the notation
C1S0. This phase is a fully gapped spin singlet s+−− intraband
superconductor with the following products of gap functions:
�I�II < 0, �I�III < 0, �II�III > 0.

5. Unequal interorbital and intraorbital repulsion

This appendix examines the effect of unequal interorbital
and intraorbital repulsion, i.e., J̃ �= 0 in Eqs. (11) and (A10).

J/U

J/J
~

0.2

0.6

0.4

0

0 0.4 0.8 1.2

FIG. 12. Summary of the integration of RG equations at finite
J̃ /J and U/v̄ = 5. In addition to the phases C3S2 (red dots), C2S1a
(light green squares), C2S1b (dark green diamonds), C1S0 (brown
triangles) we find an additional phase C2S1c (orange pentagons). For
all of those phases the divergence occurs at running scales yc < 100
(for C1S0 and C3S2 yc < 27) while in the extended critical region
(blue stars), no divergence occurs for any y � 1000.

We note that at J̃ = J , the Hubbard-Kanamori interaction
takes the form

HU (j ) = U

2

∑
τ, γ, σ,

γ ′, σ ′

′
nτγσ (j )nτγ ′σ ′ (j )

+ 2J
∑

τ

{[
T (x)

τ (j )
]2 + [

T (y)
τ (j )

]2}
. (B31)

Here, T (μ)
τ (j ) = d†

σ,τ τ̃μdσ,τ /2 is the orbital isosopin operator
and τ̃μ are Pauli matrices in orbital space.

The integration of RG equations for general 0 � J/U �
0.7 and 0 � J̃ /J < 1.2 reveals five phases and a rather
extended critical regime (see Fig. 12). In addition to the
four phases discussed in the main text there is an extended
critical regime corresponding to the C3S3 QCP of Fig. 3
where the numerical integration of RG (consistently per-
formed at U = 5v̄) does not reveal a divergence for any
y < 1000 (see Fig. 13). This corroborates the finding sum-

FIG. 13. Numerical integration of RG equations for starting val-
ues determined by U/v̄ = 5 and J/U = 0.3 and J̃ = 0.4J . In this
case, the system remains critical for any y � 1000.
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FIG. 14. Numerical integration of RG equations for starting val-
ues determined by U/v̄ = 5 and J/U = 0.5, J̃ = 1.2J . In this case,
the system flows to the C2S1c phase.

marized in Fig. 3 and highlights the importance of the critical
phase.

A typical RG flow for the phase C2S1c is shown in
Fig. 14. Among the data points of Fig. 12 which fall into
the C2S1c phase, J̃ = 1.2J, J = 0.5U has the highest Tc ∼
0.1 mK for � = 1 eV at U/v̄ = 5. This phase is charac-
terized by cσ

I,I � cσ
I,I � −4c

ρ
I,II � −cσ

I,II → −∞ with c
ρ
I,I �

c
ρ
II,II = −f

ρ
I,II → −∞. We now can exploit Eq. (B26) for

α, β ∈ {I,II}, revealing that the minimum given by

√
2/π�I,s ∈ Z,

√
2/π�II,s ∈ Z, �

ρ−
I,II/

√
π ∈ Z + 1/2

(B32)
describes a two-band superconductor with relative phase π .

APPENDIX C: UMKLAPP SCATTERING

In this appendix we provide details on umklapp scattering
as a discussed in Sec. IV.

1. Bosoniziation of umklapp terms

We consider

Hu = −Gu(2πa)

[(
III∏

α=I

a
R,†
α,σ ′

α
aL

α,σα

)
δ{σ ′},{σ }

]
+ H.c. (C1)

The symbol δ{σ ′},{σ } implies equality of the two sets {σ ′
I σ

′
IIσ

′
III}

and {σIσIIσIII} of spin indices, which reflects the overall spin
conservation. Note that the spin is not conserved within any
given pair of Fermi points, i.e., in general σα �= σ ′

α (see
Fig. 5). A summation over all permutations of spin indices
which preserve the overall spin conservation is implied. For
this section we therefore concentrate on the term which is
fully symmetric under exchange of spin indices; more generic
terms are discussed afterwards.

Bosonization of Eq. (C1) leads to

Hu = gue
−i

√
2π

∑III
α=I �

ρ
α

×
III∏

α=I

[
cos

(√
2π�s

α

)− i sin
(√

2π�s
α

)]+ H.c. (C2)

In principle, gu = i2Gu/(πa)2 can have both real and imag-
inary parts. This leads to an overall of 16 umklapp terms, all
of which may have different bare values in the case of spin
dependent Gu. In addition, under RG, interband interaction
generates additional terms.

2. Analysis of umklapp scattering

We first analyze umklapp scattering in the Luttinger phase
prior to an instability, proceeding to each of the phases ob-
tained above. Employing fermionic diagrams, Fig. 5 illustrates
that the three-body umklapp scattering can not renormal-
ize two-body interactions at weak coupling in the one-loop
approximation. Therefore, we can determine the scaling di-
mension du of the most dominant umklapp process without
considering its back-reaction on the other coupling constants.

a. Umklapp scattering in the Luttinger liquid phase

When Cσ
αβ has predominantly positive entries and Kσ has

eigenvalues larger than unity, the umklapp terms with the
largest dimension involve �s

α , so we disregard all terms with
�s

α . We introduce �
ρ
tot = [

∑
α �ρ

α]/
√

3:

Hu = cos
(√

6π�
ρ
tot

)
× [

gsss sin
(√

2π�s
I

)
sin

(√
2π�s

II

)
sin

(√
2π�s

III

)
+ gscc sin

(√
2π�s

I

)
cos

(√
2π�s

II

)
cos

(√
2π�s

III

)
+ gcsc cos

(√
2π�s

I

)
sin

(√
2π�s

II

)
cos

(√
2π�s

III

)
+ gccs cos

(√
2π�s

I

)
cos

(√
2π�s

II

)
sin

(√
2π�s

III

)]
.

(C3)

By contrast, when Cσ
αβ has (predominantly) negative eigenval-

ues, we disregard terms with �s
α and keep

Hũ = cos
(√

6π�
ρ
tot

)
× [

g̃ccc cos
(√

2π�s
I

)
cos

(√
2π�s

II

)
cos

(√
2π�s

III

)
+ g̃css cos

(√
2π�s

I

)
sin

(√
2π�s

II

)
sin

(√
2π�s

III

)
+ g̃scs sin

(√
2π�s

I

)
cos

(√
2π�s

II

)
sin

(√
2π�s

III

)
+ g̃ssc sin

(√
2π�s

I

)
sin

(√
2π�s

II

)
cos

(√
2π�s

III

)]
.

(C4)

In both cases, terms with cos(
√

6π�
ρ
tot ) → sin(

√
6π�

ρ
tot )

may also exist. They have the same scaling dimension as the
cosine terms shown here.
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The tree-level RG equations are

⎛
⎜⎝

gsss

gssc

gcsc

gccs

⎞
⎟⎠

.

=

⎡
⎢⎢⎢⎢⎣2 − 3K

ρ
tot +∑

α (Kσ,−1)αα

2
+

⎛
⎜⎜⎜⎜⎝

0 (Kσ,−1)II,III (Kσ,−1)I,III (Kσ,−1)I,II

(Kσ,−1)II,III 0 −(Kσ,−1)I,II −(Kσ,−1)I,III

(Kσ,−1)I,III −(Kσ,−1)I,II 0 −(Kσ,−1)II,III

(Kσ,−1)I,II −(Kσ,−1)I,III −(Kσ,−1)II,III 0

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

gsss

gssc

gcsc

gccs

⎞
⎟⎟⎟⎠, (C5)

⎛
⎜⎝

g̃ccc

g̃ccs

g̃scs

g̃ssc

⎞
⎟⎠

.

=

⎡
⎢⎢⎢⎣2 − 3K

ρ
tot +∑

α (Kσ )αα

2
+

⎛
⎜⎜⎜⎝

0 (Kσ )II,III (Kσ )I,III (Kσ )I,II

(Kσ )II,III 0 −(Kσ )I,II −(Kσ )I,III

(Kσ )I,III −(Kσ )I,II 0 −(Kσ )II,III

(Kσ )I,II −(Kσ )I,III −(Kσ )II,III 0

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎝

g̃ccc

g̃ccs

g̃scs

g̃ssc

⎞
⎟⎟⎟⎠. (C6)

At the bare level, interactions in the spin sector are weak
and repulsive Cσ

αβ > 0, and renormalize downwards as the
QCP is approached (see Fig. 3). The Luttinger parameter in
the total charge sector is

K
ρ
tot =

∑
αβ K

ρ
αβ

3
. (C7)

The largest scaling dimension, which occurs in Eq. (C5), is
typically negative and as [Kσ ]αβ → δαβ from above, becomes
[1 − 3K

ρ
tot]/2. Thus, a three-band LL with weak interactions

does not display Mott localization.

b. Umklapp scattering in the C3S2 phase.

In the C3S2 phase, �s
I condenses, while the Luttinger

parameter in the sector of channels II and III remains positive
and approximately cσ

II,II = cσ
III,III = f σ

II,III � 1 reflecting the
spin symmetry being enhanced at the interband level. The
dominant umklapp terms are

Hu = cos
(√

6π�
ρ
tot

)
× [

gcc cos
(√

2π�s
II

)
cos

(√
2π�s

III

)
+ gss sin(

√
2π�s

II ) sin
(√

2π�s
III

)]
. (C8)

In this phase, there are three other pairs of operators which
have the same RG equations, namely,(

gcc

gss

).

=
[

2 − 3K
ρ
tot +∑III

α,II(K
σ,−1)αα

2

+
(

0 (Kσ,−1)II,III

(Kσ,−1)II,III 0

)](
gcc

gss

)
. (C9)

The dominant operator is obtained for gcc = gss and has scal-

ing dimension 2 − 3K
ρ
tot+

∑III
α,II (K

σ,−1 )αα−2(Kσ,−1 )II,III

2 � 1 − 3K
ρ
tot

2 .
Therefore, the Mott transition occurs at Ktot = 2

3 which re-
quires rather strong interactions.

c. Umklapp scattering and the phase C2S1a

In this phase the spin sector of channels II and III is
fully gapped and 0 < cσ

I,I � v̄. We therefore concentrate on
an umklapp term for which there is spin conservation within
Fermi surface I, i.e.,

Hu = g cos
(√

6π�
ρ
tot

)
cos

(√
2π�s

I

)
(C10)

and the analogous term obtained by cos(
√

6π�
ρ
tot ) →

sin(
√

6π�
ρ
tot ). The scaling dimension of these terms is 2 −

3K
ρ
tot/2 − Kσ

I,I/2 and thus the transition occurs at

K
ρ
tot = 2

3

[
2 − Kσ

I,I

2

]
≈ 1. (C11)

We observe that the ordering in the spin sector promotes a
Mott transition in its vicinity and we expect K

ρ
tot < 1. When

the Mott transition occurs, the total charge mode �
ρ
tot freezes,

corresponding to an electrical charge insulator. At the same
time, �s

I freezes. Taken together, the phase phase C2S1a
becomes a phase C1S0a.

The long-range correlations of O[II,III]
CDW of the C2S1a phase

survive the Mott transition and additional long-range correla-
tions of OI,I

CDW appear.

d. Umklapp scattering and the phase C2S1b

The umklapp terms of relevance for the phase C2S1b are
also given by Eq. (C10) and the transition to a phase C1S0b
again occurs at K

ρ
tot ≈ 1. All superconducting correlations are

killed by the ordering of �
ρ
tot; the only long-range correlations

occur for OI,I
CDW.

e. Umklapp scattering and the phase C1S0

In the phase C1S0 all spin modes are frozen and only the
pair �

ρ
tot,�

ρ
tot displays long-range correlations. The umklapp

term is

Hu = g cos
(√

6π�
ρ
tot

)
, (C12)

which has dimension 2 − 3K
ρ
tot/2 and thus appears to be

relevant for K
ρ
tot < 4

3 , i.e., even for attractive interactions. This
seems physically inconsistent and a more appropriate treat-
ment of the umklapp scattering for the phase C1S0 follows.

In the present case where Cσ
αα → −∞ for all three diagonal

matrix elements, the Mott transition at half-filling occurs prior
to the instability to the fully gapped superconductor. Indeed,
as we see from Eq. (C6), the dominant operator has the form

Hu = g cos
(√

6π�
ρ
tot

)
× [

cos
(√

2π�s
I

)
cos

(√
2π�s

II

)
cos

(√
2π�s

III

)
− cos

(√
2π�s

I

)
sin

(√
2π�s

II

)
sin

(√
2π�s

III

)
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Ln�L�a�
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FIG. 15. Scaling dimension du [see Eq. (C14)] for the umklapp
operator given in Eq. (C13) as a function of RG time. Here, J/U =
0.6 and U = 1.5v̄ were assumed and we used Eqs. (B20) for the
evaluation of the Luttinger parameters. Clearly, the umklapp operator
becomes relevant before the transition to the superconducting state at
ln(L/ã) = 48.

+ sin
(√

2π�s
I

)
cos

(√
2π�s

II

)
sin

(√
2π�s

III

)
+ sin

(√
2π�s

I

)
sin

(√
2π�s

II

)
cos

(√
2π�s

III

)]
= g cos

(√
6π�

ρ
tot

)
cos

(√
6π�s

rel

)
(C13)

with
√

3�s
rel = �s

I − �s
II − �s

III. The scaling dimension of
this operator is

du = 2 − 3
K

ρ
tot + Kσ

rel

2
, (C14)

where

Kσ
rel =

∑
α Kσ

αα + 2Kσ
II,III − 2

∑
α=II,III K

σ
I,α

3
. (C15)

When the operator (C13) orders prior to the C1S0 instability,
an insulating C2S2 emerges (see Fig. 15).
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