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Nonequilibrium selection of magnetic order in a driven triangular XY antiferromagnet
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We show that a weak periodic drive removes the accidental degeneracy in the ground state of the XY
antiferromagnet on the triangular lattice in a uniform static magnetic field. The underlying mechanism involves
adding a small periodically modulated component to the magnetic field, which influences finite-frequency modes
to generate an effective potential for the accidental pseudo-Goldstone mode. This selection can be arranged to
compete with the degeneracy lifting via the thermal order by disorder mechanism. This yields a nonequilibrium
phase transition as the relative strength of the two mechanisms is tuned by varying temperature. This proposal
may be amenable to experimental realization, in particular, as applying the field is noninvasive, and no complex
bath engineering is required.
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I. INTRODUCTION

The driven-dissipative system is a versatile platform for
studying nonequilibrium phenomena. In a driven-dissipative
system, the energy flux from the drive to the thermal bath
breaks detailed balance, thereby giving access to nonequi-
librium phases and phase transitions. Since Bénard’s early
experimental investigation of the eponymous convection phe-
nomenon [1], numerous nonequilibrium phases and phase
transitions have been discovered in a wide range of driven-
dissipative systems.

Driven frustrated magnets provide an ideal setting to ex-
plore nonequilibrium phases and phase transitions. In a frus-
trated magnet, the conflicting exchange interactions often pro-
duce a continuous manifold of accidentally degenerate ground
states. The slow drifting motion within the ground-state
manifold, corresponding to the pseudo-Goldstone modes, is
governed by the fast motion of the normal modes that bring
the system out of the manifold [2]. Such nonlinear coupling
naturally provides a mechanism for dynamically stabilizing
nonequilibrium magnetic orders: The normal modes, when
coherently driven by external stimuli such as magnetic field
pulse or ac magnetic field, generate an effective potential
in the ground-state manifold, which dynamically lifts the
degeneracy [3]. In particular, if other competing mechanisms
are absent, a vanishingly small driving field is sufficient to sta-
bilize the ground state with minimal effective potential energy.

Coupling the driven system to a thermal bath establishes a
nonequilibrium steady state at late time. The thermal fluctua-
tions from the bath on their own tend to stabilize the ground
states with minimal free energy through the order by thermal
disorder mechanism [4–8]. The states that are selected by the
driving and by the thermal fluctuations can be different. This
can lead to a nonequilibrium phase transition in the steady
state. If the driving strength is below a certain threshold,
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the dynamical landscape due to driving is overwhelmed by
the thermal free-energy landscape, and hence the system
exhibits the same magnetic order as in equilibrium. If the
driving strength exceeds the threshold, the system exhibits
nonequilibrium magnetic order stabilized dynamically by the
periodic driving.

For the specific case of periodic driving, the aforemen-
tioned dynamical stabilization mechanism resembles Floquet
engineering [9–13]. From this perspective, the presence of
frustration offers great tunability. At sufficiently low tem-
perature T , the magnitude of variations of the free-energy
landscape scales with T . The driving threshold for stabilizing
nonequilibrium magnetic orders therefore scales with T and
can, in principle, be made arbitrarily small by reducing T .
This may be compared to a conventional magnet without
frustration, for which the threshold in general scales with the
typical interaction energy [14–18].

In this paper, we explore these ideas in a simple yet promi-
nent frustrated spin model, namely the classical triangular XY
antiferromagnet in a static, in-plane magnetic field [6,19–21].
Its classical Hamiltonian is given by

E = J
∑
〈ij〉

cos(φi − φj ) − B0

∑
i

cos φi, (1)

where φi is the polar angle of the XY spin on a triangular
lattice site i. The first summation is over all nearest-neighbor
links, whereas the second is over all sites. The exchange
constant J > 0. The in-plane field B0 is along the spin x axis.
Equation (1) is the minimal model for easy-plane triangular
antiferromagnets [22] such as RbFe(MoO4)2 [14,23–30]. It
could also be realized by using Josephson junction arrays [31]
or cold atoms in an optical lattice [32].

The equilibrium phase diagram of Eq. (1) is well es-
tablished [19,20]. When B0 is below the saturation field
Bsat = 9J , the ground states of Eq. (1) are accidentally degen-
erate. At temperature 0 < T � J , thermal fluctuations lift the
degeneracy through the order by thermal disorder mechanism.
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FIG. 1. Top row: Equilibrium magnetic orders in triangular XY
antiferromagnet subject to a static, in-plane magnetic field (B0) along
the spin x axis. XY spins in sublattice A, B, and C are colored in red,
green, and blue. Bottom row: Driving the system with a weak, time-
periodic, in-plane magnetic field (B1) orthogonal to B0 dynamically
stabilizes the fan states. From left to right, the three columns show
the specific spin configurations at B0/J = 1, 3, 7. Inset: Equilibrium
phase diagram at fixed, low temperature T . As B0/J increases, the
system is successively in the Y phase (magenta), up-up-down (UUD,
cyan), 2:1 (yellow), and, finally, fully polarized phase (black), where
all spins are aligned with the field. Open circles mark the positions
of the states given in (a1),(b1),(c1) in the phase diagram. In a Y state
(a1), the spins in one sublattice are antialigned with the field, whereas
the spins in the other two sublattices form symmetric angles with the
field. In a UUD state (b1), the spins in one sublattice are anti-aligned
with the field, whereas the spins in the other two are aligned with the
field. In a 2:1 state (c1), the spins in one sublattice form one angle
with the field, whereas the spins in the other two sublattices form a
different angle with the field. In a fan state (a2, b2, c2), spins in one
of the three sublattices are aligned with the static field while spins in
the other two sublattices form symmetric angles with the static field.

Fixing T whilst increasing B0 from 0 to Bsat, the system
is successively in the Y phase [Fig. 1(a1)], the up-up-down
(UUD) phase [Fig. 1(b1)], and the 2:1 phase [Fig. 1(c1)], all
of which are stabilized by thermal fluctuations.

As we will show, one can select another kind of magnetic
order, known as the fan states [33,34], by driving the system
with a time-periodic field B1 along the spin y axis (Fig. 1,
bottom row). Although the fan states have the same symme-
try as the Y states, the former are not related to the latter
by symmetry. The fan states therefore constitute a distinct
phase. The fan states are disfavored in thermal equilibrium
as their free energy are the highest among the degenerate
ground states. With periodic driving, the fan states become
dynamically stable when B1 exceeds a threshold value that is
controlled by the temperature T . In what follows, we estab-
lish the nonequilibrium selection mechanism, its competition
with thermal fluctuations, and the transition resulted from the
competition thereof.

The rest of this work is organized as follows. In Sec. II, we
analyze the dynamics of the model Eq. (1) at zero temperature
and establish the selection of the fan states by periodic driving.
In Sec. III, we show that, when coupled to a thermal bath,
the competition between driving and thermal fluctuations
gives rise to phase transitions between the fan states and the

various equilibrium magnetic orders. In Sec. IV, we discuss
the experimental feasibility of our proposal and a few open
questions.

II. DYNAMICAL SELECTION AT ZERO TEMPERATURE

In this section, we analyze the dynamics of Eq. (1) at
T = 0. We endow the XY spins with rotor dynamics. It is con-
venient to partition the triangular lattice into three sublattices,
dubbed A, B, and C (Fig. 1). B1 couples to the uniform mode
in each sublattice linearly and all other modes nonlinearly. To
the leading order of the driving strength B1/J , we may retain
only the uniform modes and discard the rest. The validity of
this approximation will also be justified a posteriori by a com-
parison with direct numerical simulations. Within our approx-
imation, the spins in the same sublattice take the same orien-
tation, which we parametrize by polar angles φA,B,C. This re-
duces the many-body dynamics of Eq. (1) to a dynamical sys-
tem with three degrees of freedom. Its Lagrangian is given by

L = NI

6

∑
α

φ̇2
α − NJ

2

∑
α �=β

cos(φα − φβ )

+ N

3

∑
α

[B0 cos φα + B1(t ) sin φα]. (2a)

Here, N is the total number of spins. I > 0 is the
rotational inertia. α, β run over sublattice labels. B1(t ) is
a time-harmonic field: B1(t ) = B1 cos(�t ). We include
damping through the Rayleigh dissipation function [35],

R = Nk

6

∑
α

φ̇2
α, (2b)

where k > 0 is the damping constant. The equations of
motion are then obtained by using the Euler-Lagrange
equation d/dt (∂L/∂φ̇α ) − ∂L/∂φα = ∂R/∂φ̇α . Equation (2)
completes the description of the dynamical system, which will
be the focus of the remaining part of this section.

In a ground state, φA,B,C satisfy
∑

α cos φα = B0/(3J )
and

∑
α sin φα = 0, where α runs over sublattices. These

two conditions define a one-dimensional ground-state space
embedded in three-dimensional configuration space spanned
by φA,B,C. The specific geometry and topology of the ground-
state space depends on B0/J . Neglecting for the moment
potential subtleties associated with topology, we may view
the ground-state space as a curve. It is therefore natural to
parametrize the ground states by using the arc-length coordi-
nate s [36]. To this end, we designate some ground states as
the reference state. Each ground state is then parametrized by
the length of the arc, s, that connects it to the said reference
state. In particular, s = 0 for the reference state. Details of the
arc length parametrization are given in Appendix A.

The tangent vector of the ground-state space, or the
pseudo-Goldstone mode, corresponds to the motion within
the ground-state space. Orthogonal to the pseudo-Goldstone
modes are the two normal modes, which correspond to de-
viations away from the ground-state space. The driving field
B1(t ) forces the normal modes to oscillate with frequency
�. Meanwhile, the system may also drift slowly within
the ground-state space. We therefore postulate the following
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variational ansatz:

φα (t ) = φ(0)
α [s(t )] + Re[Aα (t )ei�t ]. (3)

Here, φ(0)
α is the spin angle in the ground state. It depends

on time through s(t ). Aα is the complex oscillation amplitude
that evolves slowly in time. Based on the aforementioned
picture, ṡ/s, Ȧα/Aα � �. We are interested in the weak
driving regime B1/J � 1, which implies that Aα � 1.

We find the explicit time dependence of s and Aα by using
the method of averaged Lagrangian [37]. We substitute Eq. (3)
into Eq. (2), expand the Lagrangian to the leading order in Aα ,
and average the Lagrangian over a time period of 2π/�. This
procedure yields an averaged Lagrangian L that describes the
slow dynamics of s and Aα . The equation of motion for s is
then obtained from L. After some lengthy calculations (see
Appendix B for details), we obtain

NI

3
s̈ + Nk

3
ṡ = −N

∂Veff

∂s
. (4)

The effective potential Veff admits a simple, analytical expres-
sion when the damping coefficient k � √

IJ :

Veff (s) = B2
1

12I

∑
λ

(
�2 − ω2

λ

)
(
ω2

λ − �2
)2 + k2�2/I 2

(
m

y

λ

)2
, (5)

where the summation is over the two normal modes labeled by
λ. ωλ and m

y

λ are, respectively, the intrinsic frequency and y-
direction magnetic dipole moment of the mode λ. Veff receives
its s dependence through ωλ and m

y

λ.
Equation (5) is the central result of this section. It shows

that the periodic driving induces an effective potential in the
ground state space [3]. It is important to bear in mind that we
have made a series of assumptions in deriving Eq. (5) from
Eq. (2): (a) The driving amplitude is weak, B1 � J . (b) The
driving frequency � is not in resonance with any of the two
normal modes. (c) The normal mode frequencies are bounded
from below above zero, ωλ > 0. (d) The ground-state space
does not contain topological singularities. (e) The damping
coefficient is relatively small, k/

√
IJ � 1. We also note that

our approach differs from the usual mathematical framework
of Floquet engineering in that the latter relies on the Magnus
expansion [11–13].

In what follows, we apply Eq. (5) to various representa-
tive cases and examine the selection effect. Specifically, we
consider three representative values of B0/J : B0/J = 1, 3,
and 7. At thermal equilibrium, these parameters, respectively,
put the system in the Y phase, the UUD phase, and the 2:1
phase (Fig. 1, inset). Here, we show that the periodic driving
dynamically stabilizes the fan phase in all three cases.

We first focus on the case with B0/J = 1. In this case,
the ground-state space consists of two connected components
[Fig. 2(a1)]. The ground states in each component are con-
nected by continuous rotation of spins. The two components
are related to each other by mirror reflection with respect to
spin-x axis. Moving from one component to the other must
overcome a high energy barrier. We henceforth neglect such a
process and focus on only one connected component.

Figures 2(b1) and 2(c1) show the dependence of the in-
trinsic frequency ωλ and the magnetic dipole moment in y

direction m
y

λ on the ground-state coordinate s. Figure 2(d1)

shows the effective potential Veff (s) for the driving amplitude
B1/J = 0.05 and frequency �/

√
J/I = 2.6. Throughout this

work, we set the damping coefficient k/
√

IJ = 0.05, a typical
value for spin systems [38]. The functional form of Veff (s)
essentially follows (my )2 of the high frequency mode as it
is close to resonance with �. Crucially, the minima of Veff

are located at the fan states, which are midpoints of two
neighboring Y states. Thus, periodic driving selects the fan
states instead of the Y states.

We understand the dynamical stabilization of the fan states
through the following heuristic picture. The high-frequency
normal mode is close to resonance with the drive and thus
dominates the system’s dynamical response. The fan states
minimize the magnetic dipole moment of the high frequency
mode along the direction of the driving field. This would
minimize the system’s dynamical response, and consequently
minimize the total kinetic energy. Our picture is reminiscent
of Henley’s argument for the selection of collinear magnetic
order in J1-J2 square antiferromagnet [7]. We stress that
the dynamical stabilization is the opposite of the usual field
selection effect, where the system prefers to maximize the
static response to the external field.

Note the effective potential Veff depends on the driving
frequency �. Here, we have set � to be slightly above the high
frequency mode, i.e., the band top of the spin-wave spectrum.
Our choice is based on two considerations. First, if one instead
sets � to be slightly below the band top, the minima of Veff

are located at the Y states rather than fan states. Second,
while setting � to be in resonance with the high-frequency
mode may seem to enhance the magnitude of Veff , undesired
nonlinear couplings, omitted in the present analysis, in fact
destroy the dynamical stabilization effect.

Returning to the present choice of driving frequency
�/

√
IJ = 2.6, the selection of fan states is confirmed by a di-

rect numerical simulation, where we integrate the many-body
equation of motion for a system of 42×42 spins with periodic
boundary conditions. We set the initial spin configuration to
be a Y state. Since Y states are Veff maxima [Fig. 2(d1)], we
trigger their instability by assigning to each spin a random
initial velocity |φ̇i | < 10−10√J/I . After the driving field is
ramped up over about ten cycles of oscillation [Fig. 2(e3),
inset], the system settles in a fan state by collective spin rota-
tion [Fig. 2(e1)]. Recall that the ground-state space consists of
two connected components. Starting from a specific Y state,
only the three fan states belonging to the same connected
component are accessible this way.

Having demonstrated the selection of fan states over the Y
states, we now turn to other regimes of B0/J . Similar analyses
shows that periodic driving stabilizes the fan states for the
cases B0/J = 3 and 7 despite distinct topological properties
of the ground-state space (Fig. 2, middle and bottom rows).
Note, for B0/J = 3, the ground-state space self-intersects
at the UUD states [Fig. 2(a2)]. In other words, the UUD
states are the singular points of the ground-state space. This
is also manifest in the intrinsic frequencies of the normal
modes [Fig. 2(b2)], where the low frequency mode softens
as the system approaches the UUD states. Thus, Eq. (5) is
inapplicable in the vicinity of the UUD states as the conditions
(c) and (d) are violated. Nonetheless, the stability of the fan
states inferred from Eq. (5) is robust. This is confirmed by

184432-3



YUAN WAN AND RODERICH MOESSNER PHYSICAL REVIEW B 98, 184432 (2018)

FIG. 2. Dynamical stabilization of the fan states due to periodic driving. The top, middle, and bottom rows, respectively, correspond to
B0/J = 1, 3, and 7. Column (a): The one-dimensional degenerate ground state space (solid lines) in configuration space spanned by the
sublattice spin angles φA,B,C. Columns (b) and (c): The intrinsic frequency ω of the two optical magnons and their magnetic dipole moments in
the y direction my as functions of the ground-state coordinate s. High- and low-frequency modes are colored in gold and purple, respectively.
Dashed lines mark the driving frequency. Column (d): Driving-induced effective potential Veff . Driving amplitude B1 = 0.05J for all three
cases. Column (e): Time-evolution of the sublattice spin orientation φA,B,C after the driving is switched on at time t = 0. Colored arrows show
the sketch of the magnetic orders. Top row: The degenerate ground-state space at B0/J = 1 contains two connected components (dark and light
blue). 1 ∼ 6 mark the Y states. Circles with the same label mark identical states thanks to the periodicity φ → φ + 2π . Filled (open) circles
are on the front (back) surfaces of the box. Fan states are at midpoints of two neighboring Y states. Results in (b ∼ d) are for the component
colored in darker blue. Driving frequency � = 2.6

√
J/I . Middle row: The ground state space at B0/J = 3 contains topological singular points

at the UUD states, labeled as 1 ∼ 3, where the ground state space self-intersects (a2). Fan states are midpoints of two neighboring UUD states.
The driving frequency � = 3.2

√
IJ . Bottom row: The ground state space at B0/J = 7 has a single connected component. 1 ∼ 6 label the 2:1

states. The fan states are the midpoints of two neighboring 2:1 states. The driving frequency � = 2.6
√

J/I . The time-profile of the periodic
driving field is shown in the inset of (e3).

direct numerical simulation, which shows the periodic drive
dynamically stabilizes the fan states over the UUD states
[Fig. 2(e2)].

III. PHASE TRANSITIONS AT FINITE TEMPERATURE

At finite temperature T , the effective potential Veff must
compete with the thermal fluctuations as the latter disfavor the
fan states. In this section, we investigate such competition nu-
merically. To this end, we couple our system to a thermal bath
at temperature T . The bath takes away the energy deposited
by the periodic drive and establishes a nonequilibrium steady
state at late time.

Microscopically, the bath is modeled as Gaussian stochas-
tic torque ξi , characterized by the correlation function
〈ξi (t )ξj (t ′)〉 = √

2kIkBT δij δ(t − t ′). This leads to the stan-
dard Langevin equation [39]:

I φ̈i + kφ̇i = τi + ξi, (6a)

where the mechanical torque τi is given by

τi = J
∑
j∈Ni

sin(φi − φj ) − B0 sin φi + B1(t ) cos φi. (6b)

Here, the summation is over all nearest neighbors of the site
i. In particular, setting T = 0 reduces Eq. (6) to the zero-
temperature many-body dynamics problem we have analyzed
in Sec. II.

We integrate Eq. (6) for a system of L × L spins with
periodic boundary conditions by using the Bussi-Parrinello
algorithm [40]. The details of the algorithm are given in
Appendix C. Results are presented for L = 42 unless stated
otherwise. Animations of the typical simulation runs can be
found in the Supplemental Material, which shows how the
system may be driven from the equilibrium phases to the
nonequilibrium phase at early time [41]. At late time, the sys-
tem enters a synchronized state with discrete time-translation
symmetry, t → t + 2π/�. We record the system configura-
tions at stroboscopic times ti when the driving field B1(ti ) =
0. Due to the discrete time-translation symmetry, this is effec-
tively sampling from the same ensemble. At these instants, the
symmetries of the driven system’s Hamiltonian are the same
as the equilibrium. All averages are then performed within the
stroboscopic ensemble.

To begin, we consider B0/J = 1. Similar to T = 0, we set
B1/J = 0.05 and �/

√
J/I = 2.6. As T increases from 0, we

expect a transition from the fan phase to the Y phase. We
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FIG. 3. Nonequilibrium phase transitions resulted from the competition between periodic drive and thermal fluctuations. Top, middle, and
bottom rows show the results with static fields B0/J = 1, 3, 7, respectively. We set the driving amplitude B1 = 0.05J unless stated otherwise.
Column (a): Value of order parameter �x on the complex plane for the fan state (open circles) and the competing equilibrium orders (closed
circles). Column (b): Average kinetic energy density 〈K〉/N as a function of bath temperature T . The kinetic energy density due to the wave
vector |q| = 0 modes (closed circles) and |q| > 0 modes (open circles) are shown separately. For |q| > 0 modes, the thermal contribution T/2
is subtracted to highlight the heating effect. Column (c): Order parameter ζ3 as a function of T for different system sizes L. Columns (d) and
(e): Histograms of the order parameter angle 3arg�x and the sublattice magnetization orientation φA,B,C near the transition. The same color
code corresponds to the same temperature. Note we do not distinguish the three sublattices in the latter histogram. Top row: Driving frequency
� = 2.6

√
IJ . The arrow in (c1) marks the crossing point of the order parameter curves for different system sizes. The inset of (c1) shows the

scaling of Tc with B2
1 (open circles). The dashed line is the linear scaling relationship based on the crude estimate given in the main text. In (d1)

and (e1), the solid cyan line shows the histogram of 3arg�x and φA,B,C obtained by randomly drawing ground states with uniform probability
density. Middle row: � = 3.2

√
IJ . The inset of (b2) shows the enlarged view of the low-temperature part of the data. Arrow in (c2) marks the

crossing point of data curves for different system sizes. Bottom row: Driving frequency � = 2.6
√

IJ .

therefore construct an order parameter to distinguish these two
phases. Consider a complex order parameter �x defined as
Re�x ≡ mx

A − (mx
B + mx

C)/2 and Im�x ≡ √
3/2(mx

B − mx
C ),

where mx
A,B,C are the x components of the magnetization

density for sublattice A, B, and C, respectively [19,20]. In
the absence of fluctuations, the complex argument angle of
�x takes value 0,±2π/3 if the system is in fan phase and
π,±π/3 if in Y phase [Fig. 3(a1)]. Thus, ζ3 ≡ 〈cos(3arg�x )〉
is an order parameter that distinguishes the two phases: ζ3 →
1(−1) for the fan (Y) phase.

We first study the heating effect, which is inevitable due
to the nonlinear coupling between the spin-wave modes. We
distinguish the modes with wave vectors q = 0 and q �= 0.
The former are coherently driven by B1 and thus possesses
a finite kinetic energy density on their own (∼10−3J ), which
is one order of magnitude less than the equilibrium kinetic
energy density kBT /2 [Fig. 3(b1), closed circles]. By contrast,
the latter are dominated by the thermal fluctuations. Due to
driving, their kinetic energy density is slightly larger than the
thermal equilibrium value kBT /2 [Fig. 3(b1), open circles].
The small excess (<10−3J ) reflects moderate heating.

We then turn to the competition between the periodic
driving and the thermal fluctuations. As T/J increases from

0.01 to 0.15, the order parameter ζ3 passes from a positive
value to a negative value, indicating a transition from a
dynamically stabilized fan phase to a thermally stabilized Y
phase [Fig. 3(c1)]. The 〈ζ3〉 curves for various system sizes
L cross at approximately the same temperature Tc, which we
interpret as the transition temperature. Using data for L = 36
and 42, we estimate Tc ≈ 8.04×10−2J .

Tc is controlled by the driving amplitude. On one hand, for
fixed driving frequency �, Eq. (5) shows the magnitude of
Veff scales with B2

1/J . On the other hand, the magnitude of
the thermal free-energy landscape is T �S, where �S is the
entropy difference between the fan states and Y states. At Tc,
we expect the effective potential Veff and the free-energy land-
scape are comparable in magnitude, B2

1/J ∼ Tc�S, which
yields Tc ∼ B2

1 . Simulation indeed shows that Tc roughly
scales linearly with B2

1/J [Fig. 3(c1), inset].
To clarify the nature of the transition, we plot the his-

togram of the quantity 3arg�x near Tc [Fig. 3(d1)]. At T/J =
0.08, which is in the vicinity of Tc, the histogram is well
approximated by a toy model in which we randomly draw
ground states from the degenerate ground-state space with
uniform probability. Note the resulting 3arg�x histogram is
not flat because arg�x is not uniform in the ground-state
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FIG. 4. Sketch of the evolution of the nonequilibrium effective
energy landscape, Vneq, as a function of the ground-state coordinate
s. The curves are shifted vertically or better visibility. Filled circles
mark the minima of Vneq. (a) Evolution of Vneq for B0/J = 1. Both
connected components of the ground-state space are shown. The
minima jump from fan states to Y states as T increases across Tc.
At Tc, the fan states and Y states are degenerate, and the overall
magnitude of Vneq is also relatively small. (b) Same as (a) but for
B0/J = 3. As T increases, the minima of Vneq, originally at fan states
at low T , split into pairs. Meanwhile, Veff develop metastable minima
at the UUD states, which eventually become the global minima.
(c) Same as (a) but for B0/J = 7. The splitting of minima is similar
to (b), but Vneq shows no metastable states.

space. The agreement between the simulation data and our
toy model suggests the driving-induced Veff and the thermal
free-energy landscape approximately cancel, leading to an
almost uniform distribution of ground states. Below or above
Tc, the histogram of 3arg�x develops peaks at 0 or π , corre-
sponding to, respectively, the fan state and Y state.

The histogram of the polar angle of the sublattice mag-
netization φA,B,C [Fig. 3(e1)] mirrors the behavior of the
3arg�x histogram. At T/J = 0.08, the histogram can be ap-
proximated by the aforementioned toy model. Above Tc, the
histogram develops three peaks that correspond to the three
spin angles in the fan phase [Fig. 1(a2)]. Likewise, below Tc,
the histogram develops three peaks that correspond to the Y
phase [Fig. 1(a1)].

The evolution of the histograms may be heuristically un-
derstood as follows [Fig 4(a)]. The competition between the
periodic driving and the thermal fluctuations give rise to a
nonequilibrium effective energy landscape in the ground state
space, Vneq, which interpolates the effective potential Veff

[Eq. (5)] at T = 0 and the thermal free-energy landscape
F = U − T S at sufficient high T . At T < Tc, the minima
of Vneq are at fan states. As T increases, the minima at fan
states become shallower and eventually become degenerate
with the Y states. At this point, the overall magnitude of Vneq

is also quite small. Above Tc, the Y states are true minima and
grow deeper with increasing T . Note that this picture suggests
coexisting peaks at both fan states and Y states at Tc in the
histogram. However, we do not observe such coexisting peaks
in simulation. This is likely due to the fact that the peaks are
too small comparing to the sampling noise.

Although a systematic classification of nonequilibrium
phase transition is lacking, the above picture suggests that
the transition from the fan phase to the Y phase resembles a
weak first-order transition. It is also analogous to the transition
in XY-clock model when the clock anisotropy changes sign.
Let � stand for the order parameter angle of the XY model.
Consider the clock anisotropy potential � = −g6 cos(6�) −
g12 cos(12�). Tuning g6 from positive to negative while keep-
ing g12 > 0, the minima of � jump from � = mπ/3 to � =
π/6 + mπ/3, m = 0, 1, 2, . . . 5. At the transition g6 = 0, all
12 states are degenerate minima of �.

The phase transitions at B0/J = 3 and 7 can be analyzed
in the same vein. It is advantageous to first consider B0/J =
7. In this case, we can also use the order parameter ζ3 to
distinguish the fan phase (ζ3 → 1) from the 2:1 phase (ζ3 →
−1). While ζ3 clearly shows a transition from the fan phase to
the 2:1 phase as the temperature T increases [Fig. 3(c3)], the
manner in which the transition occurs is markedly different
from B0/J = 1. At T = 1.2×10−2, the histogram of 3arg�x

has a broad peak at 0 corresponding to fan states [Fig. 3(d3)].
When T increases, the peak splits into two peaks. As T

increases further, these two peaks approach each other and
eventually merge at π , which corresponds to the 2:1 states.
The histogram of φA,B,C mirrors the same process [Fig. 3(e3)].

We interpret our results in terms of the nonequilibrium
effective energy landscape Vneq as follows [Fig. 4(c)]: At low
T , Vneq has six degenerate minima at fan states. Increasing
T splits each of the minima into two, producing in total 12
degenerate minima. These minima eventually merge at the six
2:1 states. In other words, there is an intermediate phase that
separates the fan phase at low temperature and the Y phase
at high temperature. Crucially, this picture suggests that we
can no longer interpret the crossing point of ζ3 as a single
Tc. Instead, there are two separate transitions at Tc1,c2, corre-
sponding to the onset and the end point of the intermediate
phase, respectively. We shall return to this point in Sec. IV.

Similar to the case with B0/J = 1, we can make an anal-
ogy with the XY-clock model. Consider the clock anisotropy
potential � = −g6 cos(6�) − g12 cos(12�). Tuning g6

across 0 whilst keeping g12 < 0, the six degenerate minima of
�, initially at mπ/3 for large positive g6, split into 12 minima,
and then merge at π/6 + mπ/3. We note the same kind of
physics arises in the context of height model as well [42].

At B0/J = 3, yet another behavior emerges at the tran-
sition from the fan phase to the UUD phase. The order
parameter ζ3 jumps rather abruptly from 1 (fan phase) to −1
(UUD phase) as T increases [Fig. 3(c2)]. The peak of the
3arg�x histogram [Fig. 3(d2)] is initially at 0 (fan states)
at low T . As T increases, it splits into two peaks and then
both approach π (UUD states). Meanwhile, a satellite peak
develops at π , which grows and eventually becomes the
dominate peak. The presence of a satellite peak suggests that
Vneq develops metastable minima at the UUD states, which
eventually become global minima at higher T [Fig. 4(b)]. In
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other words, the transition from the fan phase to the UUD
phase resembles a strong first-order transition. Using the
crossing points of ζ3, we estimate Tc ≈ 3.26×10−3J .

The transition occurs at much lower temperature for
B0/J = 3 compared to B0/J = 1. This is due to the large
entropy difference between the UUD states and the fan states,
which is �S = 0.12kB per site. For comparison, the entropy
difference between the fan states and the Y states �S =
2.6 × 10−3kB per site at B0/J = 1, which is two orders of
magnitude smaller. We have argued that, at the transition,
Tc�S ∼ B2/J . As a result, with the same driving strength,
the transition at B0/J = 3 occurs at a temperature scale that
is significantly lower than B0/J = 1.

IV. DISCUSSION

To summarize, we have shown the dynamical stabilization
of the fan phase by periodic driving in the triangular XY anti-
ferromagnet. As a result of the competition between the peri-
odic driving and the thermal fluctuations, the late-time steady
state exhibits a temperature-driven nonequilibrium phase tran-
sition out of the fan phase. These results could be potentially
tested in easy-plane triangular antiferromagnets. For instance,
when the system is subject to a static field B0/J = 1 and
an ac field B1/J = 0.025 with frequency �/

√
J/I = 2.6,

the transition temperature from the fan phase to the Y phase
Tc/J = 0.03. Using parameters from RbFe(MoO4)2, we esti-
mate B0 ≈ 2T, B1 ≈ 50mT, � ≈ 135GHz, and Tc ≈ 228mK.
The sub-THz ac magnetic field is within the reach of current
THz technology [43]. We caution that a detailed modeling of
the material is necessary to obtain a more accurate estimate.

The transitions from the fan phase to the other three
thermal phases (Y, UUD, and 2:1) bear a resemblance to
the transitions observed in the triangular XY antiferromag-
net with quenched disorder [33,34]. In the latter model, the
quenched disorder stabilizes the fan phase through the order
by quenched disorder mechanism [7], whereas the thermal
fluctuations stabilize the other three. One therefore would ex-
pect temperature-driven transitions out of the fan phase. How-
ever, the transitions observed in our model, while resembling
thermal phase transitions, are inherently out of equilibrium.
Moreover, the presence of the quenched disorder in the latter
model may have a significant impact on the nature of phase
transition, whereas the quenched disorder is absent in our
model.

Our work leaves a few interesting open questions. We
observe from simulation that the transition from the fan phase
to the 2:1 phase at B0/J = 7 is not direct. Instead, the system
enters an intermediate phase that interpolates between the fan
and the Y phases as the temperature T increases. As the cross-
ing point analysis in Sec. III is not directly applicable near the
onset and end point temperature of the intermediate phase,
a new analysis method is needed to locate them reliably. Fur-
thermore, the system’s rich behavior near the phase transitions
calls for a thorough analytic treatment. Our analysis given
in Sec. II completely discards the thermal fluctuations. It is
therefore unable to capture the phase transition. Instead, in
Sec. III, we invoke the concept of nonequilibrium effective
energy landscape Vneq to interpret the simulation data. While
intuitive, our picture should be put on a rigorous ground.

Finally, it would be interesting to examine to what extent the
results for the classical model carry over to the quantum XY
model [21] or the Heisenberg model [21,44–46].

Looking beyond the triangular antiferromagnets, we think
the nonequilibrium selection mechanism unveiled in Sec. II
may be applicable to other classical frustrated systems that
possess a continuously degeneracy ground state manifold. So
long as the stiffness of the optically active normal modes
depends on the ground state, driving these modes with ac
magnetic field produces an effective potential that resembles
Eq. (5), which may dynamically stabilize ground states that
are thermally unstable. It then follows that coupling the sys-
tem to a thermal bath would result in nonequilibrium phase
transitions similar to what we have found in Sec. III. In
short, we believe that our work merely uncovers a corner of
a potentially rich research direction.
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APPENDIX A: ARC-LENGTH PARAMETRIZATION

In this section, we explain in detail the arc-length
parametrization of the ground-state manifold of the model
Eq. (1). In a ground state, the spins belonging to the same
sublattice take the same orientation. Let φα denote the polar
angle of the XY spins in sublattice α, where α runs over the
three sublattice labels A, B, and C. The energy of Eq. (1) is
minimized if the following conditions are fulfilled:∑

α

cos φα = B0

3J
;

∑
α

sin φα = 0. (A1)

φα span a three-dimensional torus T 3. The solution space of
the above equations, or equivalently the ground state man-
ifold, is one-dimensional, which may be viewed as a one-
dimensional curve embedded in T 3. We thus may parametrize
the solutions as φα (s), where s is the arc length parameter we
introduced in the main text.

We next look for the functional form of φα (s). To this end,
we take derivatives of the ground state conditions with respect
to s: ∑

α

sin φαφ̇α = 0;
∑

α

cos φαφ̇α = 0. (A2)

Recast the above in a more suggestive form:

v1 · φ̇ = 0; v2 · φ̇ = 0. (A3)

Here, φ̇ is the three-dimensional vector made of φ̇α . As s is the
arc length of the ground-state curve, φ̇ is the tangent vector
of the curve. In particular, |φ̇| = 1. Likewise, v1 is a three-
dimensional vector made of sin φα , and v2 is made of cos φα .
The above equations show that φ̇ ⊥ v1,2, which is sufficient to
determine φ̇:

φ̇ = v1 × v2

|v1 × v2| . (A4)
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This is an autonomous system of first-order differential equa-
tions, which fully determines φα (s). Solving it numerically
yields the ground-state manifold visualized in Fig. 2, col-
umn a.

APPENDIX B: DERIVATION OF
THE EFFECTIVE POTENTIAL

In this section, we derive the effective potential Eq. (5) in
more detail. The starting point of the derivation is the La-
grangian Eq. (2). We substitute the variational ansatz Eq. (3)
into Eq. (2), expand it to the quadratic order in Aα , and
average over a time period of 2π/� [37]. We thus find the
averaged Lagrangian:

L = K − V . (B1)

The averaged kinetic energy is given by

K = NI

6
ṡ2 + NI

12

∑
α

[ȦαȦ∗
α + �2AαA∗

α

+ i�(AαȦ∗
α − ȦαA∗

α )]. (B2)

Here, the first term is the kinetic energy associated with the
drifting motion in the ground state space, whereas the second
term is the kinetic energy associated with the oscillation in the
normal modes. The averaged potential energy is given by

V = N

12

∑
α

KαβA∗
αAβ − NB1

6

∑
α

my
αReAα, (B3a)

where Kαβ is a 3×3 stiffness matrix:

Kαβ = 3J cos
(
φ(0)

α − φ
(0)
β

)
. (B3b)

Kαβ depends on the ground-state coordinate s through φ(0)
α ,

the spin polar angles in a ground state. The 3×1 vector m
y
α

describes the coupling with the driving field:

my
α = cos φ(0)

α . (B3c)

The averaged Rayleigh dissipation function is given by

R = Nk

6
ṡ2 + Nk

12

∑
α

[ȦαȦ∗
α + �2AαA∗

α

+ i�(AαȦ∗
α − ȦαA∗

α )]. (B4)

Using the Euler-Lagrangian-Rayleigh equation for Aα and
s yields the following equations of motion:

(ik� − I�2)Aα +
∑

β

KαβAβ = B1m
y
α, (B5)

and
NI

3
s̈ + Nk

3
ṡ = −N

∂Veff

∂s
, (B6)

where the effective potential Veff is defined through its deriva-
tive:

∂Veff

∂s
≡ 1

12

∑
αβ

∂Kαβ

∂s
A∗

αAβ − B1

6

∑
α

∂m
y
α

∂s
ReAα. (B7)

In deriving Eq. (B5), we have omitted all time derivatives of
Aα thanks to the assumption Ȧα � �Aα .

We solve Eq. (B5) for Aα and plug it into Eq. (B7):

∂Veff

∂s
= B2

1

12I

∑
λ

[ (
m

y

λ

)2(
ω2

λ − �2
)2 + k2�2/I 2

∂ω2
λ

∂s

−∂
(
m

y

λ

)2

∂s

ω2
λ − �2(

ω2
λ − �2

)2 + k2�2/I 2

]
. (B8)

Here, the summation is over the two normal modes λ. m
y

λ and
ωλ are, respectively, the y-dipole moment and the frequency
of the normal mode λ. In the weak damping limit, Veff can be
integrated approximately:

Veff = B2
1

12I

∑
λ

�2 − ω2
λ(

ω2
λ − �2

)2 + k2�2/I 2

(
m

y

λ

)2
, (B9)

which is the result given in Eq. (5). The error is of order
k2/IJ .

APPENDIX C: INTEGRATING THE
LANGEVIN EQUATION

In this section, we provide the details of the numerical
procedure for integrating the Langevin Eq. (6). We employ the
Bussi-Parrinello algorithm [40]. In this algorithm, each step
of the evolution is split into four stages. In the second and the
third stages, the system decouples from the bath and evolves
according to its Hamiltonian. In the first and the last stages,
the system equilibrates with the bath. The explicit formulas at
the four stages are given by

Li (t
+) = c1Li (t ) + c2Ri (t ), (C1a)

φi (t + �t ) = φi (t ) + Li (t )�t + τi (t )

2
�t2, (C1b)

Li (t
− + �t ) = Li (t

+) + τi (t ) + τi (t + �t )

2
�t, (C1c)

Li (t + �t ) = c1Li (t
− + �t ) + c2Ri (t + �t ). (C1d)

Here, Li and φi are, respectively, the angular velocity
and the polar angle of the XY spin. τi is the deterministic
torque. For the sake of simplicity, we have rescaled time
and energy such that the spin’s rotational inertia I → 1 and
exchange constant J → 1. Ri (t ) and Ri (t + �t ) are pseudo-
random numbers drawn from a standard normal distribution.
The dimensionless constants c1 = exp(−k�t/2) and c2 =√

(1 − c2
1 )kBT , where k and kBT are, respectively, the di-

mensionless damping constant and temperature. In particular,
if we set the bath temperature kBT = 0, c2 = 0, Eq. (C1)
reduces to the classic velocity Verlet algorithm.

In the simulation, we set the step width �t to be about
1/200 of the driving period, i.e., 0.01π/�. Convergence is
checked by reducing �t . Each run starts with an initial con-
figuration of φi and Li drawn from a Monte Carlo simulation.
We equilibrate the system by running the algorithm for 105

steps before the driving field is turned on. After the system
reaches the late-time steady state, we record the system’s
configurations at stroboscopic times ti when the periodic
driving field vanishes instantaneously, i.e., B1(ti ) = 0. We
collect more than 105 samples in each run, and run eight times
with different initial conditions for each model parameter.
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