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Rhombi-chain Bose-Hubbard model: Geometric frustration and interactions
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We explore the effects of geometric frustration within a one-dimensional Bose-Hubbard model using a chain
of rhombi subject to a magnetic flux. The competition of tunneling, self-interaction, and magnetic flux gives rise
to the emergence of a pair-superfluid (pair-Luttinger liquid) phase besides the more conventional Mott-insulator
and superfluid (Luttinger liquid) phases. We compute the complete phase diagram of the model by identifying
characteristic properties of the pair-Luttinger liquid phase such as pair correlation functions and structure factors
and find that the pair-Luttinger liquid phase is very sensitive to changes away from perfect frustration (half-flux).
We provide some proposals to make the model more resilient to variants away from perfect frustration. We
also study the bipartite entanglement properties of the chain. We discover that, while the scaling of the block
entropy pair-superfluid and of the single-particle superfluid leads to the same central charge, the properties of
the low-lying entanglement spectrum levels reveal their fundamental difference.
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I. INTRODUCTION

Largely degenerate low-energy manifolds appear in diverse
physical contexts, ranging from frustrated spin systems [1,2]
to disordered media with random impurities [3], passing by
the celebrated Landau levels of a 2D electron gas in a trans-
verse magnetic field [4]. In all these cases, the flatness of the
energy landscape gives rise to intriguing phenomena, like spin
liquids (i.e. stable phases with no broken symmetry at all),
localization phenomena of various kinds, and the quantum
Hall effect. A central role in the creation of such peculiar
degeneracies is played by constraints which descend from
geometrical reasons (like the dimensionality of the system and
the form of the underlying lattice structure, when present)
or from gauge potentials (e.g., the vector potential of the
above mentioned magnetic field), and often by their interplay.
Interestingly, localization can be achieved even in the absence
of disorder by simply mixing these latter two ingredients, as
in the case of Aharanov-Bohm cages [5,6], or by properly
tuned long-range hopping terms without any net magnetic
field [7–9].

The insertion of interactions among the system compo-
nents on top of flat dispersion bands leads to even richer
scenarios for many-body physics, often strongly correlated
and profoundly nonperturbative. The two archetypical ones
are arguably (i) the occurrence of ferromagnetism in repulsive
flat-band Hubbard models as guaranteed by rigorous results
by Lieb [10], Mielke [11,12], and Tasaki [13,14]; and (ii) the
emergence of a many-body spectrum which is itself nearly-
degenerate, as is the case in fractional quantum Hall effect(s)
and with anyonic quasiexcitations [15–18]. More recently, a
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flurry of interest has been blowing about possible realizations
of flat-band topological insulators with nontrivial Chern num-
bers [7–9,19,20].

The interest in frustrated lattices for mobile quantum parti-
cles has been further enhanced by the availability of platforms
for tailoring so-called synthetic quantum matter [21]: e.g.,
quantum-dot lattices for electrons [22], Josephson junction
arrays for Cooper pairs [23], photonic lattices [24–28], and
optical lattices for cold atoms [29–31]. In the latter, despite
the charge neutrality of the constituents, it is nowadays routine
to produce synthetic gauge fields, via laser-assisted tunneling
[32,33] and/or via shaking of the lattice structure [34–37].
Moreover, it is possible to load the lattices with fermionic or
bosonic particles, and even with mixtures, while also tuning
the interactions among them via Fano-Feshbach resonances.

For bosons, the dominance of interaction over kinetic terms
leads to incompressible Wigner-crystal-like ground states at
certain fractional fillings. These are determined by the possi-
bility of occupying nonoverlapping localized eigenstates and
may also lead to the appearance of supersolid phases [38,39].
Here, it is possible to obtain a pair of particles by adding
a particle to the critical density which forms the Wigner
crystals [40]. In the opposite limit of large occupation number,
known as the quantum rotor limit and particularly relevant for
Josephson junction arrays, Douçot and Vidal highlighted the
possibility of obtaining a coherent transport of particle pairs
with the corresponding absence of single particle transport
[41–43]. In this case, there is no need to invoke three-body
hardcore constraints to obtain pair superfluids in cold atomic
systems as used in other studies [44–49].

Flat bands and unconventional pairing coincide well with
fermions. For attractive interactions, an intriguing connection
has recently been highlighted between the quantum metric of
the bands (which is distinct from, but related to, the Chern
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FIG. 1. One-dimensional lattice of rhombi with M cells and L

sites. Each cell contains three sites labeled A, B, C. Solid (dashed)
line connections indicate a tunneling amplitude −J (−J eiφ ). (a) is
the a representation of the model in real space showing the number of
sites, whereas (b) is a schematic diagram to illustrate the cells more
clearly. (c) is an illustration of a restricted single-particle tunneling
for the fully frustrated system.

number) and the BCS superfluid density of the system. This
arises even in the absence of a Fermi surface [50,51]. For the
repulsive case, a superfluid appears at fillings lower than that
which stabilizes a crystalline insulating phase (similar to the
one mentioned for bosons) [52].

We point the reader to a very recent contribution by Tov-
masyan et al., which presents a unifying picture for flat bands
loaded with particles of quantum statistics [53]. We also no-
tice that comparative studies of the dynamics of few-particle
fermionic and bosonic quasi-one-dimensional systems with
flat bands have been carried out in Ref. [54]. Scattering
processes throughout a flat band system have been examined
in Ref. [55].

In this work, we focus on a Bose-Hubbard model for a
one-dimensional (1D) lattice of rhombi (also often referred
to as a diamond lattice or AB2 lattice), where each rhombus
is pierced by a tunable magnetic flux φ (see Fig. 1). When φ

is an odd multiple of π , all three bands of the single-particle
dispersion relation become flat (Fig. 2) and a complete basis of
fully localized Ahranov-Bohm cages [see Fig. 1(c)] is present
(Sec. II). This specific lattice structure (namely the same as in
the paper by Douçot and Vidal [42]) has very recently received
a revival in attention, due to both its experimental realization
in two distinct photonic waveguide platforms [56,57] and
to a couple of novel theoretical insights which describe the
formation of pairs [53] and a hidden topological character
of the bands [56]. We notice that the latter could possibly
have a relation to the hidden Z2 symmetry, that led people
in the community of Josephson arrays to propose this kind
of geometry for building a topologically protected quantum
memory [58–60]. We focus on a commensurate integer filling
of the lattice, i.e., one (or two) particle(s) per site. We explore
the phase diagram as a function of the magnetic flux and the
on-site repulsive interaction (Sec. III), using density matrix
renormalisation group (DMRG) with matrix product states
(MPS) [61–63] simulations, to address some of the questions
(re-)opened by these recent contributions.
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FIG. 2. The single-particle energy band E(k) as a function of the
lattice momentum k. The fully frustrated φ = π bands are the solid
lines, whereas the nonfrustrated φ = 0 are shown by dashed lines.
An intermediate frustration (at φ = π

6 ) is shown by the dotted lines.

First, we confirm the expectations in the two extremal
regimes of frustration, at zero and π flux. At zero flux, the
well-known Mott insulator (MI) to superfluid—or Luttinger
liquid (LL) as we are in quasi-1D—phase takes place, at a
critical coupling slightly renormalized due to the microscopic
geometry of the lattice. At magnetic flux π , single-particle
transport is absent and the LL cannot occur but the Mott
lobe still closes (Sec. IV) and transport occurs by the flow
of boson-pairs, which constitute a more exotic pair-Luttinger
liquid (PLL) [41,42]. Incidentally, we address the reader to
other recent references for fractional fillings [64–67] where
pair Luttinger liquids have also been reported.

Then we show that the PLL unfortunately gets destroyed
very quickly at imperfect frustration [i.e., φ = π (1 − ε)]. This
is consistent with the qualitative exponential prediction by
Douçot and Vidal [42], i.e., ε � exp(−J/U ). Noticeably, the
size of the region can be (marginally) extended by using
higher bosonic filling, as this pushes the Mott fluctuations
further back to a smaller J/U (as we exemplify with two
particles per site). It would thus be interesting to find a way
to predict an optimal filling to get reasonable experimental
errors in the flux (larger than the present 0.5%), allowing for
a realistic detection of PLL, but this goes beyond the scope
of our present work. We also propose an alternative method
using amplitude modulation which is much more resilient to
imperfect flux. This is achievable using a digital micromirror
device (DMD) or a single atom microscope.

Additionally, we employ entanglement analysis to distin-
guish the two gapless Luttinger phases (for recent reviews,
see Refs. [68–70]). Although the conformal field theory (CFT)
central charge extracted from the scaling of the entanglement
entropy is not able to distinguish them, a noticeable differ-
ence emerges when looking at the degeneracy pattern of the
low-lying entanglement spectrum levels (Sec. VI). Finally,
we state the conclusions of our main findings and offer our
perspective on further works to be carried out (Sec. VII).
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II. THE MODEL

The Bose-Hubbard model for a quasi-one-dimensional
chain of rhombi is our focus, as mentioned in Introduction
(Sec. I). The geometric formulation is depicted in Fig. 1. The
unit cell of such a lattice is made of three sites that we label
A, B, and C. The coordination number of A and C is two,
while for B it is four [71]. We consider only nearest-neighbour
hopping and on-site interactions, which is common in cold-
atomic setups. The Hamiltonian is

ĤBH = Ĥ0 + ĤU ≡ Ĥ0 + U

2

∑
j

∑
α

n̂j,α (n̂j,α − 1), (1)

Ĥ0 = −J
∑

j

∑
�

∑
α,β

T
(�)
α,β b̂

†
j+�,αb̂j,β , (2)

where the index j denotes the lattice cell, the Greek letters
label the basis inside a cell, i.e., α, β ∈ {A,B,C}, and � ∈
{0,±1} represents the (relative coordinate of the) cell where
the particle is hopping to. We have introduced the annihilation
(creation) operators b̂

(†)
j,α , and the number operator n̂j,α =

b̂
†
j,αb̂j,α . In this manuscript we consider a chain with open

boundary conditions, as shown in Fig. 1. In order to avoid
spurious effects at the edges, we deal with M cells, of which
only M − 2 are complete, i.e., we take M − 1 full rhombi that
correspond to L = 3M − 2 sites in total.

In order to accommodate a piercing (synthetic) magnetic
flux φ through each rhombus, we choose the hopping matrices
to be

T (0) =
⎛⎝0 1 0

1 0 1
0 1 0

⎞⎠, T (+1) =
⎛⎝0 1 0

0 0 eiφ

0 0 0

⎞⎠,

T (−1) = (T (+1))†. (3)

The dashed connections in Fig. 1 denote a tunneling co-
efficient of −J eiφ , whereas the solid lines have tunneling
coefficient −J . We stress here that this is one of the many
possible gauge choices, e.g., distributing homogeneously the
flux as e±iφ/4 on each link might be even more convenient
for experimental purposes [72–74]. We notice that the already
mentioned recent photonic implementations make use of the
single-link [56] and the four-link gauge [57], respectively.

Let us focus first on the noninteracting Hamiltonian H0

and its band structure in the infinite, perfectly translational
invariant regime (i.e., with no edges):

Eτ (k) = 2Jτ

√
1 + cos

(
k − φ

2

)
cos

(
φ

2

)
, (4)

where τ = 0,±1 denotes the three bands. A chiral
(sublattice) symmetry operator � = diag{−1,+1,−1}, such
that �2 = I and �H0(k)� = −H0(k), is robust with respect
to the gauge choice (while other choices could also dis-
play lattice-inversion symmetry, for example). This does not,
however, constrain the three bands with well-defined topo-
logical invariants. These could instead emerge by dealing
with the squared Hamiltonian, as very recently commented in
Ref. [56]. As the band structure is invariant under the insertion
of integer flux-quanta (i.e., under φ → φ + 2π ), we restrict

ourselves to the range φ ∈ [−π, π ]. Interestingly, the flat
middle band τ = 0 is insensitive to φ and occurs purely due
to geometrical reasons [75]. In particular, the corresponding
eigenmodes ŵ

(†)
j,0 have zero amplitude on the B site of cell

j around which they are centered (see Fig. 1). As visible in
Fig. 2, the curvature of the other two bands decreases with
growing flux until they become perfectly flat at full frustration,
i.e., φ = π : E(φ=π )

τ (k) = 2Jτ [42].
The simultaneous flatness of all bands can be understood

in terms of Aharanov-Bohm cages [6,38,42], i.e., of perfectly
localized eigenmodes ŵ

(†)
j,±, which occur due to destructive

interference preventing the movement of single particles from
one B site (in cell j ) to another (as illustrated in Fig. 1). In our
gauge, these localized modes are

ŵj,τ = (−1)τ b̂j−1,C − (−1)τ b̂j,A − 2τ b̂j,B + b̂j,C + b̂j+1,A

(21+|τ |/2)
.

(5)

The presence of the edges in our open boundary setup gives
rise to two extra mid-gap modes ês,σ per side (s = L, R and
σ = ±1) at energies σ

√
2J :

êL,σ =−σ
√

2 b̂1,B + b̂1,C + b̂2,A

2
,

êR,σ =−σ
√

2 b̂M,B − b̂M−1,C + b̂M,A

2
.

(6)

Moreover, it restricts the running of the cell index j in Eq. (5)
to the full cells, i.e., j = 2, . . . ,M − 1. Summarising, the
noninteracting Hamiltonian at π flux can be written as

Ĥ
(φ=π )
0 =

M−1∑
j=2

∑
τ∈{0,±}

2Jτ ŵ
†
j,τ ŵj,τ

+
∑

s∈{L,R}

∑
σ∈{±}

σ
√

2J ê†s,σ ês,σ . (7)

Due to the overlapping nature of the Wannier eigenmodes
in Eqs. (5) and (6) [76], the Hubbard interaction term ĤU in
Eq. (1) can be rewritten as [20,42,77,78]

Ĥ
(bulk)
U =

M−1∑
j=2

⎛⎝Ũτ1,τ2,τ3,τ4ŵ
†
j,τ1

ŵ
†
j,τ2

ŵj,τ3
ŵj,τ4

(8)

+
∑

�∈{±1}
Ṽ (�)

τ1,τ2,τ3,τ4
ŵ

†
j+�,τ1

ŵ
†
j,τ2

ŵj,τ3
ŵj+�,τ4

(9)

+
∑

�∈{±1}
J̃ (�)

τ1,τ2,τ3,τ4
ŵ

†
j+�,τ1

ŵ
†
j+�,τ2

ŵj,τ3
ŵj,τ4

⎞⎠,

(10)

plus similar terms for the edges, with all amplitudes linear
in U . The full form of the different terms in Ĥ (bulk) can
be found in the supplementary MATHEMATICA script [79].
As an example of the nature of these terms, we show the
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Ṽ

FIG. 3. Illustration of the type of cage terms that control the
movement and the interaction of the pairs of particles. Ũ is the
on-cell interaction of pairs, J̃ is the hopping of pairs between cells,
and Ṽ can be interpreted as nearest-neighbor interaction or correlated
swapping of two particles across neighboring sites.

Hamiltonian with terms restricted to the lowest band:

Ĥ
(bulk)
U,−1 = 5

32

M−2∑
j=2

nj,−1
(
nj,−1 − 1

) + 1

16

M−2∑
j=3

(nj−1,−1nj,−1)

+ 1

64

M−2∑
j=3

(
w

†2

j−1,−1w
2
j,−1 + w

†2

j,−1w
2
j−1,−1

)
, (11)

where nj,−1 = (w†
j,−1wj,−1). The appearance of a pair-

tunnelling term, with the minimum of the dispersion relation
at momentum k = π can be seen in Eq. (11).

We stress that a number of other studies [38,39,64] em-
ployed projection on lowest-band states, applicable as long
as interactions are smaller than the gap between the bands, in
analogy to the lowest Landau level projection in quantum Hall
systems. Here instead, we retain the full description of the
model. This formulation of the interactions, makes it evident
that a local Z2 symmetry is preserved by the Hamiltonian,
namely the parity of the population of all three kinds of cages
localized around each hub B, i.e.,

[ĤBH, P̂j ] = 0 ∀j with P̂j ≡ exp

[
iπ

∑
τ

ŵ
†
j,τ ŵj,τ

]
.

(12)

In particular, the interaction effects can be sorted out in three
different kinds: (i) Ũ interactions and cage flavor-flips around
a given hub; (ii) Ṽ interactions and correlated flips between
nearest-neighboring hubs; (iii) J̃ pair-tunnelling (possibly
with flips) between nearest-neighboring hubs. An example of
each of these terms is pictorially shown in Fig 3. The J̃ terms
explicitly show that a delocalization of particle (bound) pairs
is possible, in spite of the single-particle perfect localization.
When this takes place and how robust this pair coherent phase
actually is, forms the core subject of our work, which aims to
extend the seminal results by Douçot and Vidal [42] and the
most recent generalization by Tovmasyan et al. [53].

Before delving into the phase diagram analysis at commen-
surate filling in the rest of the paper, we comment here briefly
about possible experimental schemes for cold atomic setups.
The two main procedures available are using either real space
geometries or synthetic dimensions. (a) Real space geometries
can be made of lasers intersecting at ±45 degrees with the
lattice dimension plus additional superlattices transverse to it
to isolate single rhombi chains [54,80]; or by either digital
micromirror devices (DMD) [81] or magic/antimagic trapping

of alkaline-earth atoms [82]. (b) Synthetic dimensions would
involve exploiting three internal hyperfine states of some atom
to map them into the three basis sites of the unit cell [83,84]—
the main difference with the present analysis being the range
of interactions, extending over the whole unit cell.

In both schemes, the phase imprinting on the tunnel-
ing matrix elements can then be achieved by laser-assisted
hopping [32,33,35,85] and/or shaking of the lattice barrier
amplitude [34–36,86]. We envision that imprinting the phase
on a single link (as the gauge choice in this work) could be
achieved by shaking only the corresponding lattice barriers.
Other choices, like a Landau gauge with a j -cell dependent
T

(0)
α,α±1 = exp(∓ijφ) and T

(+1)
α,α+1 = 1 or a symmetric one with

T
(0)
α,α±1 = exp(∓ijφ/2) and T

(+1)
α,α+1 = exp(−ijφ/2) might be

more suitable for laser-assisted schemes via a running wave,
as often realized in experiments [29,32]. In the two recent
experiments conducted on photonic waveguides, the tunneling
coefficients were engineered in a similar spirit, either by
insertion of extra elements with different refractive index [56]
or by Floquet schemes [57]. In these, however, interactions
between the photons are a bit more difficult to obtain and tune
with current technologies. There is effort being put into this
and we might expect some progress in the near future.

III. COMPLETE PHASE DIAGRAM

We focus here on a commensurate filling of one particle
per physical site, i.e., three particles per lattice cell (N = L =
3M − 2). At infinite interactions we expect a Mott insulator
(MI) independently of the piercing flux, since the kinetic
energy does not play any role. At zero interactions and full
frustration, we also expect an insulating state, though of a
different kind, since all single-particle wave functions are
localized. This is, however, not the case as soon as a tiny
interaction is present. As shown above (Sec. II), the on-
site Hubbard interaction induces pair-hopping terms between
neighboring sites [Eq. (10)], which in turn can be shown to
lead to a pair quasi-condensation [42,53] (a pair-Luttinger
liquid, PLL). These occur without violating the extensive
collection of local Z2 invariants of Eq. (12).

At small enough fluxes, instead, it is legitimate to assume
that the presence of rim sites (A and C) appears as a decoration
to a pure 1D lattice. These simply change the single-particle
band curvature and therefore renormalize the critical coupling
between the MI and the “standard” Luttinger liquid (LL) [87].
To the best of our knowledge, however, the questions about the
nature of the LL-PLL transition and the position of the triple
point at finite or perfect frustration, i.e., about the robustness
of the exotic PLL, still remain open.

In Fig. 4, we show the complete phase diagram of the
model as J/U and φ vary, which constitutes our main result.
The transitions from MI to the corresponding gapless phase
were obtained by evaluating the compressibility gap as shown
in Sec. IV, while the LL-PLL transition was determined by
examining the correlation decay as done in Sec. V. Single-
particle Green’s functions decay (at least) exponentially fast
in the PLL, while pair-correlations display quasi-long-range
ordering via an algebraic behavior (just as the single-particle
ones do in the usual LL).
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FIG. 4. The phase-diagram with different phase shifts φ against
the tunneling coefficient J/U . The Luttinger liquid (LL), pair-
Luttinger liquid (PLL), and the Mott insulator (MI) regions are
labeled. The critical points delimiting the MI region are obtained
from the energy gap as in Sec. IV. The critical points separating the
LL and PLL phases are obtained by looking at the decay of the single
and pair correlation functions. The error bars have been omitted when
they are smaller than the marker size. (a) is the full variation of φ

using a filling=1, while (b) and (c) are regions close to full frustration
for filling=1 and filling=2, respectively. The 
 in (a) denotes G̃(π ),
where Vidal and Douçot predicted the LL-PLL transition to be at
φ = π . The dashed line represents their MI-LL transition prediction,
G∗(φ) in Eq. (13), which is only valid for small φ values.

In our simulations, we observe a small intermediate region
between the LL and PLL phases in which it is indistinguish-
able whether the single correlations better fit an exponential or
power law scenario. To display this behavior we have added
error bars in the numerical data for the LL-PLL transition.
This could be related to finite size effects and the nature of the
transition between these two gapless phases remains an open
problem.

We have performed a comparison of our estimates with
those given by Vidal and Douçot [42] for small values of φ, in
terms of g = √

Ec/EJ ↔ √
U 〈n〉/J . Defining G = J/U , we

obtain

G∗(φ) = G∗(0)

cos
(

φ

4

) , (13)

where G∗(0) = 4/(3π2) � 0.135, in good agreement with
our numerically found J

[φ=0]
c = 0.14 ± 0.01 (see Sec. IV).

This curve (13) is shown by the dashed line in Fig. 4(a),
which is within our error bars up to φ = 0.3π and displays

only slight discrepancies up to φ = 0.5π . For large fluxes,
further corrections are expected and the prediction at perfect
frustration reads G̃(π ) = 4G∗(π ) � 0.764 [shown by the 


symbol in Fig. 4(a)], again in nice agreement with our numer-
ical estimates (J/U )[π]

c = 0.78 ± 0.03.
It turns out that the PLL only exists in a very narrow region

at imperfect frustration, consistent with the qualitative predic-
tion |π − φc| � exp(−J/U ) by Douçot and Vidal [42]. The
presence of a large MI region at unit filling prevents such an
exponential from growing large enough. A possible strategy to
increase the stability of PLL, therefore, is to reduce the MI by
resorting to higher filling factors (which, incidentally, should
also allow for better signal-to-noise ratio in the experimental
detection). We tested it by using filling N/L = 2, as shown in
Fig. 4(c). Despite the sensible shrinking of the MI region (by
almost 25%), it seems that the prefactor of the exponential
also changes, resulting in quite a marginal overall increase of
the PLL region. Determining an optimal filling for PLL detec-
tion under common experimental constraints could constitute
an interesting extension for future works. It is possible that
the best scenario is indeed the original large N/L, quantum
rotor, limit of Josephson junction arrays or perhaps coupled
extended condensates or even photonic waveguides.

Incidentally, we recall that the local Z2 symmetry could
also be interpreted in terms of the two possible directions
of the persistent current induced by the flux φ around each
rhombus [42,59]. The configurations with zero or one fluxoid
per rhombus are indeed perfectly degenerate at π flux. In our
gauge, however, all matrix elements are real at π flux and
time-invariance is apparently restored (despite the magnetic
field). The numerical algorithm tends to pick up real-valued
solutions with no spontaneous local current. The problem
could in principle be overcome by looking at current-current
correlators at a distance, in order to detect a possible (anti-)
ferromagnetic ordering of the rhombi chirality: a related Ising
transition should then discriminate LL from PLL [42,59].

We will show in Sec. V, however, that the PLL region turns
out to be so narrow that we cannot accumulate a reasonable
region of points to perform a precise enough finite-size scaling
to identify the universality class of the transition. We will
show that neither the entanglement entropy scaling of Sec. VI
will be able to discriminate the predicted c = 3/2 conformal
central charge of the critical line. Thus, the final answer about
the critical behavior of this U(1) × Z2 system still remains as
elusive as for the square ladder incarnations [88–93].

Before describing the data analysis, we notice here a cer-
tain similarity between this phase diagram and the one found
for a fermionic (imbalanced) Creutz-Hubbard ladder [20],
although there all phases are of reasonable size and insulating
(see also Ref. [53]). It would be interesting to see whether the
robustness of the PLL towards band curvature might be differ-
ent against different deformations of the model, and whether
this has any relation to the (emergent) topological character
[56]. For example, by substituting the eiφ phase factor with an
amplitude modulation cos(φ), our preliminary numerical data
(see Appendix) indicate a considerably more robust PLL. In
practice, this setup requires the ability to imprint a different
local tunneling on one connection within each rhombus. This
formulation can be achieved using a single atom microscope,
digital micromirror devices (DMDs), or an adaptation of other
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FIG. 5. Ground-state phase diagram at unit filling N = L and
full frustration φ = π in the μ/U − J/U plane. Circles and squares
represent the numerical data for μ+ and μ−, respectively. The region
μ− < μ < μ+ is the Mott-insulator lobe. The two lines are cubic
splines approximations. Their crossing occurs at the BKT point
Jc ≈ (0.78 ± 0.03)U indicated by the shaded region.

methods. We will now analyze the different phases in detail,
examining terms of physical observables and entanglement.

IV. THE MOTT-INSULATOR LOBE

The dominance of the onsite repulsion U over the tunneling
coefficient J leads, for unit filling, to the gapped Mott-
insulator (MI) phase, with the noticeable difference of the
particle distribution being uniform across different cells, but
not within them. The hubs B host some extra density with
respect to the rims A and C (see Fig. 6).

The position of the Berezinski-Kosterlitz-Thouless (BKT)
transition from MI to the compressible gapless phase, be it
the LL or the PLL one, can be reasonably estimated by the
vanishing of the compressibility gap. If we denote the energy
cost for adding or removing n particles by

μ+n = lim
L→∞

EL+n − EL

n
; μ−n = lim

L→∞
EL − EL−n

n
, (14)

where EN represents the ground-state energy of N particles.
The MI-LL transition happens as soon as μ+1 = μ−1 [87].
The Mott lobe, i.e., the stability region of the MI in terms
of the chemical potential, μ−1 < μ < μ+1, is illustrated in
Fig. 5. We notice that since we do not explicitly impose
the local Z2 constraints, this same criterion works also for
the MI-PLL transition, coinciding exactly with the apparently
more appropriate definition of μ+2 = μ−2.

The ground-state energies at fixed number of particles have
been obtained via numerical MPS/DMRG simulations [61–
63] on finite-size systems with open-boundary conditions,
explicitly preserving the Abelian U(1) symmetry. The local
Hilbert space has been truncated to nmax = 4 bosons per site
and the bond dimension was increased until convergence: typ-
ically χ = 200 was sufficient to obtain a maximal discarded
weight of O(10−7) or better.

A finite-size scaling of the μ’s has been performed, accord-
ing to the prediction ±(EL±n − EL)/n − μ±n � O(1/L) for

0 0.2 0.4 0.6 0.8 1 1.2
0.8

1

1.2

1.4

0.1 0.2
0.9

1

1.1

FIG. 6. Illustration of the spread of the on-site density 〈n̂α〉
averaged over the lattice of 226 sites for χ = 300 as the tunneling
and frustration is varied. Here the nonfrustrated (φ = 0) is shown by
the red circles (◦), the intermediate frustration (φ = 0.9π ) is shown
by the green dotted pentagrams (
), and the fully frustrated (φ = π )
are the blue dashed diamonds (♦). The density of the B sites is
shown by filled markers and sites A and C (which have equal on-site
density) are shown by the empty markers. Again the approximate
critical points are highlighted by the shaded regions at J [φ=0]

c = 0.14
(red), J [φ=0.9π ]

c = 0.33 (green), and J [φ=π ]
c = 0.78 (blue). The inset

is a zoomed in version close to the φ = 0 MI-LL transition.

chains up to 75 rhombi (i.e., 226 sites). Finally, the BKT tip
of the lobe is estimated by cubic splines interpolation of the
functions μ±(J/U ), as depicted in Fig. 5 for the fully frus-
trated case, φ = π : the result is (J/U )[φ=π]

c = 0.78 ± 0.03
as indicated by shaded region. As predicted, this frustrated
value is considerably larger than the completely unfrustrated
one, (J/U )[φ=0]

c = 0.14 ± 0.01, which in turn is roughly one
half of the purely 1D-chain value (J/U )[1D]

c = 0.30 ± 0.01
[87], due to the presence of the rhombi (which enlarge the
bandwidth by a factor

√
2).

As mentioned above, we have analysed the on-site density
distribution, which turns out to be reasonably uniform across
the cells within the chain, with boundary effects only slightly
affecting the two more external cells on either side. In all cases
(except for when J/U is very small) the density on the B

sites is always larger than uniform filling (one per site) and
has the same approximate magnitude away from the borders.
In Fig. 6, we therefore plot the average 〈n̂α〉 of a chain of
226 sites (75 rhombi), and we notice a certain number of
features: (i) the different connectivity of the sublattices leads
to an enhanced density 〈n̂α〉 on the hubs α = B with respect
to the rims α = A,C; (ii) the effect of the magnetic flux φ is
most evident at intermediate J/U where one system is in a
different phase to the other (gapped MI or gapless LL/PLL).
Deep in the MI phase there is very little discrepancy between
the unfrustrated (φ = 0), intermediate frustrated (φ = 0.9π )
and the fully frustrated (φ = π ). Before the first transition out
of MI at J

[φ=0]
c = 0.14, the discrepancy is as small as 0.2%

between the fluxes examined, though here U dominates so
strongly that any effects due to flux are negligible; (iii) finally,
the growth of the hub/rim imbalance appears to depend mostly
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FIG. 7. The spatial correlation functions against the intersite distance for a intermediate frustrated case (φ = 0.5π and J = 0.9U ) in (a) and
for the fully frustrated case (φ = π ) in (b)–(d) for a chain of length L = 226 with DMRG bond dimension χ = 300. In (a)–(c), values below a
threshold of 10−10, which constitutes numerical error, have been excluded. In the diagrams, η1 (dark blue ©) is the largest eigenvalue, η2 (red

∗) is the second largest and η3 (green �) is the smallest eigenvalue. [(b) and (c)] The decay of the eigenvalues of the pair correlations 〈b̂†2

i b̂
2

i+r〉
for (b) J = 0.4U in semi-logarithmic scale and for (c) J = 0.9U in a double logarithmic scale. The inset is the decay of the eigenvalues of
the correlation matrices for the corresponding single correlations 〈b̂†

i b̂i+r〉 at J = 0.4 (MI phase) and J = 0.9U (PLL phase). (d) The pair

correlations for the B sites 〈b̂†2

i b̂
2

i+r〉 from i ≈ L/4 for J/U = 0.9 and the corresponding η
[p]∗
1 values, which are the maximum eigenvalues

retaining their sign.

on the competition between J over U , with the hub density
experiencing an increase as J/U increases. The function has
a less pronounced curve (closer to a linear dependence) in the
MI phases, due to the restrictiveness of the phases. In the fully
frustrated case (filled markers), there is a more pronounced
jump around the transition point, which does not occur in
either of the other cases at φ = 0 and φ = 0.9π (empty
markers). Points (i) and (iii) seem to manifest the absence of
the so-called “uniform pairing condition” of Ref. [51].

V. GAPLESS PHASES

In order to characterize the gapless phase(s) outside the
Mott insulator lobe, we resort here to spatial correlations of
single [s] and pair [p] operators, and their Fourier trans-
form. We formed 3 × 3 matrices of the different combinations
across the i and i + r cells:

D
(i,i+r )[s]
α,β = 〈b̂†i,αb̂i+r,β〉, D

(i,i+r )[p]
α,β = 〈(b̂†i,α )2(b̂i+r,β )2〉,

(15)

and the corresponding structure factors [94]

S
[γ ]
α,β (k) =

∑
i �=j

eik(i−j )

M − 2
D

[γ ](i,j )
α,β , (16)

where k ∈ [−π, π ] and M − 2 is the number of full cells.
Then we evaluated their eigenvalues (and eigenvectors):

D(i,i+r )[γ ]v(i,i+r )[γ ]
ε = η(i,i+r )[γ ]

ε v(i,i+r )[γ ]
ε , (17)

S[γ ](k) w[γ ]
ε (k) = ζ [γ ]

ε (k) w[γ ]
ε (k), (18)

where ε = 1, 2, 3 in decreasing order and γ = s, p. We chose
this strategy to better illustrate the behavior of the correlations
as a whole as opposed to focusing individually on all different
matrix elements: such deeper analysis could be the subject of
future extensions of this work.

As already discussed qualitatively, we identify the pair Lut-
tinger liquid as the phase exhibiting quasi-long-range order

(QLRO) in the η[p] eigenvalues, while the η[s] are disordered
[65]. We have fixed i ≈ L/4 in Eq. (17) to suppress boundary
effects and looked for power-law versus exponential decay of
the different correlation eigenvalues, as illustrated in Fig. 7.
The structure factor of Eq. (16) was instead computed by in-
cluding all complete cells, excluding only the two incomplete
ones at the edges (see Fig. 1).

Firstly, we confirm that cases with the LL phase display
QLRO in both the single and pair particle correlations. This
was done to classify the phases occurring reasonably far from
full frustration. In Fig. 7(a), this is shown for φ = 0.5π ,
J = 0.9, and L = 226, where the QLRO is evident in the
double logarithmic scale. Secondly, we confirm that, in the
perfectly frustrated case φ = π , the single-particle correla-
tions are always short-ranged and the system cannot possibly
enter the LL phase. Noticeably, we do not explicitly impose
the emergent extensive collection of local Z2 invariants in our
numerics. All eigenvalues η[s]

ε vanish completely at a distance
r = 2, thus displaying perfect Aharanov-Bohm caging [see
Eq. (5)]. This is visible in the insets of panels of Figs. 7(b)
and 7(c).

Concerning the pair correlations, we find that the second
and third eigenvalues are always substantially smaller than
the dominant one. The second and third eigenvalue are less
than 1.5% and 1% of the first, respectively, at their maximal
point, which occurs at the start and then they decay expo-
nentially fast. Therefore we focus on η

[p]
1 (blue circles): the

semilogarithmic plot of Fig. 7(b) shows the exponential decay
well within the MI (J = 0.4U < Jc), while the log-log plot
of Fig. 7(c) highlights the algebraic decay a bit beyond the
transition to PLL (J = 0.9U > Jc). The decay can be fitted
using the following power law:

η
(i,i+r )[γ ]
1 � Ar−κ[γ ], (19)

where γ = [s] and γ = [p] for the single and pair power law
fit, respectively. The exponent κ[γ ] is then plotted in Fig. 8
with γ = p for φ = π and γ = s for φ = 0. In Fig. 8(a),
a drastic change in the fitted exponent for φ = π is evident
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FIG. 8. [(a) and (b)] Parameter κ[p] (κ[s]) obtained from fitting
the pair(single)-correlation function for φ = π (φ = 0) with a power
law [see Eq. (19)] as a function of J/U for L=226. The shaded
region indicates the Mott-PLL(Mott-LL) transition region of uncer-
tainty obtained in Sec. III.

around the critical value J/U = 0.78 ± 0.03, obtained above
in Sec. IV via the closure of the compressibility gap. This
reminds us of the usual K = 2κ[s] < 1/2 criterion for the
MI-LL transition [95]. The system’s ground state can be seen
to satisfy this criterion for the single correlation functions with
κ[s] passing through 0.25 around the transition in Fig. 8(b)
at φ = 0. Moreover, the value κ = 0.577 ± 0.007 seems to
describe very well the PLL, at least in the examined interval
J ∈ [0.82, 1]U .

Additionally, we can look at the eigenvector v(i,i+r )[p]
1 ,

which we find to weakly depend on r and on J in-
side the PLL. For J = 0.9U , it reads approximately v

[p]
1 =

(0.01, 0.98, 0.01)T , which highlights a largely predominant
role of the hubs B for the QLRO. This is evident by comparing
the η

[p]∗
1 values (the previously defined η

[p]
1 with their associ-

ated sign) with the B − B correlations in Fig. 7(d). For η
[p]∗
1 ,

we notice the alternating sign for even-odd distances and that
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FIG. 9. Eigenvalues ζ [p]
ε of the structure factor matrix for the

pair correlations for J = 0.9U , χ = 300 for (a) L = 226 and as a
function of the crystal momentum k and (b) different lengths of the
peak at k = π .

the magnitude of this oscillation is practically equal to that of
the B-B correlations, except for a case at each end.

Such alternating character of the pair correlations gets re-
flected in a macroscopic peak at k = π of the largest structure
factor eigenvalue ζ1, as shown in Fig. 9 for J = 0.9U and
L = 226 sites. The corresponding eigenvector for the largest
eigenvalue reads w[γ ]

ε (π ) � (0.1, 0.8, 0.1)T , displaying again
the dominance of B sites in the pairing mechanism, while the
A and C sites have an equal but very small effect. It should be
noted that this only differs from the pair correlations eigenvec-
tor due to the fact that the structure factor is calculated for all
full cells; if it is considered only from the quarter cell then we
once again obtain the average w[γ ]

ε (π ) � (0.01, 0.98, 0.01)T .
The scaling of this peak at k = π with the system size L

can also be taken as an indicator of the phase transition: as
shown in Fig. 9(b). Indeed, it starts to become macroscopic
(i.e., to diverge with the increasing length L) in the PLL
phase (J � 0.75U ), while it stays finite in the Mott region
(as indicated by data collapse).
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VI. ENTANGLEMENT ENTROPY AND SPECTRUM

Here we employ bipartite entanglement as a supplementary
detection tool for the different gapless phases. To this end, we
consider the reduced density matrix ρ� of a bipartition of the
rhombi chain into two segments of lengths � and L − �, and
we examine its entanglement entropy SL(�) and spectrum λi

(sorted in decreasing order):

SL(�) =−Tr(ρ� ln ρ�) = −
∑

i

λi ln λi, (20)

where we drop the dependence of the eigenvalues on � and L

for the sake of simplicity.

A. Entropy

For a critical system with open boundary conditions, con-
formal field theory (CFT) predicts that the von Neumann
entanglement entropy scales as

SL(�) = c

6
ln

[
L

π
sin

(
π�

L

)]
+ A + O

(
1

�

)
, (21)

where c is the central charge, which can be used as an indica-
tor of the universality class of the corresponding field theory,
and A is a model dependent (i.e., nonuniversal) constant
[96,97]. Here we calculate this based on which cell each site
occupies, so L is replaced by M in Eq. (21) and m is used to
show which cell we are cutting.

In Fig. 10, we distinguish three different cuts of the chain,
according to the sublattice after which they take place [see
Fig. 10(b)], and perform the fit of Eq. (21) on each separately.
Data are shown for J/U = 0.9 and we introduced the chord
distance d(m|M ) = [M

π
sin ( mπ

M
)] for convenience. The C cut

splits a rhombus in half and therefore gives rise to a higher en-
tropy with respect to the A and B cuts. Alternatively, we can
understand this by considering that the C cut separates two
cells and that correlations have a strong oscillatory character
between neighboring cells, causing a supplementary amount
of entanglement.

For the LL of the unfrustrated regime φ = 0, in Fig. 10(a),
we find that the cut after the maximal cut C has the cen-
tral charge c

[φ=0]
C = 1.0180 ± 0.0003. The cuts after A and

B have central charges c
[φ=0]
A = 1.101 ± 0.001 and c

[φ=0]
B =

1.050 ± 0.001, respectively. For the PLL of the frustrated
regime φ = π , in Fig. 10(c), we find that the maximal cut fits
such that the central charge c

[φ=π]
C = 1.052 ± 0.002, which

is comparable to the unfrustrated case. For the cuts after A

and B, the central charges are c
[φ=π]
A = 1.142 ± 0.006 and

c
[φ=π]
B = 1.078 ± 0.005 respectively.

Values for both the frustrated and the unfrustrated are thus
fully compatible with the well-known result for the LL phase
of the Bose-Hubbard model on a purely 1D chain [94,96,97],
i.e., c = 1. This confirms that only one bosonic component
(out of three possible ones) becomes gapless, in either case,
as we have already seen via the correlations in the previous
section. This holds regardless of which cut in the system is
fitted, i.e., even if we fit every cut after A or B which is a
cut across cells we get c � 1, once we have considered that
finite size effects are taking place. We, therefore conclude that
c is not a good indicator to distinguish PLL from LL. The

1.5
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FIG. 10. Block entanglement entropy for J = 0.9U and
L = 226 as a function of the chord length ln(d (m|M )) =
ln ([ M

π
sin ( mπ

M
)]) and compared to the CFT prediction Eq. (21) for

(c) the nonfrustrated case (φ = 0) and (a) the fully frustrated case
(φ = π ). (b) is an illustration of the different cuts that can be made
on the model. The cuts after A, B, and C are distinguished using the
symbols ∗, +, and 
, respectively.

low-lying levels of the entanglement spectrum, however, may
allow this as shown in the next section.

Before turning to the entanglement spectrum analysis, let
us mention that the entropy scaling across the PLL-LL transi-
tion at finite deviations from φ = π is not displaying any clear
signature of a c = 3/2 CFT line, as one would expect from its
predicted Ising character [42,59]. The difficulties in analyzing
transitions between gapless phases has already been noticed
in spin models [98].

B. Entanglement spectrum

Despite having the same central charge, we expect qualita-
tive differences between the wavefunction structure inside the
LL and PLL phase. We, therefore, resort to the entanglement
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FIG. 11. (a) The entanglement spectrum as a function of the dispersion from uniform filling δN of the number of bosons for the cut after C.
φ = 0 denotes the unfrustrated case (◦), φ = 0.9π the intermediate frustration (�) and φ = π denotes the fully frustrated case (
), simulated
at J = 0.9U . In (a), a solid line is used to join the degenerate eigenvalues in all cases. (b) Approximate parabolas for φ = 0, φ = 0.9π and
φ = π (left to right) based on the length L = 226. In the third panel, different colors denote the possible curve fitting to even and odd. (c)
The unfrustrated ES for a cut after C at L = 226 with the thermodynamic limit approximation shown by the parabolas. The legend shows the
degeneracy of each parabola.

spectrum, which is capable of revealing key properties about
the system, such as symmetries and excitations, which the von
Neumann entropy, being a single number, is unable to provide
[99–103]. Here we choose to focus on the C cut, which leaves
(M − 1)/2 rhombi on each side, so that the bipartition is
perfectly symmetric, at least concerning the number of sites.
Thanks to the conservation of the total number of particles
in the system, each Schmidt eigenvalue λi can be associated
to an eigenvector of the reduced density matrix with a fixed
number of particles. In Fig. 11(a), we plot the λi’s for a chain
of 75 rhombi, according to the excess number of particles δN

with respect to a homogeneously distributed unit filling (i.e.,
L/2 particles on both sides of the bipartition), similarly to
Ref. [104]. The tunneling value we consider is J/U = 0.9,
inside both the LL and PLL phases [see Fig. 4(a)].

The eigenvalues are clearly symmetric with respect to
δN = 0 regardless of the amount of frustration. For the un-
frustrated LL at φ = 0 (blue ◦) and the intermediate frustrated
LL at φ = 0.9π (green �), it is easy to recognize both the
− ln λi ∝ δN2 dependence and also the starting of the equally
spaced CFT tower within each distinct δN , as predicted for
the standard 1D Bose-Hubbard chain [104]. Both features
apparently disappear for the PLL at full frustration φ = π (red

), thus signaling a dramatic change in the underlying wave
function, undetected by the entropy scaling analysis. In order
to examine this more clearly we plot fitted curves at length

L = 226 of the same curvature for given φ in Fig. 11(b) for
φ = 0, φ = 0.9π , and φ = π from left to right. It is evident
from this that the unfrustrated cases can be extrapolated to
the typical curves. For φ = π , however, it is impossible to
fit the eigenvalues with functions of the same curvature. For
example, if the first five points are examined closely it can
be seen that a parabola would not be able to fit adequately
both 1 to 2 and 3 and 1 to 4 and 5. Instead, it seems that two
distinct parabola sets are appearing at the even and odd δN ’s as
shown by the red and black curves. In Fig. 11(c), we present
the results of a finite-size scaling towards the thermodynamic
limit for the unfrustrated case (φ = 0) shown by the parabolas.
A modified degeneracy counting and the appearance of a sec-
ondary tower, both possibly related to the internal structure of
the lattice, are evident. Examining these at δN = 0 the spacing
of the parabolas between every second one is approximately
equal, i.e., 1 − 3 ≈ 2 − 4 ≈ 3 − 5, whereas the spacing be-
tween neighboring parabolas differs. Higher parabolas are
excluded as they fall below the accuracy of our results. For the
fully frustrated case, instead, where it seems that two distinct
parabola sets are appearing, a reasonable finite-size scaling
procedure is not possible without conserving explicitly the
local Z2 quantities. Both these aspects go beyond the scopes
of the present work and deserve future investigation.

We do, however, notice that the resulting pattern of (quasi-)
degenerate multiplets in the entanglement spectrum changes
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quite radically in the fully frustrated case from the unfrus-
trated and intermediate frustrated cases. So we are confident
that the entanglement spectrum can be used to distinguish
between the two cases, where the entropy cannot.

VII. CONCLUSIONS

In this paper we have analyzed the ground-state phase
diagram of a system of interacting bosons on a geometrically
frustrated lattice; namely, we have considered a quasi-1D
chain of rhombi pierced by magnetic flux. For unit filling and
a sufficiently low tunneling amplitude the system is in the
Mott insulator phase as expected. For larger tunneling values,
we have numerically confirmed that when full geometric
frustration prevents the movement of single particles (i.e., the
bands become flat), the system still enters into a gapless phase
where the elementary moving objects are pairs of particles.
We have explored the regime where the frustration is not
perfect, highlighting that the pair fluid can only be obtained
for a very small region, making this quite challenging for an
experimental realisation, especially at low particle filling. It
is, however, possible to extend this region by a small amount
using higher filling and even more by using amplitude
modulation within the system instead of the phase shifts
we applied, which is also possible experimentally. From a
different perspective, we have highlighted that, whilst the
central charge obtained from the entropy cannot be used to
distinguish between the PLL and LL phase, the features and
quantum numbers of the entanglement spectrum do have
noticeable differences between the two.

There are a number of directions this work could be
expanded upon, for example, (i) compare the robustness of the
PLL phase with respect to other deformations of the flat bands
(such as amplitude modulation), and compare it to other flat
band models (e.g., the Creutz ladder [20,53]), to see whether
the (here hidden [56]) topological character plays any role;
(ii) work out an explicit mapping to the effective Ising model
predicted by Douçot and Vidal [42], in terms of measurable
quantities (as done for Creutz ladder fermions [20]), in order
to shed new light on the nature of the PLL-LL transition
(possibly once the PLL region is also extended to simplify
things); (iii) deepen the understanding of the striking change
in the entanglement spectrum, possibly by also explicitly en-
forcing the extensive number of Z2 symmetries [42,53] in the
numerics. Moreover, it would be very interesting to examine
the dynamics of our interacting chain, in order to formulate
experimental detection strategies, now that platforms for arti-
ficial flat-band systems are flourishing again [21,56,57].
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FIG. 12. The phase diagram for an infinite estimated length of
the Hamiltonian Eq. (A1) for amplitude modulation of cos(φ) against
parameters J/U . The MI, LL, and PLL regions are as labeled. The
MI-LL and the MI-PLL transitions are again obtained from the
compressibility of the energy gap (see Sec. IV). The LL and PLL
phases are characterized by the decay of the correlation functions as
illustrated in Sec. V.

APPENDIX: INCREASING THE ROBUSTNESS
OF THE PLL PHASE

In order to increase the robustness of the PLL phase the
Hamiltonian can be formulated using a tunneling modulation
instead of the magnetic flux used previously (see Sec. II). In
order to do this, the Hamiltonian is again given by

ĤBH = Ĥ0 + ĤU ≡ Ĥ0 + U

2

∑
j

∑
α

n̂j,α (n̂j,α − 1), (A1)

Ĥ0 = −J
∑

j

∑
�

∑
α,β

T
(�)
α,β b̂

†
j+�,αb̂j,β , (A2)

where the labels are as previously defined (Sec. II). In order
to modulate the amplitude, a cos(φ) factor is included in the
C-B leg of each diamond (as shown by the dashed lines in
Fig. 1). This means the hopping matrices are now instead

T (0) =
⎛⎝0 1 0

1 0 1
0 1 0

⎞⎠, T (+1) =
⎛⎝0 1 0

0 0 cos(φ)
0 0 0

⎞⎠,

T (−1) = (T (+1))†. (A3)

It should be noted that this modulation will be exactly the
same Hamiltonian in either extreme case, i.e., fully unfrus-
trated (φ = 0) and fully frustrated (φ = π ). The differences
and advantages to an experimental replication only occur
when exploring imperfect frustration. This advantage is ev-
ident in the increased size and therefore robustness of the
PLL region (see Fig. 12). As mentioned in the paper, this
can be performed experimentally using digital micromirror
devices (DMDs) or single atom microscopes. The reason for
the increased region of PLL can be connected to the curvature
of the single particle momentum bands. When a magnetic flux
is applied a slight shift from full frustration i.e., (φ = π − ε),
results in a an almost immediate loss of the flatband property
of the bands. Using the cos φ adaptation, the bands retain their
flat property (i.e., almost full frustration) for small shifts away
from φ = π , so the PLL remains intact.
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