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We study quantum phase transitions between competing orders in one-dimensional spin systems. We focus on
systems that can be mapped to a dual-field double sine-Gordon model as a bosonized effective field theory.
This model contains two pinning potential terms of dual fields that stabilize competing orders and allows
different types of quantum phase transition to happen between two ordered phases. At the transition point,
elementary excitations change from the topological soliton of one of the dual fields to that of the other, thus it
can be characterized as a topological transition. We compute the dynamical susceptibilities and the entanglement
entropy, which gives us access to the central charge, of the system using a numerical technique of infinite
time-evolving block decimation and characterize the universality class of the transition as well as the nature of
the order in each phase. The possible realizations of such transitions in experimental systems both for condensed
matter and cold atomic gases are also discussed.
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I. INTRODUCTION

Low dimensional quantum magnets show rich phase dia-
grams due to the interplay between strong correlations and
quantum fluctuations. This competition is at the root of the
existence of phases with very different physics, separated by
quantum phase transitions when parameters of the system are
varied. In one-dimensional (1D) quantum magnets, these tran-
sitions often have a topological nature. The simplest example
of such a transition is the one between a massless phase domi-
nated by XY correlations and the massive Ising phase existing
in an anisotropic Heisenberg spin-1/2 chain. The universality
class of this transition is the celebrated Berezinskii-Kosterlitz-
Thouless (BKT) transition [1–3], which is characterized by
a set of topological excitations. A field theoretical descrip-
tion is instrumental in understanding the properties of such
transitions. In the above mentioned case, the corresponding
field theory is the sine-Gordon model [4] and the low-energy
excitations are solitons and carry a topological index. Another
example of a system described by the sine-Gordon theory is
the Heisenberg chain with a staggered magnetic field such as
Cu benzoate [5–7]. A field theoretical approach to topological
phases has been used with success for more complicated
phases, e.g., the Haldane phase in S = 1 quantum spin chains
[8,9].

In this paper we focus on the phase transitions in quantum
magnets which are caused by the competition between two
dual fields having a topological nature. Such systems are
mapped onto a dual-field double sine-Gordon (DDSG) model
[10–13]. This model contains two different potential terms
pinning the dual fields. If the strength of these potentials is
varied, the stabilized order is changed and a quantum phase
transition occurs. In addition to quantum magnets, the DDSG
model appears in a broad context such as in XY models with
symmetry breaking fields, in mixtures of electric charges and

magnetic monopoles [14,15], and in quantum ladder systems
[16–18]. Experimentally the DDSG model has been realized
in the material BaCo2V2O8 [19]. This compound has a strong
Ising anisotropy and when an external uniform magnetic
field is applied, an effective staggered field is introduced
in the direction perpendicular to both the anisotropy axis
and the external magnetic field. Thus the Néel orders along
the anisotropy axis and along the effective staggered field
are competing in this system. The quantum phase transition
between them can be triggered by increasing the strength of
the external magnetic field, and it is measured directly in
inelastic neutrons scattering (INS) experiments.

In the following we examine various possible realizations
of the DDSG model in quantum magnets, and study quanti-
tatively the resulting transitions. We combine the field theory
with a numerical analysis based on the infinite time-evolving
block decimation (iTEBD), which utilizes a matrix product
state (MPS) such as the density matrix renormalization group
[20]. We compute various observables such as the staggered
magnetization, the entanglement entropy, and the dynamical
spin-spin susceptibility. In particular, the dynamical suscep-
tibility not only has a theoretical interest but also is directly
related to the experiments such as inelastic neutron scattering
(INS), electron spin resonance (ESR), and nuclear magnetic
resonance (NMR).

This paper is organized as follows. In Sec. II we quickly
review the bosonization and give some examples of quantum
spin systems described by the DDSG model. In Sec. III we
study the quantum phase transition between competing orders
using the examples given in Sec. II. Section IV discusses
how the dynamical susceptibility changes below and above
the transition. Section V is devoted to discussing applications
to real materials. We summarize our results and discuss future
problems in Sec. VI.
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II. BOSONIZATION AND DUAL-FIELD
DOUBLE SINE-GORDON MODEL

In this section we briefly review the bosonization of 1D
spin chains [4]. We map the spin operators to bosonic scalar
fields using the formula

Sz
j = − a

π

dφ(x)

dx
+ a1(−1)j cos[2φ(x)] + · · · ,

S+
j = e−iθ (x){b0(−1)j + b1 cos[2φ(x)] + · · · },

(1)

where x = ja is a spatial coordinate (a is the lattice constant)
and a0, b0, and b1 are nonuniversal constants which can be es-
timated numerically [21–24]. φ(x) and θ (x) are dual bosonic
fields satisfying the commutation relation [φ(x), θ (x ′)] =
−iπϑstep(x − x ′) [ϑstep(x − x ′) is the step function]. The
fields 2φ(x) and θ (x) can be intuitively interpreted as polar
and azimuthal angles of the staggered magnetization.

The Hamiltonian of Heisenberg chains with an Ising
anisotropy (XXZ models)

HXXZ = J
∑

j

(
Sx

j Sx
j+1 + S

y

j S
y

j+1 + �Sz
jS

z
j+1

)
(2)

is bosonized as

Heff
XXZ = v

2π

∫
dx

[
1

K

(
dφ(x)

dx

)2

+ K

(
dθ (x)

dx

)2
]

− λ

∫
dx cos[4φ(x)] + · · · ,

where λ is some constant, v is spinon velocity, and K is the
Luttinger parameter. The cos[4φ(x)] term has the scaling di-
mension 4K , and it is relevant in the Ising anisotropic (� > 1,
K < 1/2) region. It works as a potential to pin the field φ(x).
When φ(x) is fixed at nπ/2 (n: integer), the system has Néel
order along the z axis and the excitations are gapped. If we
add a pinning potential for θ (x), it competes with the φ(x)
pinning potential, since φ(x) and θ (x) are conjugate they
cannot be simultaneously fixed. The resulting model is the
DDSG model,

HDDSG = v

2π

∫
dx

[
1

K

(
dφ(x)

dx

)2

+ K

(
dθ (x)

dx

)2
]

− g1

∫
dx cos[mφ(x)] − g2

∫
dx cos[nθ (x)],

(3)

where m and n are integers and g1, g2 are nonuniversal
constants.

In the following we study several microscopic situations
for which the bosonized field theory is a DDSG model.

A. XXZ model with a staggered magnetic
field along the x direction

Let us add a staggered magnetic field along the x axis
−hx

∑
j (−1)j Sx

j to the XXZ model (2). This staggered field
is bosonized as

−hx

∑
j

(−1)j Sx
j = −hxb0

∫
dx cos θ (x) + · · · .

TABLE I. Summary of the phase properties of the XXZ model
with a staggered magnetic field in the x direction.

Low hx phase High hx phase

Pinned field φ(x ) θ (x )
〈cos[2φ(x )]〉 ∝ 〈∑j (−1)j Sz

j 〉 �= 0 0
〈cos θ (x )〉 ∝ 〈∑j (−1)j Sx

j 〉 �= 0 �= 0
〈cos[νθ (x )]〉 (ν: noninteger) 0 �= 0
Soliton φ(x ) = 0 → π/2 θ (x ) = 0 → 2π

The cos θ (x) term has a scaling dimension 1/(4K ) and is rele-
vant for K > 1/8. Therefore, the total bosonized Hamiltonian
is the DDSG model (3) with m = 4, n = 1. For � > 1 and
hx = 0, the ground state has Néel order (staggered magnetiza-
tion) along the z axis and the φ field is pinned. Since cos θ (x)
dominates over cos[4φ(x)] with increasing hx and the θ field
is pinned, there is a quantum phase transition. The staggered
field hx immediately creates a finite staggered magnetization
along the x axis, but the staggered magnetization along the
z axis becomes 0 in the high hx phase and thus works as an
order parameter. Note that we could also use 〈cos[νθ (x)]〉 as
an order parameter, where ν is any noninteger number (for
example ν = 1/2) since it becomes zero in the φ pinned phase
and nonzero only in the high field phase. Such order parameter
is however nonlocal in terms of the spin operators [25] and
thus its measurement can only be done in particular systems,
as is discussed in Sec. V. Using the spin current operator [4]

J s
j ≡ i

2
(S+

j S−
j+1 − S−

j S+
j+1) = −vK

a

π

dθ (x)

dx
+ · · · ,

cos[νθ (x)] is represented as

cos

(
νπ

vK

j∑
l=−∞

J s
l

)
= cos

(
ν

∫ x

−∞
dx ′ dθ (x ′)

dx ′

)
+ · · · .

Thus nonlocal measurements are needed for the experimental
observation of 〈cos[νθ (x)]〉. For quantities related to particle
density (or Sz), such nonlocal quantity could be measured in
cold atomic systems (see Sec. V B).

Another order parameter which is local and can thus be
directly measured in condensed matter experiments is the
staggered magnetization cos[2φ(x)]. The lowest energy ex-
citation is the soliton of the φ(x) field in the low hx phase and
that of the θ (x) field in the high hx phase. The phase properties
are summarized in Table I.

B. XXZ model with XY anisotropy

Let us now consider another type of perturbation to the
XXZ chain, which is the XY anisotropy. When such a term
is bosonized, it has the form of

Dxy

∑
j

(
Sx

j Sx
j+1 − S

y

j S
y

j+1

)
= −Dxyc1

∫
dx cos[2θ (x)] + · · · ,

where c1 is a nonuniversal constant. The cos[2θ (x)] term
has the scaling dimension 1/K and it is relevant for K >

1/2. The total bosonized Hamiltonian is the DDSG model
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TABLE II. Summary of the phase properties in the XXZ model
with XY anisotropy.

Low Dxy phase High Dxy phase

Pinned field φ(x ) θ (x )
〈cos[2φ(x )]〉 ∝ 〈∑j (−1)j Sz

j 〉 �= 0 0
〈cos θ (x )〉 ∝ 〈∑j (−1)j Sx

j 〉 0 �= 0
Soliton φ(x ) = 0 → π/2 θ (x ) = 0 → π

(3) with m = 4, n = 2, instead of m = 4 and n = 1 of the
previous section. In this case, the two cosine potential terms
are simultaneously marginal at K = 1/2, and a controlled
perturbative renormalization can be constructed [10] around
the marginal point. The properties of such a transition will
thus be quite different and are summarized in Table II.

C. Other perturbations

Although we focus mostly on the two above mentioned
models, it is also possible to consider other perturbations
such as a staggered field along z axis −hz

∑
j (−1)j Sz

j and
a dimerization δ

∑
j (−1)j Sj · Sj+1. These perturbations are

bosonized as

−hz

∑
j

(−1)j Sz
j = −hza1

∫
dx cos[2φ(x)] + · · · ,

δ
∑

j

(−1)j Sj · Sj+1 = δd1

∫
dx sin[2φ(x)] + · · · .

These terms give another type of DDSG model, but some of
them can be related through a transformation since the fields
φ and θ can be rescaled by the transformation

φ → bφ,

θ → 1

b
θ

(4)

that preserves the commutation relation. For example, the
Heisenberg model with a staggered z field and XY anisotropy
is equivalent to the DDSG model (3) with m = 2, n = 2.
This can be mapped to the m = 4, n = 1 case through the
transformation φ → 2φ̃, θ → θ̃/2, K/4 → K̃ . However the
operators that correspond to local observable are different
since the formula (1) is unchanged.

III. QUANTUM PHASE TRANSITION BETWEEN
COMPETING ORDERS

In this section we study the properties of the quantum
phase transition between competing orders for the models
mentioned in Sec. II.

First, we consider the XXZ model with staggered x field,

H = HXXZ − hx

∑
j

(−1)j Sx
j . (5)

In Fig. 1(a) we show the staggered magnetization per site
m

x(z)
N along x(z) axis calculated by iTEBD. The phase

FIG. 1. Staggered magnetization curves for mx
N and mz

N in the
XXZ model with (a) staggered x field (� = 1.9) and (b) XY
anisotropy (� = 1.6). The saturation value of m

x(z)
N is normalized

to 1.

transition is characterized by the disappearance of mz
N, and

the critical field is hx,c/J 
 0.071. Let us determine the
universality class of this transition. In Fig. 2(a) we show
the log-log plot of the order parameter mz

N as a function of
hx,c − hx . The fitting function is given as mz

N = 1.055[(hx,c −
hx )/J ]0.129, and the critical exponent is β = 0.129 
 1/8. We
also calculate the entanglement entropy for a finite interval.
When the system is bipartitioned into the subsystems A and
B, where A is an interval consisting of l spins and B is the
remainder, the reduced density matrix of the subsystem A is
defined as ρA = TrB |�〉〈�| (|�〉 is the ground state). Then
the entanglement entropy is represented as SEE = TrρA ln ρA.
In systems described by a conformal field theory, the entan-
glement scales as [26]

SEE = c

3
ln l + const, (6)

where c is the central charge. The entanglement entropy SEE

as a function of the subsystem size l that is calculated at the
transition point hx,c is shown in Fig. 2(b). When the data are
fitted by (6), the function is SEE = 0.157 ln l + 0.892 and the
central charge is estimated as c = 0.471 
 1/2. These results
β 
 1/8 and c 
 1/2 indicate that the transition belongs to
the Ising universality class. In terms of a field theory, the
DDSG model is equivalent to two Majorana fermions [11,27].
At the transition point, one of the Majorana fermions is
gapped out while the other remains gapless, thus the transition
is of the Ising type.

In Fig. 2(a) we see that the data points are deviated from
the fitting line in the region of (hx,c − hx )/J � 0.03. Let us

FIG. 2. (a) Log-log plot of mz
N as a function of hx,c − hx .

(b) Semi-log plot of entanglement entropy for a finite interval SEE

as a function of the size of the interval l at hx = hx,c. M is the bond
dimension of MPS (see the Appendix).
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FIG. 3. Plot of (a) (mz
N )8 and (b) half-infinite entanglement

entropy Shalf as a function of hx .

comment on this point. Figure 3(a) shows the plot of (mz
N)8

as a function of hx . The solid line represents a linear fitting,
and data points are away from the line in hx/J � 0.04. This
indicates that the deviation in the region of (hx,c − hx )/J �
0.03 in Fig. 2(a) is due to getting away from the critical region.
From the equation of the fitting line (mz

N)8 = −1.45(hx/J −
0.0707), the critical field is obtained as hx,c/J = 0.0707. We
can also determine hx,c from the divergence of half-infinite en-
tanglement entropy Shalf , which is calculated by the bipartition
of the system into two half-infinite chains. In Fig. 3(b) we plot
the half-infinite entanglement entropy Shalf as a function of hx ,
and the critical value is hx,c/J = 0.0712. Thus, it is estimated
as hx,c/J = 0.071 ± 0.0003, which causes the error bars in
Fig. 2(a).

Next we consider the XXZ model with XY anisotropy,

H = HXXZ + Dxy

∑
j

(
Sx

j Sx
j+1 − S

y

j S
y

j+1

)
. (7)

This Hamiltonian is nothing but the XYZ model, which is
exactly solvable [28]. Staggered magnetization mx

N and mz
N

calculated by iTEBD is shown in Fig. 1(b). In contrast to
Fig. 1(a), the orders mx

N and mz
N are exclusively compet-

ing, i.e., if one of the two orders is nonzero, the other is
zero. The critical value of Dxy is Dxy,c = (� − 1)J . Since
J − Dxy,c < J + Dxy,c = �J , the Hamiltonian is the easy-
plane XXZ model at the critical point and the ground state
is Tomonaga-Luttinger liquid (a conformal field theory with
central charge c = 1). Hence the transition is the BKT type,
which is consistent with the renormalization analysis [10].

IV. DYNAMICAL SUSCEPTIBILITY

Let us now compute how the critical behavior of the models
of Sec. III can be measured experimentally. In addition to the
static staggered magnetization, we show that the dynamical
susceptibility captures well the properties of the quantum
phase transition. This quantity is directly accessible in INS
and ESR experiments.

The spin-spin retarded correlation function is defined as

χαβ (r, t ) = −iϑstep(t )
〈[
Sα

r (t ), Sβ

0 (0)
]〉
, (8)

where ϑstep(t ) is the Heaviside function. For 1D lattice sys-
tems, r is replaced with the site index j . The dynamical
susceptibility is obtained from the Fourier transform of the

FIG. 4. Dynamical susceptibility (a) χxx (q = π ) and (b)
χzz(q = π ) for the XXZ model (� = 1.9) with staggered x field.
The dominant low energy excitation in the low (high) hx phase
corresponds to χxx (χzz). We see that χzz diverges at the transition
point hx/J 
 0.071 while χxx does not.

retarded correlation function (8),

χαβ (q, ω) =
∫ ∞

−∞
dt

∑
r

ei(ωt−q·r )χαβ (r, t ). (9)

This quantity is related to the differential scattering cross
section of INS by

d2σ

d�dE
∝|qout|

|q in|
|F ( Q)|2

∑
α,β=x,y,z

(
δαβ − QαQβ

| Q|2
)

× Imχαβ ( Q, ω), (10)

where F ( Q) is the magnetic form factor and q in, qout is the
direction of incoming and outgoing fluxes, respectively. Q is
a scattering vector defined as Q = q in − qout. If the system
is U (1) symmetric (i.e.,

∑
j Sz

j is conserved), Eq. (10) is
rewritten as [29]

d2σ

d�dE
∝ |qout|

|q in|
|F ( Q)|2

{(
1 − Q2

z

| Q|2
)

Imχzz( Q, ω)

+
(

1 + Q2
z

| Q|2
)

Imχxx ( Q, ω)

}
, (11)

since χxx = χyy . In ESR experiments, since electromagnetic
waves in the GHz frequency region are used, the wavelength
is much larger than the lattice constant and only the response
at |q| = 0 is relevant. When such electromagnetic waves are
applied to the system, the energy absorption rate is given by

I (ω) ∝ ωImχαα (q = 0, ω), (12)

where α is the direction of oscillating magnetic field. I (ω)
corresponds with spectrum of ESR.

We compute the dynamical susceptibility numerically. We
first obtain the ground state of the system by infinite density
matrix renormalization group (iDMRG) [30], then perform
the time evolution by iTEBD [31] with the infinite boundary
condition [32]. In this way we can calculate space-time cor-
relation function 〈Sα

r (t )Sβ

0 (0)〉, and dynamical susceptibility
through Fourier transform. The details of numerical calcula-
tion are given in the Appendix.

In Fig. 4 we show the dynamical susceptibility at q = π in
the XXZ model with staggered x field (5). In the low (high)
hx phase, the dominant low energy elementary excitation
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FIG. 5. Dynamical susceptibility (a) χxx (q = π ) and (b)
χzz(q = π ) for the XXZ model (� = 1.6) with XY anisotropy. Both
χxx and χzz diverge at the transition point Dxy/J = 0.6.

corresponds to χxx (χzz). The order is in the z direction at
hx = 0, and mz

N decreases while mx
N increases as hx becomes

larger. Above the critical hx , the order is in the x direction.
Hence the behavior of χxx and χzz indicates that the low
energy excitation is generated by a spin flip. We can also see
that χzz diverges at the transition point while χxx does not in
Fig. 4. That is because mz

N becomes zero at the transition point
while mx

N changes smoothly [see Fig. 1(a)].
Let us now compare with the dynamical susceptibility at

q = π for the XXZ model with XY anisotropy (7) in Fig. 5.
Similarly to the staggered x field case, in the low (high)
Dxy phase, the dominant elementary excitation corresponds
to χxx (χzz). There is however an important difference on the
susceptibilities, which stems from the different nature of the
transition. It is directly visible that both χxx and χzz diverge
at the transition point in Fig. 5. This is the consequence of
the exclusive competition between mx

N and mz
N, both of which

become zero at the transition point [see Fig. 1(b)].
We also discuss the dynamical susceptibility at q = 0

which is relevant with ESR experiments. Figure 6 shows
χxx (q = 0) and χzz(q = 0) for the XXZ model (� = 1.9)
with staggered x field and with XY anisotropy. We first note
that the intensity of the dynamical susceptibility is extremely
small at q = 0 compared with q = π since antiferromagnetic
correlation is dominant in the present system. As seen in
Figs. 6(a) and 6(b), the gap does not close at q = 0 for the
XXZ model with staggered x field. Small intensity of the low
energy region (ω/J � 0.3) near the critical field hx 
 0.07
is a numerical artifact. On the contrary, Figs. 6(c) and 6(d)
show that the gap closes at q = 0 for the XXZ model with XY
anisotropy. This is natural since the critical point corresponds
to an easy plain XXZ model and the gapless des Cloizeaux-
Pearson mode exists at q = 0.

As for the XXZ model with staggered x field, the band
at q = π is folded to the band at q = 0 due to the per-
turbation that breaks one-site translational symmetry. Thus,
ESR measurements captures the mixing of q = 0 and q = π

components of dynamical susceptibility. This effect is seen in
Cu benzoate [33], KCuGaF6 [34], and BaCo2V2O8 [35]. The
similar mixing is also measured in (C7H10N)2CuBr4 [36].

The above calculations clarifies that the spin-spin suscep-
tibility shows very clear signatures of the nature of these
two different topological transitions. Although these measure-
ments do not directly give access to the nonlocal (topological)

FIG. 6. Dynamical susceptibility (a) χxx (q = 0) and (b) χzz

(q = 0) for the XXZ model (� = 1.9) with staggered x field and
(c) χxx (q = 0) and (d) χzz(q = 0) for the XXZ model (� = 1.6)
with XY anisotropy.

order, they nevertheless provide clear signatures of the change
of the nature of the excitations.

V. APPLICATION TO REAL MATERIALS

In the above we discussed the models that can be mapped to
DDSG models and their quantum phase transitions. In order
to apply the above theoretical analysis to realistic materials,
one has to consider several important elements depending on
whether the system is condensed matter or cold atomic gas.

A. Condensed matter systems

For the condensed matter realizations, two elements are to
be taken into account. First, in the present experiments, one
can expect to measure only the local observable (magnetiza-
tion, spin-spin susceptibility, etc.). Nonlocal order parameters
(e.g., cos[θ (x)/2] in Sec. II A) are difficult to measure ex-
perimentally in condensed matter systems. Second, in quasi-
1D materials, spin chains are coupled and form a three-
dimensional system while the analysis done in the previous
parts is strictly 1D.

Recently, the DDSG model discussed above was found
to be realized in the compound BaCo2V2O8 [19]. In this
material, Co2+ ions effectively form the S = 1/2 quasi-1D
antiferromagnet with Ising anisotropy. When an external mag-
netic field perpendicular to the anisotropy axis is applied
in this system, an effective staggered transverse field arises
since nondiagonal components of g tensor are nonzero due
to the slight deviation of the magnetic principal axes from
the crystallographic axes [37]. The model Hamiltonian of
this compound is essentially equivalent to the XXZ model
with staggered x field (5), and the quantum phase transition
discussed in Sec. II A happens. Note that an effective stag-
gered field −heff

∑
j (−1)j Sz

j along the z axis arises from the
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interchain interaction, determined self-consistently, with the
Néel order along the z axis in the mean field theory has also
to be taken into account [19]. Due to this staggered z field, the
critical field is shifted to a higher value than the case without
the interchain interaction and the gap opens at the transition
point with heff = 0. Thus, the gap is not closed at the quantum
phase transition caused by the transverse field in BaCo2V2O8.
As discussed in Sec. IV, the dynamical susceptibility is
measured by INS experiments. For a direct comparison with
the neutrons, one has to use the actual position of the spin
sites (the Co2+ ions) in the Fourier transform of retarded
correlation function since the neutrons are directly sensitive
to the actual position of the spins.

It would be interesting if other examples of the topological
transitions discussed in the previous sections also could be
realized. The potential of the field φ is provided by dimeriza-
tion, Ising anisotropy, and staggered Dzyaloshinskii-Moriya
(DM) interaction

∑
j (−1)j D · (Sj × Sj+1) with D ‖ z axis.

The strategy for material search is to find systems that have
these perturbations as well as nondiagonal staggered g tensor.
The application of an effective staggered field introduces an
effective staggered field, which gives the potential of the field
θ . Then the transition is provoked by increasing the external
field. In addition to spin chains, searching for materials
which realize the DDSG model in spin ladders with magnetic
anisotropy or DM interaction is an interesting future direction.

B. Cold atomic systems

Another important route to realize the topological tran-
sitions described in the previous sections is provided by
cold atomic systems [38,39]. Although initial simulations of
quantum magnetism were done in bosonic systems by using
the mapping between spin-1/2 and hard core bosons [40,41]
and thus the realization is limited to XX models due to the
absence of long range interactions, recent advance allows us
to probe the quantum magnetism in fermionic systems as
well. Short-range quantum magnetism has been observed for
ultracold fermions in an optical lattice [42], and measurements
of various physical quantities such as dynamical structure
factor [43] and magnetic order and correlations [44–46]. In
addition to systems with fermions, quantum simulation of spin
systems are also realized by using Rydberg atoms [47,48].

There are several advantages for the cold atomic realiza-
tion. The first is the controllability of parameters. While the
parameters are fixed for each material in condensed matter
systems, particle-particle interaction can be varied by using
Feshbach resonance in cold atomic systems. Controlling the
population of up spins and down spins allows the equivalent
of a magnetic field along z. The second advantage is that
cold atomic systems provide the probes complementary to
the condensed matter ones, in particular to measure nonlocal
order parameters. For example, a string order parameter in the
Haldane phase can be observed by repeating snapshot mea-
surements [49] in cold atomic systems. This technique can be
also potentially applicable for measuring nonlocal order pa-
rameters such as cos[θ (x)/2] discussed in Sec. II A. Measure-
ments are so far limited to equal time correlations but schemes
have been proposed to overcome such limitations [50].

One of the challenges in this field is cooling the system
enough to simulate the low temperature phenomena of the
corresponding condensed matter systems. However, since the
experimental technique of cooling has been improving [51],
we can expect that some of the phases described here could
be observed in the near future.

VI. CONCLUSION

We studied quantum phase transitions between competing
orders in the models which are mapped to the DDSG field
theory. We specifically considered two types of systems: the
XXZ chain with staggered x field and with XY anisotropy.
The universality class of the transition is of the Ising type in
the former case while it is of the BKT type in the latter case.
We showed numerically that the difference of the transition
properties appears in the dynamical susceptibilities, which
can be directly compared with the spectra measured by INS
experiments. We discussed the possibility of observation of
the phases and the phase transitions studied in the present
paper in condensed matter systems and cold atomic ones.
For condensed matter realizations, one of the quantum phase
transition between competing orders has been seen in a real
material BaCo2V2O8, which is a quasi-1D Heisenberg anti-
ferromagnet with Ising anisotropy [19]. Other quantum spin
systems either chains or ladders with anisotropic perturbations
could serve as a basis for studying the other universality
classes discussed here. In that respect the dynamical sus-
ceptibilities, directly measured by INS or ESR experiments,
computed in the present paper, provide a clear distinction
between the various transitions and can thus be used as an
experimental signature.

Another broad class of systems in which the phenomena
can be investigated is provided by cold atomic systems of
fermions or Rydberg atoms. Such systems have the advantage
of good control of the various parameters in the Hamiltonian
as well as the possibility of measuring the nonlocal (topo-
logical) order parameters which are a direct signature of the
various phases. Relatively high temperature as well as the
size limitation are the current drawbacks, but the situation
is rapidly evolving. These systems also offer the fascinating
possibility to study time-dependent Hamiltonians, allowing
us to investigate the effect of time-dependent perturbations in
the future, either quenches or periodic perturbations (Floquet
systems) on such topological phase transitions.
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APPENDIX: DETAILS OF NUMERICAL SIMULATIONS

In this Appendix we describe the detail of numerical
simulations. Time evolution is calculated by iTEBD [31]
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FIG. 7. The dependence of iTEBD calculations (a) on the truncation dimension M with fixed T/J−1 = 80 and (b) on the temporal interval
T with fixed M = 60. The results of Imχxx (q = π, ω) for the model (5) are shown with � = 1.9 and hx/J = 0.02.

after the ground state is obtained by iDMRG [30]. The
iTEBD uses the MPS representation of quantum states, and
the time evolving operator is applied through the second
order Trotter decomposition. Time is discretized with the unit
dt/J−1 = 0.05 in this study. The initial state (ground state)
is represented as infinite MPS, which assumes translational
invariance of the system, but in order to calculate the space-
time correlation function, we have to break the translational
invariance by applying an operator at t = 0, j = 0. Thus,
we prepare a finite spatial interval and the matrices at both
edges of the interval is determined in the way that they
represent a semi-infinite extension of the system, which is
called the infinite boundary condition [32]. The advantage of
this method is that there is no finite-size effect. The space-
time correlation function Eq. (8) is calculated for a finite
temporal interval 0 � t � T , and dynamical susceptibility is
obtained as the numerical Fourier transform of the space-time
correlation function. Gaussian filter is utilized in the Fourier

transformation,

χ (q, ω) =
∫ T

−T

dt
∑

r

ei(ωt−qr )χ (r, t )G(t ),

where G(t ) = e−(2t/T )2
.

In the iTEBD and iDMRG calculations, quantum states are
optimally approximated by MPS with finite bond dimension
(also called truncation dimension) M . As the bond dimension
M is larger, the calculation is more precise. In Fig. 7(a) we
show χxx (q = π,ω) calculated with Eq. (5) for different bond
dimensions M = 40, 60, 80 while T/J−1 = 80 is fixed. We
can see that the dependence of the result on M is small. In
the real-time calculation, an error also arises from a finite
time effect. Figure 7(b) shows χxx (q = π,ω) calculated with
Eq. (5) for final time T/J−1 = 40, 60, 80 while M = 60 is
fixed. The dependence of the result on T is also small.
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