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We present a comprehensive small-angle neutron scattering study of the doping dependence of the helimag-
netic correlations in Mn1−xFexSi. The long-range helimagnetic order in Mn1−xFexSi is suppressed with increas-
ing Fe content and disappears for x > x∗ ≈ 0.11, i.e., well before xC ≈ 0.17 where the transition temperature
vanishes. For x > x∗, only finite isotropic helimagnetic correlations persist which bear similarities with the
magnetic correlations found in the precursor phase of MnSi. Magnetic fields gradually suppress and partly align
these short-ranged helimagnetic correlations along their direction through a complex magnetization process.
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I. INTRODUCTION

Tuning the interactions in magnetic materials by pressure
or chemical substitution is a well-visited route to discover
new and exotic phases of condensed matter. In chiral mag-
netism, the most notable example is provided by the effect
of hydrostatic pressure on the properties of the archetype
chiral magnet MnSi. In this system, the helimagnetic order
at ambient pressure results from the competition between the
ferromagnetic exchange and the Dzyaloshinsky-Moriya (DM)
[1,2] interaction that arises from the noncentrosymmetric
crystal structure of this B20 compound [3]. The helical order,
of which the propagation vector is fixed to the 〈111〉 crys-
tallographic directions by magnetic anisotropy, is suppressed
under pressure at pC ≈ 1.4 GPa. Above pC , partial mag-
netic order persists in a non-Fermi liquid phase that emerges
without quantum criticality [4–6]. Additionally, topological
contributions to the Hall effect hint that magnetic correlations
with nontrivial topology, similar to the skyrmion lattice phase
at ambient pressure [7,8], are stabilized in this region of the
phase diagram [9].

Another way of tuning the chiral magnetic order is by
chemically substituting MnSi with iron. In Mn1−xFexSi, the
helimagnetic order is suppressed with increasing Fe concen-
tration, with the spontaneous magnetization [10,11], Curie-
Weiss [11] and transition temperature TC [10,11] extrapolat-
ing to 0 at xC ≈ 0.17. Remarkably, a change of magnetic
behavior is already observed at x∗ ≈ 0.11 by magnetization
[11], magnetic susceptibility [11], resistivity [12], and elec-
tron spin resonance (ESR) measurements [13]. Based on these
results, it has been suggested that x∗ is a candidate for a
quantum critical point (QCP), possibly associated with the
suppression of the long-range helimagnetic order [12,14–16].
However, despite all these studies, the nature of x∗ and of the
magnetic correlations for x∗ < x < xC remain unclear.
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In the following we address these points and discuss the
helimagnetic order in Mn1−xFexSi around x∗. With small-
angle neutron scattering (SANS), we systematically study
the evolution of the helimagnetic correlations as a function
of both temperature and magnetic field. In particular, we
investigate the effect of dilution and compare the topology
of the magnetic correlations for x = 0, 0.03, 0.09, 0.10, i.e.,
for x < x∗, with that for x = 0.11, 0.14, i.e., for x > x∗. All
measurements were performed by systematically applying the
magnetic field both perpendicular and parallel to the incoming
neutron beam. In this way, we obtain an overview of the
topology of the helimagnetic correlations, both perpendicular
and parallel to the magnetic field, in a way that is not provided
by previous studies.

The results show that with increasing Fe concentration,
the helices at zero magnetic field first reorient from 〈111〉
to the 〈110〉 crystallographic directions and that the long-
range helimagnetic order in Mn1−xFexSi disappears at x∗. For
x > x∗ finite isotropic helimagnetic correlations set in which
bear similarities to those seen in the precursor phase in MnSi
[17–20]. Magnetic fields gradually suppress and only partly
align the helices along their direction through a complex
magnetization process.

II. EXPERIMENTAL

Single crystals of Mn1−xFexSi with nominal Fe concen-
tration x = 0.03, 0.09, 0.10, 0.11, and 0.14 were grown us-
ing the Bridgeman method. The composition of the single
crystals, which are listed in Table I, was checked with a
PANalytical Axios x-ray fluorescence spectrometer and re-
vealed Fe concentrations of 0.032, 0.089, 0.101, 0.112, and
0.140, respectively. The samples originate from exactly the
same batches as the samples of our previous magnetization
and susceptibility study [11]. They have irregular shapes and
their dimensions vary from ∼5 × 5 × 5 mm3 to ∼10 × 10 ×
15 mm3. The measurements on MnSi were performed on the
same cubic single crystal with dimensions ∼5 × 5 × 5 mm3
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TABLE I. Overview of the Mn1−xFexSi compositions studied.
The nominal composition, xnom, was verified with x-ray fluorescence
spectroscopy (xXRF). The critical temperature TC has been deter-
mined from magnetic susceptibility [11] and for x � x∗ from the
inflection point of the temperature dependence of the total scattered
intensity at zero magnetic field. The pitch of the helical modulation
� is tabulated for T = 2.5 K and T = TC .

xnom xXRF TC (K) (SQUID) TC (K) (SANS) �2.5K (nm) �TC
(nm)

0 0 29.2 28.8 18.2 16.0
0.03 0.032 19.2 19.2 13.8 13.2
0.09 0.089 8.1 7.8 9.5 9.7
0.10 0.101 5.4 5.5 8.9 9.0
0.11 0.112 5.0 8.4 8.5
0.14 0.140 2.4 7.0 7.0

used in previous experiments [20–22]. The structure of all
single crystals was checked with x-ray Laue diffraction and
the x = 0, 0.03, 0.10, 0.11, and 0.14 samples were aligned
with the [1̄10] crystallographic direction vertical. The x =
0.09 sample was aligned with the [001] direction vertical.

The SANS measurements were performed on the time-of-
flight instrument Larmor of the ISIS neutron spallation source
using neutrons with wavelengths of 0.09 � λ � 1.25 nm. The
samples were placed at a distance of 4.4 m from the detector
that consists of 80 3He tubes, each 8 mm wide. The SANS
patterns were normalized to standard monitor counts and
background corrected using a high-temperature measurement.
The magnetic field was applied by a three-dimensional vector
cryomagnet either parallel ( �H ||�ki) or perpendicular ( �H ⊥
�ki) to the incoming neutron beam designated by its wave
vector �ki . All measurements were performed by first zero field
cooling the sample to the lowest temperature of interest. Then
a magnetic field was applied and the signal was recorded by
stepwise increasing the temperature. The system was brought
to thermal equilibrium before the measurement at each tem-
perature commenced. The fitted values reported in this paper
have been obtained using the nonlinear least-squares method
and the error bars correspond to one standard deviation.

III. ZERO MAGNETIC FIELD

Figure 1 depicts typical SANS patterns recorded at zero
magnetic field and for different temperatures and composi-
tions. The results for MnSi are displayed in Fig. 1(a) and are
in good agreement with the literature [17,19,20,23]: above
TC , a diffuse isotropic ring of scattering appears with radius
τ = 2π/�, where � is the pitch of the helical modulation. This
ring, which originates from isotropic, chiral, and fluctuating
helimagnetic correlations, intensifies and narrows when
approaching TC ∼ 28.7 K. This ring coexists in a temperature
region of �T ≈ 0.2 K around TC with two Bragg peaks.
These Bragg peaks mark the onset of the long-range helical or-
der oriented along the 〈111〉 directions. The patterns displayed
in Fig. 1(b) for x = 0.03 show a qualitatively similar behavior,
but with a lower transition temperature of TC ∼ 19.2 K.

By further increasing the Fe concentration, the propagation
direction of the helix below TC changes from 〈111〉 to 〈110〉,
as can be inferred from the alignment of the Bragg peaks along

the 〈110〉 directions for x = 0.09 [Fig. 1(c)].1 This change
of propagation direction is accompanied with a broadening
of the Bragg peaks, which are no longer well-defined spots
as for x = 0 and 0.03 [Figs. 1(a) and 1(b)], but smeared on
a ring with radius τ = 2π/�.2 A slight increase of the Fe
concentration to x = 0.10 considerably enhances the broad-
ening, indicating an ill-defined orientation of the helix and a
weakening of the magnetic anisotropy, which is possibly due
to the increased chemical disorder [24].

The long-range helimagnetic order with a well-defined
propagation direction disappears for x > x∗. For x = 0.11
and 0.14, broad isotropic rings of scattering instead of Bragg
peaks are observed down to the lowest temperature measured,
which are well below the respective transition temperatures
inferred from susceptibility measurements (Table I). These
rings of scattering intensify but remain broad with decreasing
temperature, thus indicating finite helimagnetic correlations.

The effect of dilution on the zero-field helimagnetic order
is further illustrated by Fig. 2(a), which displays the normal-
ized scattering function S(Q) at μ0H = 0 T and below the
transition temperature for several compositions. S(Q) is ob-
tained by radial averaging the SANS patterns of Fig. 1 and is
thus a one-dimensional representation of the two-dimensional
scattering patterns. The line shape of S(Q) is dramatically
different for x > x∗ than for x < x∗. Indeed, for x � 0.10,
S(Q) has a Gaussian line shape with a constant FWHM of
�Q/Q ≈ 0.16 that roughly corresponds to the resolution of
the instrument. On the other hand, for x = 0.11 and especially
for x = 0.14, S(Q) is no longer resolution limited but broad,
as indicated by the respective FWHM of �Q/Q ≈ 0.23
for x = 0.11 and �Q/Q ≈ 0.65 for x = 0.14. As further
illustrated by Figs. 2(b)–2(d), which display S(Q) at different
temperatures for x = 0.09, 0.11, and 0.14, S(Q) remains
for x > x∗ broad down to the lowest temperature measured
(1.8 K), indicating that helimagnetic correlations with finite
correlation lengths persist to the lowest temperatures.

We consider the Ornstein-Zernike relation to extract esti-
mates for the correlation length ξ and the pitch of the helix �:

S(Q) = C/[(Q − 2π/�)2 + ξ−2], (1)

with C the Curie constant. The temperature dependence of
both � and ξ are displayed in Fig. 3. For the sake of clarity, the
values of � at T = 2.5 K and at TC are also provided in Table I.

Figure 3(a) shows that � decreases monotonously with
increasing Fe concentration: at T = 2.5 K, it decreases from
18.2 nm for x = 0 to 6.2 nm for x = 0.14. As further ad-
dressed in the discussion, this indicates a strengthening of the
DM interaction with respect to the ferromagnetic exchange
interaction.

The correlation length follows a qualitatively similar
behavior for all compositions with x < x∗: it increases
monotonously with decreasing temperature and reaches ap-
proximately the pitch of the helix at TC . On the other hand,
for x > x∗, ξ increases monotonously down to the lowest

1The change of the propagation direction of the helix for x = 0.09
is confirmed by triple-axis spectroscopy measurements.

2The rocking scans reveal a considerable broadening of the helical
Bragg peaks on the surface of a sphere with radius τ = 2π/�.
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FIG. 1. SANS patterns recorded at zero magnetic field and different temperatures for Mn1−xFexSi with (a) x = 0, (b) x = 0.03, (c) x =
0.09, (d) x = 0.10, (e) x = 0.11, and (f) x = 0.14.

temperature. In particular for x = 0.14, ξ is significantly
smaller than � and reaches 5 nm ∼2/3� at 1.8 K.

IV. MAGNETIC FIELD

A. Measurements at T = 2 K

Figure 4 displays SANS patterns recorded as a function
of magnetic field for Mn1−xFexSi with (a), (b) x = 0.09,
(c), (d) x = 0.11 at T = 2.5 K and (e), (f) x = 0.14 at

T = 2 K, i.e., for T < TC . These patterns have been collected
in two complementary experimental configurations: one with
the magnetic field parallel to the incoming neutron beam
( �H ||�ki) and one with the field perpendicular to the incoming
neutron beam ( �H ⊥ �ki).

Figure 4(a) shows SANS patterns for x = 0.09 with �H ||�ki ,
i.e., the configuration that is sensitive to helical modulations
perpendicular to the magnetic field. At zero magnetic field,
the pattern displays four smeared Bragg peaks oriented along
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FIG. 2. Scattering function S(Q), deduced by radially averaging
the scattered intensity, at zero field for Mn1−xFexSi. (a) S(Q) is
determined for T < TC and the Fe concentrations indicated in the
legend. S(Q) was measured at T = 2.5 K for x � 0.11 and T =
2.0 K for x = 0.14 and is normalized to its maximum value. (b)–(d)
S(Q) shown for the indicated temperatures and for (b) x = 0.09, (c)
x = 0.11, and (d) x = 0.14. The solid lines in (a) indicate the best
fits of the data to a Gaussian for x < 0.11 where the width of the
Gaussian is fixed by the instrumental resolution. For x � 0.11 and
in (b)–(d) the solid lines represent the best fits of Eq. (1) (convoluted
with the instrumental resolution) to the data.

FIG. 3. Temperature dependence of (a) the pitch of the helical
modulation � and (b) the magnetic correlation length ξ at zero
magnetic field and for the Mn1−xFexSi compositions indicated in
the legend. The values of ξ are obtained by fitting S(Q) to Eq. (1).
For x � 0.10 and T < TC , � was obtained from fitting S(Q) to
a Gaussian centered at τ = 2π/�. For T < TC and x � 0.10, the
linewidth of S(Q) is limited by the experimental resolution and ξ

cannot be determined.

the 〈110〉 crystallographic directions that originate from the
helical phase. For μ0H = 0.1 T two of these peaks disap-
pear completely, while the other two considerably weaken in
intensity. For magnetic fields exceeding 0.1 T, the scattered
intensity is negligible, as expected for the conical phase where
all helices are oriented along the magnetic field.

A complementary picture is provided by the SANS patterns
of Fig. 4(b) measured with �H ⊥ �ki , an experimental config-
uration which probes helical modulations oriented along the
magnetic field. In this configuration, spots of scattered inten-
sity are found along the horizontal field direction for μ0H �
0.05 T. Together with the disappearance of the Bragg peaks
for �H ||�ki , this behavior marks the conical phase in which the
propagation direction of the helices changes from along the
〈110〉 crystallographic direction to the direction of the mag-
netic field. These Bragg peaks disappear for μ0H � 0.6 T,
marking the onset of the field polarized state (not shown).

The patterns for x = 0.11, which are displayed in Figs. 4(c)
and 4(d), are qualitatively different from the ones for x <

x∗. They show at zero field the isotropic ring of scattering
discussed in the previous section. This isotropic scattering
gradually disappears when the magnetic field is applied along
�ki [Fig. 4(c)]. This is consistent with the patterns for �H ⊥ �ki
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FIG. 4. SANS patterns measured at T < TC as a function of the magnetic field for Mn1−xFexSi with (a),(b) x = 0.09 at T = 2.5 K, (c),(d)
x = 0.11 at T = 2.5 K, and (e),(f) x = 0.14 at T = 2.0 K. The magnetic field was applied (a),(c),(f) parallel to the incoming neutron beam
( �H ||�ki) and (b),(d),(e) perpendicular to it ( �H ⊥ �ki). The two 30◦ red wedges in (d) and (f) indicate the section of the detector over which the
radial integration was performed to obtain S(Q) for �H ⊥ �ki .

[Fig. 4(d)], which show that the scattering concentrates along
the field direction, ultimately leading to intense spots at high
magnetic fields. However, the alignment of the helices along
the magnetic field is very gradual and the intense Bragg-like
spots coexist with a weaker ring of scattering up to μ0H =
0.5 T. For μ0H � 0.6 T, the scattered intensity vanishes (not
shown), indicating the onset of the field polarized state.

The alignment of the helimagnetic correlations by the
magnetic field for x = 0.14 is considerably weaker than for
x = 0.11. Although a slightly larger fraction of the helimag-

netic correlations is still oriented along the magnetic field for
μ0H � 0.20 T, this effect is much smaller than for x = 0.11.
The effect of the magnetic field is also seen on the scattering
function S(Q), displayed in Figs. 5(a) and 5(b) for T = 2.0 K.
S(Q) is obtained by radial averaging over the entire detector
for �H ||�ki [Fig. 5(a)], and over the two wedges of ±15◦ around
the magnetic field direction, indicated in Fig. 4(d), for �H ⊥
�ki [Fig. 5(b)]. The results show that for both experimental
configurations, S(Q) broadens considerably with increasing
magnetic fields and decreases in intensity.
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FIG. 5. SANS results under magnetic field for Mn0.89Fe0.14Si at T = 2.0 K. (a) Scattering function S(Q) in arbitrary units obtained by
radial averaging the scattered intensity over the entire detector with the magnetic field applied parallel to the incoming neutron beam ( �H ||�ki).
(b) S(Q) in arbitrary units with the magnetic field applied perpendicular to the incoming neutron beam ( �H ⊥ �ki). In (b), S(Q) is deduced by
radial averaging the scattered intensity over the two 30◦ wedges along the magnetic field direction indicated in Fig. 4(f). (c) Magnetic field
dependence of the total scattered intensity obtained by summing the intensity over the entire detector for �H ||�ki and over the two 30◦ wedges
along the magnetic field for �H ⊥ �ki . (d) Magnetic field dependence of the FWHM of S(Q); inset shows the field dependence of the pitch of
the helix � as obtained from fitting the data of (a) and (b) to Eq. (1). These fits are indicated by the solid lines in (a) and (b).

The decrease of the scattered intensity of S(Q) is also
seen in the magnetic field dependence of the total scattered
intensity displayed in Fig. 5(c), and is more pronounced for
�H ||�ki than for �H ⊥ �ki . This decrease can be the result of

either the suppression of the helimagnetic correlations as a
whole, and/or the orientation of the magnetic moments within
the helices toward the magnetic field, as is also the case in
the conical phase for x < x∗. In addition, S(Q) broadens
for x = 0.14 considerably with increasing magnetic field, as
highlighted by the magnetic field dependence of the FWHM
of S(Q) displayed in Fig. 5(d). This behavior is very different
from that found for lower Fe dopings and shows that the
characteristic correlation length decreases substantially with
increasing magnetic field: from ∼5 nm at μ0H = 0 T to ξ ∼
2 nm or approximately 1/4� at μ0H = 0.5 T. This indicates
a complex magnetization process in which the magnetic field
first breaks the longer helical correlations, which are possibly
those that encompass the lowest degree of disorder. On the
other hand, the shorter helices appear to be more robust, as is
is also the case for vortices in re-entrant spin glasses [25].

B. Skyrmion lattice phase

The impact of Fe substitution on the skyrmion lattice
correlations in Mn1−xFexSi is illustrated by Fig. 6 which
displays the total scattered intensity for four different Fe con-
centrations as a function of temperature at μ0H = 0.20 T, i.e.,

in the heart of the skyrmion lattice phase. The magnetic field
was applied both parallel ( �H ||�ki) and perpendicular ( �H ⊥ �ki)
to the incoming neutron beam.

For all compositions, the intensity above TC is almost the
same for both experimental configurations, as expected for
isotropic correlations. In contrast, at low temperatures the
intensity for �H ⊥ �ki is significantly higher than the one for
�H ||�ki , as expected for the conical phase. In the intermediate

temperature region, the onset of skyrmion lattice correlations
leads to a different and nonmonotonic evolution of the scat-
tered intensity with temperature.

MnSi and x = 0.09 show basically the same behavior
with a sharp maximum in intensity for �H ||�ki occurring in a
temperature region of about ±1 K below TC . Together with the
characteristic six-fold symmetry of the scattering displayed
in the insets of Figs. 6(a) and 6(b), this maximum marks
the skyrmion lattice phase [7,26,27]. We note that skyrmion
lattice correlations coexist with conical correlations, as seen
from the finite amount of scattering in the configuration where
�H ⊥ �ki .

With dilution, the skyrmion lattice scattering weakens
considerably. In addition, for x = 0.10 an isotropic ring of
scattering instead of six clear peaks is found. This is similar
to Fe1−xCoxSi [28,29], and the absence of clear peaks is
likely related to a weakening of the fourth- and sixth-order
cubic anisotropy terms responsible for the alignment of the
skyrmion lattice with respect to the crystallographic one
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FIG. 6. Temperature dependence of the total scattered intensity at μ0H = 0.20 T for Mn1−xFexSi with (a) x = 0, (b) x = 0.09, (c) x =
0.10, and (d) x = 0.11. The field was applied both parallel ( �H ||�ki) and perpendicular ( �H ⊥ �ki) to the incoming neutron beam. The insets show
characteristics SANS patterns at the indicated temperatures for both field configurations.

[7,21,28]. The disappearance of Bragg peaks in the skyrmion
lattice phase is also consistent with the broadening of the
helical Bragg peaks (Fig. 1), which also indicates a weakening
of the anisotropy with increasing Fe substitution.

A substantially different behavior unfolds for x = 0.11,
where there are no clear indications for skyrmion lattice
correlations [Fig. 6(d)]. These results are consistent with
magnetic susceptibility measurements [11] which for x > x∗
do not show any indication of a skyrmion lattice phase. On
the other hand, the sizable topological Hall effect reported
for this composition [30] possibly indicates the existence of
individual skyrmions or clusters of skyrmions in this region
of the magnetic phase diagram.

C. Phase diagrams

An overview of the effect of the Fe concentration on
the magnetic field–temperature phase diagram of several
Mn1−xFexSi compositions is provided by Figs. 7 and 8, which
display contour plots of the scattered intensity as a function of
temperature and magnetic field for both �H ||�ki and �H ⊥ �ki .
The contour plots are in excellent agreement with the phase
diagrams published in [11] which are derived from magnetic
susceptibility measurements.

Figure 7(a) shows the contour plot of the scattered intensity
of MnSi with �H ||�ki . At low magnetic fields and below TC ∼
28.7 K, the high intensity originates from the helical phase.
Magnetic fields beyond 0.05 T align the helices toward their
direction, leading to almost zero scattered intensity in this
configuration. On the other hand, the onset of the conical

phase is accompanied by a strong increase in intensity in
the complementary experimental configuration with �H ⊥ �ki

[Fig. 8(a)]. In this configuration, the scattered intensity of the
conical phase is suppressed for μ0H � 0.5 T, i.e., in the field
polarized state in which the magnetic field aligns the magnetic
moments along its direction.

Just below TC and in a magnetic field range of 0.14–0.22 T,
a pocket of increased intensity shows up in the contour plot
for �H ||�ki . As discussed in the previous section, the increased
intensity in this pocket, also known as the A phase, originates
from skyrmion lattice correlations that orient perpendicularly
to the applied magnetic field. In the complementary configu-
ration of Fig. 8(a), a clear decrease in intensity is seen in this
region of the phase diagram, indicating a partial suppression
of the conical correlations.

The magnetic-field–temperature contour plots of the scat-
tered intensity for x = 0.09 and x = 0.10 look qualitatively
similar to each other and to the ones for MnSi. However,
some subtle differences are visible. Similar to Fe1−xCoxSi
[28,29,31,32], and consistent with susceptibility measure-
ments [10,11], the transition line from the helical to the coni-
cal phase is no longer horizontal, but shifts to higher magnetic
fields with decreasing temperature. Furthermore, the increase
of the scattered intensity for �H ||�ki in the A phase is less
pronounced, representing a weakening of the skyrmion lattice
correlations. This weakening is accompanied by a relative
increase of the intensity originating from conical correlations
that coexist with the skyrmion lattice correlations.

The contour plots for x = 0.11 bear some similarities to
the ones for x < x∗ but also reveal substantial differences. The
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FIG. 7. Contour plots showing the total scattered SANS intensity in arbitrary units in the configuration where the magnetic field was
applied parallel to the incoming neutron beam ( �H ||�ki) for Mn1−xFexSi with (a) x = 0, (b) x = 0.09, (c) x = 0.10, and (d) x = 0.11. The black
dots indicate the points at which the SANS measurements were performed.

FIG. 8. Same as Fig. 7, but with the magnetic field applied perpendicular to the incoming neutron beam ( �H ⊥ �ki).
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scattered intensity for �H ||�ki [Fig. 7(d)] persists until the low-
est temperature measured and for magnetic fields up to 0.45 T.
In the complementary configuration of Fig. 8(d) with �H ⊥ �ki ,
the intensity is enhanced by the magnetic field for temper-
atures lower than TC � 5 K. These results indicate that the
helimagnetic correlations are only partly oriented along the
magnetic field, even at relatively large fields. In addition,
the contour plots provide no indication of a skyrmion lattice
phase.

Above TC , all contour plots show a similar gradual
decrease of the scattered intensity with increasing temperature
and for all magnetic fields up to μ0H ∼ 0.3 T. For higher
fields, this intensity decreases gradually in the configuration
with �H ||�ki , whereas it persists for the complementary one.
This is not surprising, as sufficiently large magnetic fields
suppress or align the helimagnetic correlations along their
direction [20]. The intensive scattering above TC defines the
precursor region, which occurs over a temperature range that
increases substantially with increasing Fe doping for x < x∗
[10,11,24,33].

V. DISCUSSION

The experimental results are summarized in the concentra-
tion dependence of the transition temperature, derived from
previous susceptibility measurements [11], and the pitch of
the helix � depicted in Fig. 9. These plots show that the
transition temperature vanishes at xC ≈ 0.17 and that Fe sub-
stitution leads to a significant reduction of the helimagnetic
pitch �. In addition, a transition from long-ranged to short-
ranged helimagnetic correlations occurs already at x∗ ≈ 0.11.

In order to understand the evolution of the helimagnetic
order with x, we consider the free energy per unit cell of a
cubic chiral magnet such as Mn1−xFexSi. This free energy
is the sum of the ferromagnetic interaction, DM interaction,
Zeeman, and magnetic anisotropy energies and is given by

f = Ja2

2

∑

i=x,y,x

[∂im̂ · ∂im̂] + aDm̂ · ∇ × m̂

− a3μ0Mm̂ · �H + fa, (2)

with a the lattice constant, m̂ the unit vector in the direction
of the magnetization, M the magnetization value, J and D the
strengths of the ferromagnetic exchange and DM interaction,
respectively, and fa the magnetic anisotropy contribution
[26,27,34]. In this model, the transition temperature is propor-
tional to J . By substituting the conical spiral ansatz, i.e., m̂ =
cos θ ê3 + sin [θ cos(�τ · �x)ê1 + sin(�τ · �x)ê2], with θ the cone
angle, �τ the helical propagation vector, and (ê1, ê2, ê3) a set
of orthogonal unit vectors, one can derive that the pitch of the
helical modulation is, in the absence of Zeeman and magnetic
anisotropy, given by � = 2π

a
J
D

. Moreover, the field at which
the conical-to-field polarized transition occurs at T = 0 K is
μ0HC2(0 K) = D2

Ja3M
[34].

By comparing these expressions with the experimental
results, we obtain that J → 0 for x → xc. On the other hand,
� is reduced from ∼18 nm for x = 0.0 to ∼6 nm at x = 0.14,
i.e., by a factor of ≈ 3, implying that D/J and thus the
relative strength of the DM interaction increases with dilution.
The DM interaction itself originates from the anisotropic

FIG. 9. Fe concentration dependence of (a) the critical tem-
perature TC and T ′ and (b) the pitch of the helix �. The critical
temperature TC and T ′, which mark the onset of the (short-ranged)
helimagnetic correlations in the precursor phase, are adapted from
[11]. LO indicates long-range helimagnetic correlations, SO short-
range helimagnetic correlations, P the precursor phase, and PM the
paramagnetic phase.

exchange between the spins of the magnetic atoms and is
thus a first-order correction to the Heisenberg exchange in
spin-orbit coupling λ : D ∝ J λ

�
, with � the typical electron

excitation energy on the site of the magnetic atom [2,34].
Thus, D/J ∝ λ

�
∝ �, and although J vanishes at xC , the ratio

of D/J should remain finite, which is in good agreement with
the experimental findings. Similar considerations explain why
μ0HC2(0 K) does not increase substantially as x → xC .

The helimagnetic order is already affected at dopings well
below xc. The helimagnetic spiral reorients at x = 0.09 from
the 〈111〉 to the 〈110〉 crystallographic directions. Such a
reorientation cannot be explained from the anisotropy term
responsible for �τ || 〈111〉 at x = 0, fa1 = K (m4

x + m4
y + m4

z ),
as this term only has minima for �τ || 〈111〉 for K < 0 and
�τ || 〈100〉 for K > 0 [3]. It therefore implies that other
anisotropic terms become relevant. In fact, such a deviation
from �τ || 〈100〉 or 〈111〉 is not unique to Mn1−xFexSi but has
been reported for the partially ordered state in MnSi under
hydrostatic pressure [4,35].

As the helices do not align along a specific crystallographic
lattice direction for x > x∗, we deduce that either the mag-
netic anisotropy is very weak or that disorder smears the
effect of anisotropy. However, solely the differences in the
anisotropy cannot explain the quantitatively different behavior
for x > x∗. Indeed, the correlation length remains finite for
these dopings down to the lowest temperature and magnetic
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fields do not raise the directional degeneracy as they do not
align all helices along their direction. Differences between the
magnetic behavior have also been reported based on measure-
ments of bulk quantities [11–13] and it has been suggested
that the crossover at x∗ is due to quantum fluctuations that
destabilize the long-range helimagnetic order [12,14–16]. In
this approach, x∗ would be a quantum critical point. We
conjecture that this is not necessarily the case because the
disappearance of long-range helimagnetic correlations might
be due to chemical disorder. This hypothesis is supported by
the data obtained under magnetic field (Fig. 5) that show a
complex magnetization process. In this process, the magnetic
field first breaks the longer helices, possibly those that encom-
pass the lowest degree of disorder, whereas the shorter helices
are more robust.

The isotropic zero magnetic field SANS patterns in com-
bination with the finite helical correlations for x > x∗ ≈
0.11 indicate that x∗ is associated with the disappearance of
long-range periodic helimagnetic order and that the short-
ranged helimagnetic correlations for x > x∗ are completely
degenerate in space. However, from these results it is not clear
whether this helimagnetic state fluctuates, as in the precursor
phase in MnSi above TC [18,20], or not. The final answer can
be given by additional inelastic neutron scattering or muon
spin spectroscopy experiments.

VI. CONCLUSION

In conclusion, the results show that the helimagnetic order
in Mn1−xFexSi is suppressed with increasing Fe content. The

long-range helimagnetic correlations, which reorient at zero
magnetic from 〈111〉 at low Fe concentrations toward 〈110〉
at x = 0.09, disappear completely for x > x∗. The helices
have for x > x∗ finite lengths, are completely degenerate in
space, and bear similarities to those found in the precursor
phase of MnSi. Magnetic fields gradually suppress and partly
align these helices along their direction trough a complex
magnetization process.
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