
PHYSICAL REVIEW B 98, 184504 (2018)

Restoring gauge invariance in conventional fluctuation corrections to a superconductor
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The complete set of diagrams for conventional fluctuation corrections to the normal state of an ultraclean
superconductor is derived using the functional-integral approach. The standard diagrams which characterize the
fluctuation phase of a superconductor, namely, Aslamazov-Larkin, Maki-Thompson, and Density of States, are
obtained and proved to be insufficient to produce a gauge-invariant electromagnetic response. An additional
diagram is derived, and it is found to be essential for resolving a problematic and underappreciated aspect of
the conventional fluctuation formalism. It is only with the inclusion of this additional diagram that the theory is
now rendered gauge invariant and does not display a normal-state Meissner effect. It is shown that not only the
Aslamazov-Larkin term but all of the microscopic diagrams are encapsulated within a Gaussian-level treatment
of the effective action.
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I. INTRODUCTION

Excitement surrounding the discovery of high-Tc materials
has led to a renaissance in the study of superconducting
fluctuation phenomena [1–4]. Indeed, the short coherence
lengths and quasi-two-dimensionality of these systems lead
to a situation in which fluctuations play a prominent role [5].
Studies [1,6,7] based on the original formulation of supercon-
ductor fluctuations (or variants thereof) have enabled a good
preliminary understanding of many of the electromagnetic
(EM) and thermodynamic properties of the cuprates to be
achieved. Underlying any such study of EM transport is the
fundamental tenet of gauge invariance. Furthermore, it is
imperative to ensure that there is no Meissner effect in the
normal-state response of superconductors.

The seminal papers on superconductor fluctuations by
Maki [8], and Aslamazov and Larkin [9], each provided
unique insights into understanding the fluctuation conductiv-
ity of a superconductor. Maki’s paper considered only the
Maki-Thompson (MT) and Density of States (DOS) diagrams
but missed the Aslamazov-Larkin (AL) diagram, while the
paper of Aslamazov and Larkin, which included all of the
above diagrams, did not appreciate the importance of the
anomalous Maki-Thompson contribution to electrical conduc-
tivity. Thompson [10] further elucidated this importance in
two-dimensional (2D) superconductors, for which he showed
that, without proper regularization, the anomalous MT con-
ductivity is divergent [2].

In this paper the functional-integral approach [11] is used
to obtain the complete EM response for the fluctuation phase
above Tc and resolve a problematic aspect of the fluctuation
literature. The issue of concern is not widely appreciated and
relates to the fundamental principles discussed earlier. In their
articles Maki, and Aslamazov and Larkin, failed to unam-
biguously establish that their fluctuation formalisms are gauge
invariant. In fact, other important fluctuation literature [12,13]
claimed that, with only the AL, MT, and DOS diagrams, there
was no anomalous diamagnetism (normal-state Meissner ef-

fect). Furthermore, the most influential monograph [2] in this
field also claims that “this cancellation [between AL, MT, and
DOS in the zero momentum, zero frequency limit] confirms
the absence of anomalous diamagnetism above the critical
temperature” (see p. 141). As will be shown in this paper,
the aforementioned statement is incorrect. Here, the AL, MT,
and DOS diagrams are all derived, along with an additional
diagram not previously noted in the original fluctuation lit-
erature. This diagram, which we refer to as a “Gaussian-
level diamagnetic diagram,” is vital for establishing gauge
invariance and the absence of the normal-state Meissner ef-
fect. In addition, it has important physical consequences as
it establishes the nature of the fluctuation diamagnetism and
ultraclean conductivity. This paper thus provides a complete
account of the ultraclean fluctuation theory, remedies this
seemingly unknown but serious error in the literature, and
provides a link between the functional and diagrammatic
methods of fluctuation phenomena.

The Gaussian-level diamagnetic diagram is independent of
external momentum, and so in that sense it bears resemblance
to the diamagnetic term in the EM response of a free gas.
Here it is derived at the Gaussian level, hence the basis for its
nomenclature. It is well known [2] that the AL diagram can
be obtained from Ginzburg-Landau theory; however, the MT
and DOS diagrams are conventionally found from a micro-
scopic procedure [2] which obscures their similarity. Here it
is shown that MT, DOS, and the Gaussian-level diamagnetic
diagram all arise from the same term in the effective-action
response, a result which is obfuscated in the conventional
approach [2] to deriving the MT and DOS contributions [14].
Furthermore, it is proved that the complete ultraclean theory,
now with five diagrams (one AL, one MT, two DOS, and the
Gaussian-level diamagnetic diagram) is (i) gauge invariant,
(ii) has no normal-state Meissner effect, and (iii) satisfies the
conductivity sum rule.

The initial functional-based approaches [15,16] to study-
ing fluctuation phenomena derived only the AL contribution.
More recent treatments have gone beyond the pioneering work
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of Svidzinskii and incorporated varying degrees of additional
complexity. In this regard, in Ref. [17] the superfluid density
was calculated at the Gaussian level, and it was noted that
there is an AL contribution. The full gauge-invariant response
at the Gaussian level was derived in Ref. [18], and it was
shown how to correctly treat collective modes by consistently
solving the saddle-point condition. In Ref. [19] the diamag-
netic susceptibility and paraconductivity for the AL diagram
were derived, with the addition of incorporating all three
channels: Cooper, exchange, and density, in the Hubbard-
Stratonovich decomposition. Finally, we note that using the
fluctuation formalism the inclusion of disordered interac-
tions [20–22], for both strong and weak disorder strengths,
has also successfully been accomplished.

The structure of this paper is as follows: Sec. II introduces
the Hubbard-Stratonovich transformation and constructs the
Gaussian-level fluctuation action. The EM response is then
computed in Sec. III, and all the fluctuation diagrams are
derived, with the proofs of both gauge invariance and the
absence of the Meissner effect also given. The electrical
conductivity is discussed in Sec. IV, and finally, in Sec. V,
the conclusion is presented.

II. FLUCTUATION ACTION

A. Hubbard-Stratonovich transformation

The starting point is the Hamiltonian for a Fermi superfluid
interacting through an attractive interaction [23]:

H =
∫

dr
∑

σ

c†σ (r)

(
p̂2

2m
− μ

)
cσ (r)

−
∫

drdr′g(r − r′)c†↑(r)c†↓(r′)c↓(r′)c↑(r). (2.1)

Here, m and μ are the fermion mass and chemical potential,
respectively. For the s-wave case, which is of primary interest
here, the coupling constant is g(r − r′) = gδ(r − r′), where
g > 0 is a constant. The coherent-state functional integral [23]
is then Z = ∫

D[ψ̄, ψ] exp (−S[ψ̄, ψ]), where the action is

given by S[ψ̄, ψ] = ∫ β

0 dτ [ψ̄∂τψ + H (ψ̄, ψ )] and ψ̄, ψ are
independent Grassman variables. Natural units, where h̄ =
1, kB = 1, are employed throughout the paper; the inverse
temperature is then T −1 = β. It is advantageous to then apply
the Hubbard-Stratonovich (HS) transformation [17,18,23],
which is an exact statement that eliminates the four-fermion
interaction term at the expense of introducing a functional
integral over a bosonic auxiliary field denoted by �. The
HS transformation follows from inserting the resolution of
the identity 1 = ∫

D[�∗,�] exp (− ∫
dx|�|2/g) and then

shifting � → � − gψ↓ψ↑. Here, the integration measure is
defined such that the functional integral gives unity.

After introducing the Nambu spinor �(x) = (ψ↑(x),
ψ̄↓(x))T , where x = (τ, r), the complete action can then be
written as

SF+HS[ψ̄, ψ,�∗,�]

=
∫

dxdy�†(x)[−G−1(x, y)]�(y) +
∫

dx
|�(x)|2

g
.

(2.2)

The inverse Nambu Green’s function is defined via
Dyson’s equation: G−1(x, y) = G−1

0 (x, y) − �[�∗,�](x, y),
where the bare inverse Nambu Green’s function is
G−1

0 (x, y) = [−∂τ − ξpτz]δ(x − y) and the self-energy is
�[�∗,�](x, y) = −[�(x)τ+ + �∗(x)τ−]δ(x − y). Here,
the single-particle dispersion (in momentum space) is
ξp = p2/(2m) − μ, and τx, τy, τz are the standard Pauli
matrices, with τ± = 1

2 (τx ± iτy ). After integrating out the
fermions the HS action is obtained [17,18,23]:

SHS[�∗,�] =
∫

dx
|�(x)|2

g
− Tr ln(−βG−1). (2.3)

The trace operation Tr denotes a trace over the entire configu-
ration space; that is, it is both a trace over Nambu indices (to
be denoted by tr) and an integration over spatial coordinates.

The HS action is an exact expression; however, it is imprac-
tical to perform the bosonic functional integral over SHS, so
suitable approximations must be employed to enable further
theoretical tractability. The standard assumption is the saddle-
point approximation: δSHS/δ�

∗(y)|�=�mf
= 0; the solution to

this equation is the saddle-point (or mean-field) value �mf

of the bosonic auxiliary field. Imposing this condition leads
to the standard mean-field BCS gap equation: �mf (y)/g =
tr[Gmf (y, y)τ−], where Gmf is the mean-field Nambu Green’s
function. The mean-field action at the saddle-point level is
thus Smf = SHS[�∗

mf ,�mf ].

B. Gaussian fluctuations

To go beyond the saddle-point approximation,
the bosonic auxiliary field is expanded as follows:
�(x) = �mf + η(x). The inverse Nambu-Green’s function
is then G−1 = G−1

mf − �[η∗, η], where �[η∗, η](x, y) =
−[η(x)τ+ + η∗(x)τ−]δ(x − y). The HS action can then
be expanded about the mean-field action, and to quadratic
order in η the result is SHS[�∗,�] = Smf[�∗

mf ,�mf ] +∫
dxdy 1

2ηa (x)[δ2SHS/δ�a (x)δ�b(y)]|
�=�mf

ηb(y). Here,
there is an implicit sum over the indices a and b, which
denote either �∗ or �. Note that the terms linear in η∗ and
η vanish due to the saddle-point condition. The primary
focus of the paper is to obtain the fluctuation EM response
in the normal state and to connect this to the well-known
normal-state fluctuation diagrams [2]. With this goal in mind,
we now set �mf = 0. This then affords many simplifications;
for instance, the momentum-space inverse Nambu Green’s
function becomes G−1(k) = G−1

0 (k) = iωn − ξkτz. The (free)
single-particle Green’s function, in momentum space, is
defined by G0(k) = (iωn − ξk )−1.

After computing the above second-order derivatives, then
taking the trace over the Nambu indices, and finally con-
verting to momentum space, the following expression is
obtained: SHS[�∗,�] = S0 + ∑

q η∗(q )[−L−1(q )]η(q ). The
first term here is the action of a free (fermionic) system;
that is, S0 = −Tr ln(−βG−1

0 ). The momentum-space inverse
fluctuation propagator is defined by L−1(q ) = �(q ) − g−1,
where �(q ) = ∑

k G0(k)G0(q − k) is the pair susceptibility
in the Cooper channel. The position-space inverse fluctua-
tion propagator is defined by −L−1(x, x ′) = g−1δ(x − x ′) +
G0(x, x ′)G̃0(x ′, x). Here, G0 and G̃0 denote the particle and
hole bare propagators [23]; in momentum space they are re-
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lated by G0(k) = −G̃0(−k). Since the HS action is Gaussian
in the (complex) bosonic fields η∗, η, the functional integral
over these fields can be computed exactly. The generating
functional is Z = e−SEff , where SEff is the effective action,
which as a result of the functional integration is then [15,16]

SEff = S0 + Tr ln(−gL−1). (2.4)

The second term is the Gaussian-fluctuation action in the
absence of a mean-field gap: SFluc = Tr ln(−gL−1). The fluc-
tuation action can also be calculated in the presence of a
nonzero mean-field gap; see Ref. [16] for further details.

III. ELECTROMAGNETIC RESPONSE

A. Derivation of the fluctuation electromagnetic response kernel

The electromagnetic response of the system can be ob-
tained by computing the action in the presence of an external
vector potential, Aμ(x) = (iA0(x), A(x)); here, the imagi-
nary unit arises because of the use of imaginary time. The
resulting fluctuation action is denoted by SFluc[A] and is
given by SFluc[A] = Tr ln(−gL−1[A]). The fluctuation EM
response is then determined from the following expression:

K
μν
Fluc(x, x ′) = δ2SFluc[A]

δAμ(x)δAν (x ′)

∣∣∣∣
A=0

. (3.1)

Note that, in addition to the fluctuation part of the EM
response, there is a mean-field contribution given by K

μν
mf =

δ2Smf/δAμδAν |A=0. The full response is the sum of these
two contributions: Kμν = K

μν
mf + K

μν
Fluc; since the former is

well understood [18,24] and known to be gauge invariant,
qμK

μν
mf = 0, the discussion and analysis throughout the re-

mainder of the paper will be devoted to establishing the gauge
invariance of the fluctuation part of the response.

To incorporate the vector potential dependence in the
fluctuation propagator, the procedure is to perform minimal
coupling in the bare Green’s function, that is, in the particle
sector transform p̂ → p̂ − eA and ∂τ → ∂τ − ieA0, while in
the hole sector the same transformation is done but with
e → −e. Performing the two functional derivatives of the
fluctuation action then results in

K
μν
Fluc(x, x ′) = −

∫ 4∏
i=1

dyiL(y1, y2)�μ(y2, x, y3)

×L(y3, y4)�ν (y4, x
′, y1)

+
∫ 2∏

i=1

dyiL(y1, y2)�μν (y2, x, x ′, y1). (3.2)

In the above expression the fluctuation propagator is evaluated
at Aμ = 0; unless otherwise explicitly stated, L(y1, y2) de-
notes L[A = 0](y1, y2), with a similar relation for the Green’s
functions. The three-point and four-point vertices are respec-
tively defined by

�μ(y1, x, y2) = − δL−1[A](y1, y2)

δAμ(x)

∣∣∣∣
A=0

, (3.3)

�μν (y1, x, x ′, y2) = δ2L−1[A](y1, y2)

δAμ(x)δAν (x ′)

∣∣∣∣
A=0

. (3.4)

Note that these vertices are independent of the external vector
potential. In Eq. (3.2) the first term is the AL diagram, while
the second term contains the MT and DOS diagrams plus an
additional Gaussian-level diamagnetic contribution, as will be
shown forthwith.

The second term above can be written schematically as

−δ2L−1[A]

δAμδAν

∣∣∣∣
A=0

= 2

{
G0

δG−1
0

δAν

G0G̃0
δG̃−1

0

δAμ

G̃0 + G0
δG−1

0

δAμ

G0
δG−1

0

δAν

G0G̃0

+ G0
δG−1

0

δAν

G0
δG−1

0

δAμ

G0G̃0 − G0
δ2G−1

0

δAμδAν

G0G̃0

}∣∣∣∣∣
A=0

.

(3.5)

The prefactor of 2 here arises due to the particle-hole sym-
metry present in the Nambu formalism. It is implicit in this
expression that there is a “matrix multiplication,” with the
“multiplication” between neighboring terms corresponding to
an integration over coordinates. In Eq. (3.5), the first term
is the MT diagram, the second and third terms are the two
DOS diagrams, and the fourth term is an additional contribu-
tion. This latter term represents a (momentum-independent)
Gaussian-level diamagnetic contribution to the EM response.
However, it contributes to only the current-current part of the
EM response. Note that, here it has been demonstrated that
the MT, DOS, and Gaussian-level diamagnetic diagrams all
arise from the second term in Eq. (3.2). This result is not
easily apparent in the conventional derivation of the MT and
DOS diagrams [2], so this shows an advantage in utilizing
the functional-integral approach. It concretely shows that all
diagrams, in particular MT, DOS, and the Gaussian-level
diamagnetic term, are on equal footing with respect to their
origin within the Gaussian-fluctuation theory.

The (particle) bare vertex appearing above is defined
by δG−1

0 [A](y1, y2)/δAμ(x)|A=0 ≡ eγ μ(y1, x, y2).
Its Fourier transform is then γ μ(y1, x, y2) =∑

k1,k2
eik1(y1−y2 )+ik2(y1−x)γ μ(k1 + k2, k1), where the

momentum-space bare vertex is [25] γ μ(k1 + k2, k1) =
(1, 1

m
[k1 + k2/2]) [26]. The hole bare vertex is related

to the particle bare vertex by γ̃ μ(k1 + k2, k1) =
−γ μ(−k1,−k1 − k2). Converting the EM response to
momentum space gives

K
μν
Fluc(x, x ′) =

∑
q

e−iq(x−x ′ )K
μν
Fluc(q ), (3.6)

where the fluctuation EM response kernel is

K
μν
Fluc(q ) = −

∑
p

L(p + q )�μ(p + q, p)L(p)�ν (p, p + q )

+
∑

p

L(p)�μν (p, q ). (3.7)

Here, qμ = (i�m, q), pμ = (iεm, p), where εm and �m are
bosonic Matsubara frequencies, with i�m = � + i0+ being
the analytic continuation of the latter. The four-vector sum-
mation is defined by

∑
p ≡ (βV )−1 ∑

iεm

∑
p, where V is the
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volume and V −1 ∑
p ≡ ∫

ddp/(2π )d . Note that Kμν (q ) =
Kνμ(−q ), so there are different, but equivalent, ways of writ-
ing the EM response. After Fourier transforming the position-
space expressions, the fluctuation response in momentum

space can be written as

K
μν
Fluc(q ) = ALμν (q ) + MTμν (q )

+ DOSμν (q ) + δK
μν
Fluc(q ), (3.8)

where the explicit expressions for these diagrams are

ALμν (i�m, q) = −4e2
∑
k,l,p

G0(l + q )γ μ(l + q, l)G0(l)G0(p − l)L(p + q )L(p)

×G0(p − k)G0(k)γ ν (k, k + q )G0(k + q ), (3.9)

MTμν (i�m, q) = 2e2
∑
k,p

G0(p − k)γ μ(p − k, p − k − q )G0(p − k − q )L(p)G0(k)γ ν (k, k + q )G0(k + q ), (3.10)

DOSμν (i�m, q) = 2e2
∑
k,p

G0(k + q )γ μ(k + q, k)G0(k)γ ν (k, k + q )G0(k + q )L(p)G0(p − k − q )

+ 2e2
∑
k,p

G0(k + q )γ μ(k + q, k)G0(k)L(p)G0(p − k)G0(k)γ ν (k, k + q ), (3.11)

δK
μν
Fluc(i�m, q) = 2e2

m
δμiδνi

∑
k,p

L(p)G0(p − k)G2
0(k). (3.12)

Here, kμ = (iωn, k), lμ = (iϕn, l), where ωn and ϕn are
fermionic Matsubara frequencies. The first three terms are
the familiar expressions [2] for the AL, MT, and DOS dia-
grams. What is of interest here is the additional term given
by δK

μν
Fluc, which is not present in the papers of Aslamazov

and Larkin [9,27]. For the derivation of Eq. (3.12) from the
position-space expression in the last term of Eq. (3.5), see
Appendix A. A similar diagram can be found in Fig. 11 of
Ref. [28] in the context of cross correlations between hot and
cold fermion currents, and it was noted there that this three-
point function is, in general, finite. This term is a purely real
three-point function. It is independent of external momentum,
so as a consequence, it does not contribute to finite momentum
or finite frequency transport. Thus, the results of Aslamazov
and Larkin for the finite-frequency conductivity and diamag-
netic susceptibility are unaltered. The electrical conductivity
is discussed in further detail in Sec. IV. In Appendix B it
is proved that the Gaussian-level diamagnetic diagram can
be expressed simply in terms of the partial derivative of the
fluctuation action with respect to the fermionic chemical po-
tential as δK

μν
Fluc(i�m, q) = −δμiδνi e2

m
1

βV
∂SFluc
∂μ

. The next two
sections show that this diagram is important for establishing
(i) gauge invariance and (ii) the absence of the normal-state
Meissner effect.

The Feynman diagrams for the complete fluctuation EM
response kernel are shown in Fig. 1. Note that these diagrams
are not an expansion in loops, or, equivalently, in terms of
the number of fluctuation propagators. This was, in fact, the
reason why Maki missed the AL diagram in his paper [8],
as he was focused solely on the single-fluctuation-propagator
diagrams in Figs. 1(b)–1(d). The diagrams in Fig. 1 are
the complete set of (ultraclean) Gaussian-level fluctuation
diagrams. It is the action which has been computed at the
Gaussian level, or equivalently, in the diagrammatic language,
the free energy has been calculated with only a single fluctua-
tion propagator [2,29].

For completeness, it is useful to mention how the diagram
in Eq. (3.12) arises within the standard diagrammatic tech-
nique. A derivation of the AL, MT, and DOS diagrams from
the fluctuation free energy is presented in Ref. [2] (p. 117).
However, the diagram derived in Eq. (3.12) is absent. Never-
theless, it can be obtained by carefully following that refer-
ence’s methodology. The fluctuation free-energy diagram (see
Fig. 6.2(a) in Ref. [2]) consists of a closed loop of two bare
electron propagators connected by a single fluctuation prop-
agator. A single functional derivative of this diagram, with
respect to an external source, results in attaching a bare vertex
in all possible positions, and after summing the resultant
contributions a single bare vertex is attached to one of the bare
electron propagators (see Fig. 6.2(b) in Ref. [2]). Performing
a second functional derivative of this diagram results in the
complete fluctuation response; the derivatives of the fluctu-
ation propagator and the electron propagators give rise to the
AL, MT, and DOS diagrams (see Fig. 6.2(c) in Ref. [2]). How-
ever, what was neglected in that reference was to differentiate
the external vertex as well. The derivative of the external ver-
tex, with respect to the external source, amounts to detaching
the vertex from the diagram [30] and inserting a Kronecker
delta function, the result of which exactly produces the dia-
gram in Eq. (3.12). The Gaussian-level diamagnetic diagram,
absent from Refs. [1,2,9,12,13,15,16,27], can thus be derived
with the functional-integral approach, as shown in this section,
and also with the diagrammatic technique, as just discussed.

B. Proving gauge invariance

In this section it is proved that the normal-state fluctuation
response is gauge invariant; this is mathematically expressed
by the statement that qμK

μν
Fluc(q ) = 0. It will be shown that

this is only true provided the Gaussian-level diamagnetic
contribution is incorporated. Note that in Ref. [18] the full
Gaussian-level response was derived, with the inclusion of the
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FIG. 1. The complete set of Gaussian-level fluctuation diagrams in the normal state. In order, these diagrams correspond to (a) Aslamazov-
Larkin, (b) Maki-Thompson, (c) and (d) Density of States and (e) Gaussian-level diamagnetic. The solid lines are bare electron propagators
and the wiggly lines are fluctuation propagators. Here k+ = k + q, k− = k, etc.

anomalous Green’s function and the collective modes. There
it was shown, in a more abstract manner, that provided the
dependence of the order parameter on the external vector po-
tential is incorporated, gauge invariance is maintained. Here,
only the normal-state response is considered, and the gauge
invariance of the theory will be demonstrated by explicitly
calculating the four-vector contractions of all the fluctuation

diagrams. To perform the requisite contractions, use is made
of the bare Ward-Takahashi identity [30]: qμγ μ(k + q, k) =
G−1

0 (k + q ) − G−1
0 (k). Note that using the definition of the

bare vertex, γ μ(k + q, k) = (1, 1
m

[k + q/2]), this identity is
easily proved.

Using the bare Ward-Takahashi identity, it follows that the
contractions of the MT, DOS, and AL diagrams are

qμMTμν (i�m, q) = 2e2
∑
k,p

[G0(p − k − q ) − G0(p − k)]L(p)G0(k)γ ν (k, k + q )G0(k + q ), (3.13)

qμDOSμν (i�m, q) = 2e2
∑
k,p

G0(k + q )G0(p − k − q )L(p)[G0(k) − G0(k + q )]γ ν (k, k + q )

+ 2e2
∑
k,p

[G0(k) − G0(k + q )]G0(p − k)L(p)G0(k)γ ν (k, k + q ), (3.14)

qμALμν (i�m, q) = −4e2
∑
k,l,p

[G0(l) − G0(l + q )]G0(p − l)L(p + q )L(p)G0(p − k)G0(k)γ ν (k, k + q )G0(k + q )

= −4e2
∑
k,p

[L(p + q ) − L(p)]G0(p − k)G0(k)γ ν (k, k + q )G0(k + q )

= −4e2
∑
k,p

[G0(p − k − q ) − G0(p − k)]L(p)G0(k)γ ν (k, k + q )G0(k + q ). (3.15)

Here we have used the definition of the inverse fluctuation propagator, L−1(p) + g−1 = �(p) = ∑
l G0(l)G0(p − l), to perform

the fermionic Matsubara frequency summation over l. Combining the above results and simplifying then gives

qμ[ALμν (q ) + MTμν (q ) + DOSμν (q )] = 2e2
∑
k,p

G0(k)L(p)G0(p − k)[γ ν (k, k + q ) − γ ν (k − q, k)]G0(k)

= 2e2 q
m

∑
k,p

L(p)G0(p − k)G2
0(k) = −qμδK

μν
Fluc(q ), (3.16)
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where in the last step the contraction of Eq. (3.12) is easily
computed. As a result, the contraction of the fluctuation EM
response kernel is

qμK
μν
Fluc(q ) = 0. (3.17)

Therefore, the fluctuation EM response is gauge invariant. It
is important to note that, without incorporating the Gaussian-
level diamagnetic diagram, the fluctuation response would not
be gauge invariant, as shown in the second line of Eq. (3.16).
The next section investigates the Meissner response of the
fluctuation EM response kernel.

C. Absence of the Meissner effect in the normal state

The superfluid density of a system is a static, zero-
momentum response, and in the normal state of a su-
perconductor any gauge-invariant calculation must produce
zero Meissner response [31]. In this section it will be
proved that the exact normal-state fluctuation response
does not exhibit the Meissner effect: Kij (� = 0, q → 0) =
K

ij

Fluc(� = 0, q → 0) = 0. As will be shown, this result is
only true with the incorporation of the Gaussian-level diamag-
netic contribution. This reiterates the point that the additional
diagram derived in Sec. III A represents an important contri-
bution to the full EM response and, in general, it cannot be
neglected.

By using the identity [30] G0(k)γ i (k, k)G0(k) =
∂G0(k)/∂ki , along with the relation �(p) =∑

k G0(k)G0(p − k) = L−1(p) + g−1, the fermionic
Matsubara frequency summations appearing in the fluctuation
diagrams can be performed. The final results for the static
fluctuation diagrams, in the zero-momentum limit, are

ALij (� = 0, q → 0) = −4e2
∑

p

L(p)
∂2�(p)

∂pi∂pj
,

MTij (� = 0, q → 0) = 2e2
∑

p

L(p)
∂2�(p)

∂pi∂pj
,

DOSij (� = 0, q → 0) = 2e2
∑

p

L(p)
∂2�(p)

∂pi∂pj

− δK
ij

Fluc. (3.18)

Adding these terms together, along with the contribution from
Eq. (3.12), it follows that the zero-momentum limit of the
static fluctuation EM response kernel is thus

K
ij

Fluc(� = 0, q → 0) = 0. (3.19)

This proves that the normal-state fluctuation EM response
does not exhibit the Meissner effect, as required. It is im-
portant to emphasize that it is only with the inclusion of the
diagram in Eq. (3.12) that there is no anomalous diamag-
netism; this corrects Refs. [2,12,13], which asserted that the
AL, MT, and DOS diagrams were sufficient.

IV. ELECTRICAL CONDUCTIVITY

The fluctuation contribution to electrical conductivity for
an ultraclean (no impurities or disorder whatsoever) 2D super-
conductor was computed in Ref. [32], and it was found that

the conductivities of the MT and DOS contributions cancel
one another, a result which was confirmed independently
in Ref. [28] in a different context. A subtle issue arose in
Ref. [32], where it was proved that the triangle vertex in the
ultraclean AL diagram is nonzero only when the external Mat-
subara frequency is zero, and for all other nonzero frequencies
the triangle vertex vanishes. As a consequence, the validity
of analytic continuation of such a function was brought into
question. Later on, this issue was resolved in Ref. [33], where
it was shown that the AL diagram is a nonlocal function, and
in the ultraclean limit the nonlocal AL conductivity vanishes
at all nonzero frequencies.

The conductivities of systems with impurities have also
been addressed [2,20–22,33–36], and there has been some
debate about whether the clean limit of an impure supercon-
ductor reproduces the ultraclean results; that is, it is debated
whether or not the orders of the limits � → 0, τ → ∞ and
τ → ∞,� → 0 commute with one another in the response
functions. Here, τ is a lifetime for particle scattering. For the
nonlocal AL conductivity, it was noted [33] that the τ depen-
dence is of the form ∼(1 − i�τ )−2, and it was physically
argued that the appearance of a second-order diffusive pole
(in contrast to the first-order pole familiar in the Drude theory
of a free system) is because fluctuation Cooper pairs do not
directly interact with an applied field; rather, the applied field
interacts with electrons, which in turn induce a fluctuation
response with an additional time retardation τ . In the present
paper only the ultraclean case has been considered hitherto,
where impurities and disorder are absent from the outset.
Since there is already vast existing literature on the electri-
cal conductivity due to the AL, MT, and DOS fluctuation
processes, the primary focus of this section is to compute
the contribution arising from the Gaussian-level diamagnetic
diagram obtained in Eq. (3.12).

The Kubo formula for the frequency-dependent electrical
conductivity is [23]

σ ij (�) = lim
q→0

i
Kij (�, q)

� + i0+ . (4.1)

It is crucial to first take the limit q → 0; as the previous
section shows, first setting the external frequency to zero
and then taking q → 0 corresponds to the Meissner response.
Since δKxx

Fluc has no momentum dependence, its fluctuation
contribution to the longitudinal electrical conductivity is thus

σxx
δKFluc

(�) = iδKxx
Fluc

� + i0+ . (4.2)

The real part of this expression is Reσxx
δKFluc

(�) =
πδKxx

Flucδ(�). This result is analogous to the case of a
free-particle system, with no impurities or disorder. In
that case the real part of the total conductivity is given by
Reσxx

Free(�) = n(πe2/m)δ(�) [37]; in a free system, with no
mechanism for particle scattering, the conductivity vanishes
at nonzero frequencies, and to ensure that the conductivity
sum rule [37] is satisfied all the Drude weight is localized
at zero frequency. If impurities are present, then the delta
function result is smeared out into a Lorentzian distribution.

As discussed in Sec. III A, the fluctuation diagram δKxx
Fluc

can be written as δKxx
Fluc = nFluce

2/m. Similarly, the free
EM response, arising from the action S0, has a diamag-
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netic term given by δKxx
0 = n0e

2/m, where n0 is the free-
electron particle density; the total electrical conductivity from
the free and fluctuation diamagnetic contributions is thus
(n0 + nFluc)(πe2/m)δ(�). The conductivity sum rule is then∫ ∞

−∞

d�

π
Reσxx (�) =

∫ ∞

−∞

d�

π
(n0 + nFluc)(πe2/m)δ(�)

= (n0 + nFluc)(e2/m) ≡ ne2/m. (4.3)

Thus, the conductivity sum rule for the ultraclean fluctuation
theory is satisfied.

V. CONCLUSION

This paper derived the electromagnetic response for Gaus-
sian fluctuations in the normal state of an ultraclean super-
conductor. The familiar Aslamazov-Larkin, Maki-Thompson,
and Density of States diagrams were obtained, and an ad-
ditional Gaussian-level diamagnetic diagram, not previously
considered in the literature, also contributed to the electro-

magnetic response. It was shown that this term is essential
for establishing both gauge invariance and the absence of
the Meissner effect in the normal state. The electrical con-
ductivity was also considered, and with the inclusion of the
Gaussian-diamagnetic diagram it was shown that the conduc-
tivity sum rule is satisfied. This paper achieves a link between
the functional-integral and diagrammatic-based approaches
to superconductor fluctuation theory, showing lucidly how
all the ultraclean fluctuation diagrams arise. As a result, the
ultraclean fluctuation theory is now rendered gauge invariant
and does not display a normal state Meissner effect.
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APPENDIX A: GAUSSIAN-LEVEL DIAMAGNETIC DIAGRAM

This excursus outlines the details in obtaining Eq. (3.12). In position space the response is [see the last term in Eq. (3.5)]

δK
μν
Fluc(x, x ′) = 2

∫ 4∏
i=1

dyiL(y1, y2)G0(y2, y3)
δ2G−1

0 (y3, y4)

δAμ(x)δAν (x ′)
G0(y4, y1)G̃0(y1, y2)|A=0

= −2e2

m
δμiδνi

∫ 4∏
i=1

dyiL(y1, y2)G0(y2, y3)δ(y3 − x ′)δ(y3 − y4)δ(x − x ′)G0(y4, y1)G̃0(y1, y2). (A1)

Converting this to momentum space then gives

δK
μν
Fluc(x, x ′) = δ(x − x ′)

2e2

m
δμiδνi

∫ 2∏
i=1

dyi

4∏
j=1

∑
kj

L(k1)G0(k2)G0(k3)G0(−k4)

× eik1(y1−y2 )eik2(y2−x ′)eik3(x ′−y1 )eik4(y1−y2 )

= δ(x − x ′)
2e2

m
δμiδνi

∑
k,p

L(p)G2
0(k)G0(p − k) ≡

∑
q

e−iq(x−x ′)δKμν
Fluc(q ). (A2)

Thus, in momentum space the Gaussian-level diamagnetic diagram is as given in Eq. (3.12):

δK
μν
Fluc(i�m, q) = 2e2

m
δμiδνi

∑
k,p

L(p)G0(p − k)G2
0(k). (A3)

Similar calculations using the position-space forms of the AL, MT, and DOS diagrams result in their well-known momentum-
space forms given in Eqs. (3.9)–(3.11).

APPENDIX B: DIAMAGNETIC DIAGRAMS

This Appendix shows that the diamagnetic diagrams can
be expressed simply in terms of the derivative of the cor-
responding action with respect to the fermionic chemical
potential. The bare action is S0 = −Tr ln(−βG−1

0 ), and thus,
differentiating this with respect to the fermionic chemical
potential μ then produces

1

βV

∂S0

∂μ
= −

∑
p

tr[G0(p)τz] = −2
∑

p

G0(p). (B1)

Thus, the standard diamagnetic term is

δK
μν
0 = −δμiδνi e

2

m

1

βV

∂S0

∂μ
. (B2)

The Gaussian-level diamagnetic term for the fluctuation re-
sponse can be derived in a similar manner. The fluctuation
action is SFluc = Tr ln(−gL−1), and thus, its derivative with
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respect to the fermionic chemical potential μ is

1

βV

∂SFluc

∂μ
=

∑
p

L(p)
∂L−1(p)

∂μ
=

∑
p

L(p)
∂�(p)

∂μ

= −2
∑
k,p

L(p)G2
0(k)G0(p − k). (B3)

Here, the definition of the pair susceptibility, �(p) =∑
k G0(k)G0(p − k) = L−1(p) + g−1, has been used. As a

consequence of this result, the Gaussian-level diamagnetic

diagram can be expressed as

δK
μν
Fluc = −δμiδνi e

2

m

1

βV

∂SFluc

∂μ
. (B4)

Combining the above results, it follows that the full dia-
magnetic contribution is thus

δK
μν
0 + δK

μν
Fluc = −δμiδνi e

2

m

1

βV

∂SEff

∂μ
, (B5)

where SEff = S0 + Tr ln(−gL−1) is the effective action.
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