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Scale invariance as the cause of the superconducting dome in the cuprates
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Recent photoemission spectroscopy measurements (T. J. Reber et al., arXiv:1509.01611) of cuprate supercon-
ductors have inferred that the self-energy exhibits critical scaling over an extended doping regime, thereby calling
into question the conventional wisdom that critical scaling exists only at isolated points. In particular, this new
state of matter, dubbed a power-law liquid, has a self-energy whose imaginary part scales as �′′ ∼ (ω2 + π 2T 2)α ,
with α = 1 in the overdoped Fermi-liquid state and α � 0.5 in the optimal to underdoped regime. Previously,
we showed that this self-energy can arise from interactions between electrons and unparticles, a scale-invariant
sector that naturally emerges from strong correlations. Here, taking the self-energy as a given, we first reconstruct
the real part of the self-energy. We find that the resultant quasiparticle weight vanishes for any doping level less
than optimal, implying an absence of particlelike excitations in the underdoped regime. Consequently, the Fermi
velocity vanishes and the effective mass diverges for α � 1

2 , in agreement with earlier experimental observations.
We then use the self-energy to reconstruct the spectral function and compute the superconducting Tc within the
BCS formalism. We find that the Tc has a domelike structure, implying that broad scale invariance manifested in
the form of a power-law liquid is the likely cause of the superconducting dome in the cuprates.

DOI: 10.1103/PhysRevB.98.184501

I. INTRODUCTION

Understanding the physics of cuprate superconductors in-
volves identifying the low-energy degrees of freedom re-
sponsible for the normal state’s anomalous features, such as
T -linear resistivity, pseudogap, and Fermi arcs. In general,
the electron Green function can be written as G(k, ω) =
[ω − εk − �(ω)]−1, where εk is the bare energy spectrum, and
� is the self-energy. Recent angle-resolved photoemission
spectroscopy (ARPES) measurements [1] of the cuprates have
revealed that the imaginary part of the electron self-energy has
the scaling form

−�′′(ω) = �0 + λ
(ω2 + π2T 2)α

ω2α−1
N

, (1)

over a wide range of doping. The key parameter here is the
scaling exponent α, which varies from α = 1 in the over-
doped Fermi-liquid state to α = 1

2 at optimal doping and to
α < 1

2 at underdoping. Other relevant parameters include a
dimensionless coupling constant λ ∼ 0.5, a high-energy scale
ωN ∼ 0.5 eV to maintain dimensional consistency, and an
impurity scattering term �0 ∼ 8 to 35 meV.

What is new here is that this scaling form persists over a
wide range of doping, manifesting not just at a single point as
traditional critical scenarios would suggest. Given the novelty
of this scaling form, it is peculiar that the full consequences
of this power-law scaling have not been explored previously.
It is just this task that we perform here. We explore the con-
sequences for (1) the Fermi velocity, (2) the effective mass,
(3) the quasiparticle weight, and (4) the superconducting
dome. All these quantities reveal truly unusual behaviors that
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are directly related to the power-law liquid’s unconventional
scaling observed in the experiments.

Theoretically, mechanisms yielding non-Fermi-liquid scal-
ings have been extensively studied [2–11]. In a marginal
Fermi liquid [2], a polarizability proportional to ω/T leads to
T -linear resistivity, while a d-wave Pomeranchuk instability
in two dimensions [3] yields self-energies with ω2/3 and
T 2/3 dependence. In addition, similar behaviors can also be
obtained by coupling quasiparticles with gauge bosons [4],
Goldstone bosons [5], and critical bosons [6] near a quantum
critical point [7]. Furthermore, strong coupling theories using
the anti-de Sitter spacetime (AdS)/conformal field theory
(CFT) correspondence [8] and Gutzwiller projection in hidden
Fermi-liquid theory [9] also exhibit T -linear resistivity. In par-
ticular, the spectral functions calculated within the AdS/CFT
formalism can also exhibit a range of power-law scaling when
the scaling dimension of the boundary fermionic operator is
tuned continuously [10,11].

Given the interest in experimentally relevant self-energies
for the cuprates, it is truly remarkable that the experimental
consequences of the power-law liquid have not been explored
until now. Specific to Eq. (1), since the scaling form is robust
up to 0.1 eV and 250 K [1], we showed previously that such
a behavior can originate from interactions between electrons
and unparticles, a scale-invariant sector that naturally emerges
due to strong correlations in the cuprates [12,13]. Originally
proposed as a scale-invariant sector within the standard model
[14], unparticles can arise in the cuprates because any non-
trivial infrared dynamics in a strongly correlated electron
system is controlled by a critical fixed point. Consequently,
scale invariance can be used to construct the form of the
underlying propagator. This propagator which can acquire
an anomalous dimension within the renormalization group
approach is the unparticle propagator. Furthermore, in the
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context of AdS/CFT, one of us [15,16] showed that a massive
scalar field in the bulk is generally dual to a nonlocal operator
(i.e., a fractional Laplacian) on the boundary. The propagator
of these operators is of a power-law form, just like the
unparticle propagator. These results indicate that unparticles
should generically exist in a strongly coupled system.

In the context of the cuprates, unparticles have been pro-
posed to explain the absence of Luttinger’s theorem in the
pseudogap phase [17] using zeros in the Green function [18]
and have also been found to yield unusual superconducting
properties [17,19,20] and optical conductivity [21]. In partic-
ular, a power-law liquid can be obtained from interactions
between electrons and unparticles [12,13]. The propagator
of fermionic unparticles can be written as Gu(k, iωn) =
[iωn − εu

k ]−1+du , where du is the anomalous dimension and
εu
k is the energy spectrum of unparticles. Due to the branch

cut in the unparticle propagator, the scattering phase space for
electron-unparticle interactions is nontrivially altered. Con-
sequently, the electron self-energy due to such interactions
scales with energy and temperature, with the scaling exponent
α dependent on the anomalous dimension du of the unparticle
propagator as du = α − 1 [13].

In this paper, we study the superconducting Tc of a
power-law liquid. Within the BCS formalism, we show that
the Tc is nonmonotonic with respect to α, the self-energy
scaling exponent. The Tc peaks at α = 1

2 , reproducing the
cuprates’ superconducting dome. We attribute this behavior
to the scaling form of the electron spectral function at low
energies, where the scaling exponent is minimum at α = 1

2 .
Furthermore, we find that, due to strong renormalization
of the spectral weights towards the Fermi level, the Fermi
velocity vanishes and the effective mass diverges for α � 1

2 ,
in agreement with earlier experimental observations [22–24].
Our results suggest that a power-law liquid contains physics
central to understanding the cuprates.

II. NORMAL STATE PROPERTIES

The first obvious quantity to calculate is the real part of
the electron self energy. This can be done directly from the
Kramers-Kronig relationship:

�′(ω) = 1

π
P

∫
dω′ �

′′(ω′)
ω′ − ω

. (2)

Interested in only the low energy behavior, we integrate up
to the high-energy scale ωN , assuming that the effects of �′′
at higher energies are negligible. Also, for the integral to be
analytically tractable, we omit the T dependence in the self-
energy. As detailed in Appendix A, we obtain

�′(xωN ) = 2�0

π
artanhx − λωN tan (απ )sgnx|x|2α

− λωN

2απ
[2F1(1,−2α; 1 − 2α; x)

− 2F1(1,−2α, 1 − 2α,−x)], (3)

where 2F1(a, b; c; z) is the hypergeometric function. Illus-
trated in Fig. 1 (inset), this result strongly influences several
low-energy behaviors of a power-law liquid. For notational
simplicity, we measure energies in units of ωN . For concrete-
ness, we consider a quadratic bare energy spectrum εk = k2 −

FIG. 1. The energy spectrum of a power-law liquid is strongly
renormalized towards the Fermi level for α < 1

2 , because the real
part of the self-energy �′ is nonanalytic at ω = 0, as shown in the
inset. The impurity scattering term �0 fixed at 0.01ωN .

k2
F in two dimensions, with Fermi momentum kF = 1/

√
2.

Since our focus is the α dependence of low-energy properties,
we fix �0 at a constant value of 0.01.

The renormalized band ε′
k is determined by ε′

k − εk −
�′(ε′

k ) = 0. Figure 1 shows that, close to the Fermi level, the
bare dispersion is strongly renormalized towards the Fermi
level for α < 1

2 . This is quantified by the Fermi velocity
vF , which is renormalized by the quasiparticle residue Z via
v′

F = ZvF , where

Z =
(

1 − d�′

dω

∣∣∣∣
ω=0

)−1

=
{[

1 − 2�̄0
π

+ 2λ
(2α−1)π

]−1
, α > 1

2 ,

0, α � 1
2 .

(4)

A similar result was obtained in Ref. [1]. The two cases arise
due to the |x|2α term in �′. The quasiparticle residue Z of
a Fermi liquid quantifies how particlelike the system is, with
unity denoting completely particlelike. The vanishing of the
quasiparticle residue for α � 1

2 therefore reflects the absence
of any particlelike behavior in a power-law liquid, indicative
of the strong correlations in underdoped cuprates. A similar
behavior also exists in an ultracold Fermi gas with strong
interactions [25].

Shown in Fig. 2, the Fermi velocity vF vanishing for
α � 1

2 quantifies the strong renormalization of the band to-
wards the Fermi level. Experimentally, the Fermi velocity can
be determined from the slope of the band close to, but not
exactly at, the Fermi level. In Ref. [22], ARPES measurements
of the nodal Fermi velocity within 7 meV of the Fermi level
show that the Fermi velocity decreases monotonically with
underdoping. This behavior is reproduced in Fig. 2, which
shows that the power-law liquid’s velocity just below the
Fermi level decreases with α.

The vanishing Fermi velocity also implies that the effec-
tive mass m∗ = kF /v′

F diverges as (α − 1
2 )

−1
, as shown in

Fig. 2. This behavior has been observed in the cuprates via
quantum oscillations measurements [23,24] and is attributed
to a metal-insulator transition beneath the superconducting
dome. Our results thus far are robust in the sense that they
are independent of the values of �0 and λ.
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FIG. 2. Top: (solid) The Fermi velocity vF of a power-law liquid
vanishes for α � 1

2 . (dashed) The velocity just (0.01ωN ) below the
Fermi level decreases monotonically with α, in agreement with
ARPES measurements [22]. Bottom: The effective mass of a power-
law liquid diverges for α � 1

2 , in agreement with quantum oscillation
measurements [23,24].

It is important to note that while ARPES measured the
self-energy �′′ over a limited energy range, the behavior of
�′′ at high energies is immaterial to our key result that the
Fermi velocity vF vanishes when α � 1

2 . This is because the
vanishing of vF arises from the divergence of d�′/dω at
ω = 0. From the form of the Kramers-Kronig relation, �′′ at
high energies has a finite contribution to d�′/dω|ω=0 and so
cannot affect the presence of the divergence.

Next, the spectral function given by −ImG is

A(k, ω) = N
−�′′(ω)

[ω − εk − �′(ω)]2 + [�′′(ω)]2 , (5)

where N is a normalization constant dependent only on α

[26]. To make comparisons between different values of α, we
define N such that the sum rule

∫ ωn

−ωn
dωA(k = kF , ω) = 1 is

obeyed for all α’s, where ωn is a high-energy cutoff which
we fix at 0.05ωN . Figure 3 illustrates the increased shifting
and broadening of the spectral function as α decreases. This
effect is also reflected in the density of states discussed in
Appendix B. Finally, since the self-energy at the Fermi level is
α independent, so is the Fermi momentum kF , and the Fermi
surface remains sharp even when α � 1

2 . A sharply defined
Fermi surface despite a vanishing quasiparticle residue repre-
sents a critical Fermi surface [27].

III. SUPERCONDUCTING TC

Next, we focus on the superconducting properties of a
power-law liquid. We consider the simplest case of s-wave
pairing symmetry with a constant pairing interaction g within

FIG. 3. (a) The energy and momentum dependence of a power-
law liquid’s spectral function for a quadratic energy spectrum with
α = 0.2. (b) An energy cut of the same plot at a momentum close to
the Fermi momentum, illustrating the shifting and broadening of the
spectral function due to the self-energy.

an energy range ωD . Within the BCS formalism, the supercon-
ducting Tc is determined by the pairing instability equation
[17]

1

g
=

∑
k

∫
dωdω′ 1

2

tanh ω
2Tc

+ tanh ω′
2Tc

ω + ω′ A(k, ω)A(−k, ω′).

(6)

From how the spectral function A(k, ω) is strongly renor-
malized towards the Fermi level for α � 1

2 , we expect the
superconducting Tc to monotonically increase as α decreases.
However, numerical solutions to the instability equation show
that the superconducting Tc is nonmonotonic with respect to
α, peaking at α = 1

2 . Shown in Fig. 4(a) is a power-law liquid
reproducing the cuprates’ superconducting dome. This is the
central result of this paper.

To understand the origin of the Tc’s α dependence,
we consider the minimal BCS coupling gmin needed for
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FIG. 4. (a) The superconducting Tc of a power-law liquid peaks
at α = 1

2 , reproducing the cuprates’ superconducting dome. The BCS
coupling g is chosen to be constant up to an energy ωD = 0.05, and
the impurity term �0 is fixed at 0.01. (b) Left: The minimal coupling
gmin needed for superconductivity is nonmonotonic with respect to
α. Right: The peak of 1/gmin approaches α ≈ 1

2 as �0 decreases.
Very small values (�0.002) of �0 are anomalous due to numerical
uncertainties.

superconductivity by setting Tc = 0 in Eq. (6):

1

gmin
=

∫
dε

∫
dωdω′ 1

2

1

ω + ω′ A(ε, ω)A(ε, ω′). (7)

Figure 4(b) shows that gmin is nonmonotonic with respect
to α. In particular, the peak of 1/gmin approaches α ≈ 1

2 as
the impurity term �0 decreases. A similar behavior in fact
appears in Fig. 4(a) where the peak Tc approaches α = 1

2 as
g increases. When g increases, superconductivity onsets in a
higher temperature regime where the impurity term �0 is less
significant. This implies that as �0/Tc decreases, the peak Tc

approaches α = 1
2 . These behaviors suggest a closer study of

the �0 = 0 case. Since solutions for gmin and Tc at �0 = 0 are
numerically inaccessible, we proceed with a scaling argument.

Note that in Fig. 4(b), small values (�0.002) of �0 are
anomalous because of numerical uncertainties associated with
convergence issues. It is for the same reason the desired
results for �0 = 0 are numerically inaccessible and require the
following scaling argument.

FIG. 5. The scaling exponent ξ (α) of the spectral function
A(k, ω) close to the Fermi level for �0 = 0. The exponent is min-
imum at α = 1

2 . The solid line is obtained from numerical fits over
the energy range shown in the inset, while the dashed line is based
on analytic calculations from Eq. (10). Inset: A log-log plot of the
spectral function close to the Fermi level for α = 0.2, 0.5, 0.8.

When �0 = 0, the spectral function close to the Fermi level
(ε, ω → 0) has the scaling form

A(ε=r, ω=r )∼ r2α

(r + r2α )2 + r4α
∼

{
r2α−2, α > 1

2 ,

r−2α, α < 1
2 .

(8)

The two cases arise from the competition between linear and
nonlinear terms in the denominator. More concisely,

A(r, r ) ∼ rξ (α), (9)

with the scaling exponent

ξ (α) = 2
∣∣α − 1

2

∣∣ − 1. (10)

This means that the spectral function’s scaling exponent ξ (α)
has a minimum value of −1 at α = 1

2 , as illustrated by the
orange dashed line in Fig. 5. This result can also be verified
numerically for �0 = 0. First, the linearity of the log-log plot
in the inset illustrates that the spectral function A(k = kF , ω)
from Eq. (5) indeed has a scaling form for the energy range
shown. Then, the scaling exponent obtained by numerical fits
is indicated by the blue solid line in the main figure. The
solid line from numerical fits slightly differs from the analytic
results because the latter is obtained in the ω → 0 limit while
the former is a fit over a finite energy window. One can easily
verify that the numerical results approach the analytic ones if
the energy window is taken to the same limit. More precisely,
the blue numerical result at α = 0.5 approaches −1 in the
limit ω → 0, in agreement with the analytic results.

Now, consider the integral for gmin in spherical coordinates
(r, θ, φ) near the origin:

1

gmin
∼

∫
r2dr

1

r
A(r, r )A(r, r ) ∼

∫
dr r4|α− 1

2 |−1. (11)

Simply counting the powers of r reveals that the integral
diverges logarithmically at α = 1

2 . This implies that gmin ∼ 0
at α = 1

2 , and a power-law liquid becomes most susceptible
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to superconductivity. Therefore, the superconducting dome in
Fig. 4(a) can fundamentally be attributed to the scaling form
of the spectral function.

IV. DISCUSSIONS

We conclude with five pertinent points. First, we have
used an α-independent impurity scattering term �0 in our
calculations. Experimentally, �0 in fact varies with α [1]. It is
minimum (∼8 meV) at optimal doping and about four (two)
times larger with underdoping (overdoping). Since impurity
scattering opposes superconductivity, one can show that such
a �0 produces a narrower superconducting dome.

Second, let us reiterate a subtle point about Fig. 4(a).
According to the scaling argument, the Tc peaks at α = 1

2
because of the low-energy scaling of the spectral function
when �0 = 0. Since �0 is nonzero in Fig. 4(a), the peak Tc

naturally deviates from α = 1
2 . More precisely, notice that

the deviation increases as g decreases, for a fixed �0. What
is happening is that when g decreases, superconductivity
onsets in a lower temperature regime where the impurity term
�0 is more significant, resulting in a larger deviation from
α = 1

2 . Nevertheless, the results in Fig. 4(a) require g to be
sufficiently small. This is so that the resulting Tc is low enough
for the physics to be dominated by the low-energy scaling
behavior of the spectral function A given by Eq. (9). For suffi-
ciently large g, the scaling argument for the superconducting
dome in the preceding section is inapplicable, and indeed we
find that the Tc becomes monotonic, and the superconducting
dome vanishes.

Third, superconducting domes in other unconventional
superconductors have been attributed to various mechanisms
[28]. In SrTiO3, screening effects [29], longitudinal optical
phonons [30], and a quantum critical point [31] have been sug-
gested. Quasiparticle-phonon interactions in dichalcogenides
[32,33] and a Mott transition in organic superconductors [34]
have also been proposed. For the cuprates, self-energy effects
near the charge-density wave instability have been theorized
[35]. Our present results show that the power-law self-energy
inferred from ARPES experiments can produce the supercon-
ducting dome.

Fourth, the self-energy in Eq. (1) was obtained from mea-
surements along the nodal lines of the cuprates. It is true that
an accurate calculation of the superconducting Tc would re-
quire measurements over the entire Brillouin zone. However,
this was not our goal. Our goal was to study the implications
of the novel self-energy revealed by the ARPES measure-
ments. Given the lack of experimental data for the non-nodal
regions, the most direct approach naturally assumes that the
scaling form is applicable throughout the whole Brillouin
zone. Doing otherwise would unnecessarily obfuscate the
results which demonstrate a novel mechanism for obtaining
the cuprates’ superconducting dome. It is worth highlighting
that, recently, similar measurements found that the antinodal
self-energies are a few times larger [36]. Furthermore, as the
superconducting gap develops, �′′ markedly decreases while
�′ increases. This implies that correlations in the normal
state are converted into a strongly renormalized coherent state
below Tc. It will be interesting to incorporate these effects into
the power-law liquid model in a future work.

Fifth, our superconducting Tc calculations adopt the sim-
plest case of s-wave gap symmetry, in contrast to the d-wave
symmetry known in the cuprates. As presented in Sec. III,
the key feature of our results arises from the scaling form
of the spectral function given by Eq. (9). This scaling form
is intrinsic to the power-law self-energy, independent of the
superconducting gap symmetry. What a d-wave symmetry
modifies is the momentum dependence in the pairing instabil-
ity equation in Eq. (6); the form of the equation’s dependence
on the spectral function would remain unchanged. Therefore,
our results are applicable even in the d-wave cuprates.

In conclusion, we studied the superconducting Tc of a
power-law liquid, an unconventional state of matter revealed
in superconducting cuprates by recent ARPES measurements
[1]. The imaginary part of the electron self-energy has the
scaling form (ω2 + π2T 2)α , where the scaling exponent α

varies from α � 1 at overdoping to α ∼ 1
2 at optimal dop-

ing and to α � 1
2 at underdoping. We found that strong

renormalization of the spectral weights results in a vanishing
Fermi velocity and diverging effective mass for α � 1

2 , in
agreement with earlier experimental observations [22–24].
Within a BCS formalism, we found that the superconducting
Tc is nonmonotonic with respect to α. The Tc peaks at around
α ∼ 1

2 , reproducing the cuprates’ superconducting dome. We
attribute this behavior to the low-energy scaling form of the
spectral function, where the scaling exponent is minimum at
α = 1

2 . Our results suggest that a power-law liquid contains
physics central to understanding cuprate superconductors.
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APPENDIX A: ANALYTIC EVALUATION OF �′

Here, we derive the real part of the self-energy, using
identities from the Digital Library of Mathematical Functions
(DLMF) [37]. The derivation is lengthy as a shorter one
(probably using contour integration) currently eludes us.

From �′′ in Eq. (1), the real part of the self-energy via
Kramers-Kronig relations (for |ω| < ωN ) is

�′(xωN ) = − 1

π
P

∫ ωN

−ωN

dω′

ω′ − xωN

(
�0 + λ

|ω′|2α

ω2α−1
N

)

= − 1

π
P

∫ 1

−1

dz

z − x
(�0 + λωN |z|2α ). (A1)

Since we are interested only in low energy behaviors, effects
from |ω| > ωN should be negligible.
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The integral over the constant impurity term is straightfor-
ward:

P
∫ 1

−1

dz

z − x
= −2artanhx. (A2)

For the second term, we break the integral into two, one with
the divergence and the other without:

P
∫ 1

−1
dz

|z|2α

z − x

= P
∫ 1

0
dz

(
z2α

z − x
− z2α

z + x

)

= sgn(x)

(
|x|2αP

∫ 1/|x|

0
dz

z2α

z − 1

− 1

|x|
∫ 1

0
dz

z2α

z/|x| + 1

)
. (A3)

By series expansion and Eq. DLMF-15.8.2, the hypergeomet-
ric function 2F1(a, b; c; z) has the integral representations∫

dz
z2α

z − 1
= − z1+2α

1 + 2α
2F1(1, 1 + 2α; 2 + 2α; z)

= z2α

2α
2F1

(
1,−2α; 1 − 2α;

1

z

)

−π csc (2απ )(−1)−2α. (A4)

These allow us to write the first integral in Eq. (A3) as

P
∫ 1/|x|

0
dz

z2α

z − 1

=
(∫ 1/|x|

1+ε

+
∫ 1−ε

0

)
dz

z2α

z − 1

= 1

2α

1

|x|2α 2F1(1,−2α; 1 − 2α; |x|)

− 1

2α
2F1(1,−2α; 1 − 2α; 1 − ε)

− 1

1 + 2α
2F1(1, 1 + 2α; 2 + 2α; 1 − ε). (A5)

We resolve the ε → 0 singularity by series expansion:

1

2α
2F1(1,−2α; 1 − 2α; 1 − ε)

+ 1

1 + 2α
2F1(1, 1 + 2α; 2 + 2α; 1 − ε)

=
∞∑

n=0

(
− 1

n − 2α
+ 1

n + 1 + 2α

)
(1 − ε)n

= 1

2α
−

∞∑
n=1

(1 − ε)n

n − 2α
+

∞∑
n=1

(1 − ε)n−1

n + 2α

= 1

2α
−

∞∑
n=1

4α

n2 − 4α2
= π cot (2πα), (A6)

where we have used Eq. DLMF-4.22.3 in the last line.

The second integral in Eq. (A3) can be evaluated using Eq.
DLMF-15.6.1 and Eq. DLMF-15.8.2:∫ 1

0
dz

z2α

z/|x| + 1
= 1

1 + 2α
2F1

(
1, 1 + 2α; 2 + 2α; − 1

|x|
)

= |x|
2α

2F1(1,−2α, 1 − 2α,−|x|)

−π csc (2απ )|x|1+2α. (A7)

Finally, combining Eqs. (A5), (A6), and (A7) gives

P
∫ 1

−1
dz

|z|2α

z − x
= 1

2α
sgn(x)[2F1(1,−2α; 1 − 2α; |x|)

− 2F1(1,−2α, 1 − 2α,−|x|)]

+πsgn(x)
2 sin2 (απ )

2 sin (απ ) cos (απ )
|x|2α

= 1

2α
[2F1(1,−2α; 1 − 2α; x)

− 2F1(1,−2α, 1 − 2α,−x)]

+πsgn(x) tan (απ )|x|2α. (A8)

This result is nicely cast in an antisymmetric form, with the
argument of the hypergeometric function within its radius of
convergence so that the function is real.

APPENDIX B: DENSITY OF STATES

In this section, we study the density of states resulting from
the shifting and broadening of the spectral function illustrated
in Fig. 3. For a bare energy spectrum restricted between ±μ,
the density of states is

D(ω) ∝
∫

d2k

(2π )2 A(k, ω)

= 1

π
tan−1

[
ω + μ − �′(ω)

−�′′(ω)

]
− (μ → −μ). (B1)

Figure 6 shows that the density of states greatly deviates from
a constant as α decreases. For α � 1

2 , it has a cusp at the Fermi

FIG. 6. The density of states of a power-law liquid has a cusp
at the Fermi level for α < 1

2 . The shaded region represents the bare
constant density of states between μ = ±0.05 for a quadratic band
in two dimensions.
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level. Quantitatively, the derivative dD
dω

at ω = 0 is

lim
ω→0

dD

dω
= lim

x→0

2

πμωN

d�′′

dx
= −4αλ

πμ
lim
x→0

sgn(x)|x|2α−1.

(B2)

This implies that the derivative is divergent and discontinuous
for α < 1

2 : limω→0± dD/dω = ∓∞. Since this density of
states is based on self-energy measured along only the nodal
lines of the cuprates, the experimental implications of this
result is unclear.
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