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Synthesizing and controlling helical indirect exchange interactions out of equilibrium
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We study the nonequilibrium effects of spin and/or electric currents on the helical indirect exchange
interactions of local spins that embedded in general open electronic systems. Especially, besides the synthesized
anisotropic Heisenberg interactions, we find that the synthetic helical indirect exchange interactions possess two
parts: antisymmetric (Dzyaloshinskii-Moriya interaction) and symmetric (Kaplan-Shekhtman-Entin-Wohlman-
Aharony interaction), which are all formulated in terms of Keldysh nonequilibrium Green’s functions. The
presence of either spin-orbit coupling or spin polarized currents alone is able to synthesize and control the
antisymmetric Dzyaloshinskii-Moriya exchange interactions, as the same direction as spin splitting. However,
the appearance of symmetric Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions requires both, i.e., the
spin-orbit coupling and spin polarized currents with different splitting directions. Our results show the detailed
scheme of controlling the sign, magnitude, and direction of indirect Dzyaloshinskii-Moriya vectors and Kaplan-
Shekhtman-Entin-Wohlman-Aharony interactions at nonequilibrium in open quantum devices.
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I. INTRODUCTION

The antisymmetric helical Dzyaloshinskii-Moriya (DM)
interaction was first proposed by Dzyaloshinskii for ex-
plaining weak ferromagnetism in antiferromagnetic com-
pounds [1], and the microscopic basis for this theory was later
given by Moriya [2], who extended Anderson superexchange
theory [3] to include the spin-orbit interactions. The DM
interaction plays an essential role for the formation of topo-
logically nontrivial spin structures. For instance, cycloidal
spin spirals [4–6], Néel type domain walls [7–12], magnon
Hall effect [13,14], topological magnon insulators [15],
skyrmions [16–23], and skyrmion lattices [24–31], many of
which stimulated interest in fundamental magnetism studies
and provided new possibilities for the development of future
spintronic devices. In addition, DM interaction is also very
important in the quantum dot quantum computing [32,33], the
quantum phase transitions [34,35], the quantum heat conduc-
tion [36], ferroelectricity in many multiferroics [37–39], and
the properties of entanglement [40–43].

In the original paper of Moriya [2], it is also found that
the antisymmetric DM interaction is also companied by a
symmetric helical anisotropy interaction that was one order
of magnitude smaller than the DM exchange and thus was ne-
glected. Nevertheless, Kaplan then found this symmetric he-
lical interaction in the single-band Hubbard model with spin-
orbit couplings (SOCs) [44] and pointed out its importance.
After that, Shekhtman, Entin-Wohlman, and Aharony found
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that this non-negligible symmetric helical exchange interac-
tion can explain the weak ferromagnetism of La2CuO4 [45].
Therefore, the symmetric helical exchange interaction was
called KSEA interaction for short [46–56]. Since then, many
clear experimental evidences of the presence of the KSEA
interaction came from magnetization measurements, neu-
tron diffraction, and inelastic neutron scattering experiments
on Ba2CuGe2O7 [47–51], Yb4As3 [52], K2V3O8 [53], and
La2CuO4 [54].

Due to the fact that the helical DM and KSEA interactions
are very important, people have tried to synthesize some
materials with these helical exchange interactions by artificial
material engineering. The strength and the sign of DM and
KSEA interactions can be controlled by the material composi-
tion, stack order, mixing impurities, and so on. An alternative
effective way to control the magnetic exchange interactions
is through the indirect exchange interaction of Ruderman-
Kittel-Kasuya-Yoshida (RKKY) mechanism [57–59] between
molecular magnets. Fransson-Ren-Zhu [60] provided a gen-
eral framework for the indirect magnetic exchange interac-
tions controlled at nonequilibrium open systems. The results
show that the RKKY interaction presents the Heisenberg in-
teraction regardless of the spin polarization in the molecules,
while the nonequilibrium RKKY interaction presents the in-
direct DM interactions only under spin polarized conditions.
Since then, Fransson and other colleagues found that one can
control the molecular spin states and the current flow through
the system by the ferro- and antiferromagnetic switching [61],
the charge and thermal transport properties of a magnetically
active paramagnetic molecular dimer [62], and the dynamics
of a localized molecular spin under the influence of exter-
nal voltage pulses [63]. Shi et al. also found that the DM
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interactions in a quantum spin system can induce a faster and
more efficient quantum state transfer [64]. Burmistrov et al.
found that the RKKY interaction between magnetic impurities
located in the bulk of a two-dimensional topological insulator
decays exponentially with the distance [65], and the exchange
interaction is affected by interference between the bulk and
the edge states [66,67] in the two-dimensional topological
insulator [68].

Yet, the indirect KSEA interaction is seldom investigated
in literature. Recently, people [69,70] studied the equilibrium
RKKY interaction mediated by the helical edge spin cur-
rents in topological insulator with Rashba spin-orbit coupling
(RSOC) [71,72]. With the particular model, they found that in
the presence of RSOC, the RKKY interaction induced by the
helical edge spin currents contains not only the Heisenberg
interaction and the DM interaction, but also a nematic type
interaction that is not present in the absence of the RSOC. The
nematic type interaction is actually reminiscent of symmetric
KSEA interactions.

In this paper we provide a detailed theoretical scheme to
synthesize and control the helical indirect DM and KSEA
exchange interactions with nonequilibrium spin and/or elec-
tric currents. The paper is organized as follows. In Sec. II
we present the Hamiltonian of general model and give the
derivation of the RKKY interaction in terms of general
Keldysh nonequilibrium Green’s functions. In Sec. III the
explicit analytic results of the magnetic exchange interactions
for a two-sites system are given and discussed, respectively.
Section IV is a short summary.

II. MODELS AND METHODS

The total system is an open quantum system at nonequilib-
rium, where a local-spin-electron-hybridized central system
(i.e., a molecular or impurity spin-electron coupled network,
a multilayer structure where localized spins are embedded
in each layer, etc.) connects with two external electronic
reservoirs at different temperatures and chemical potentials
(see Fig. 1). The total Hamiltonian is generally described
as H = HS + ∑

v=L,R Hv + VT , where Hv = ∑
αkv

(εαkv
−

μvα )c†αkv
cαkv

is the vth electronic reservoir. c
†
αkv

(cαkv
) is the

creation (annihilation) operator of the electron with energy
εαkv

, chemical potential μvα , momentum kv , and spin α. The
tunneling between the reservoirs and N -site central system is

FIG. 1. (a) Schematic of localized spins embedded in the sites
of an arbitrary electron network, which finally forms an effective
spin network. The sites can be quantum dots, impurities, or magnetic
molecules. (b) Localized spins are embedded in each layer with
the tunneling electron being exchanged among them. Both example
systems are connected to external reservoirs, so that the indirect ex-
change interaction among local spins can be tuned in open quantum
systems at nonequilibrium to form extraordinary spin orders.

described by VT = ∑
αkL

γLαc
†
αkL

cα1 + ∑
αkR

γRαc
†
αkR

cαN +
H.c. In the central system, besides the electron hopping terms,
the localized spins Si and Sj are embedded in the electron
network through s-d interaction. The local-spin-electron hy-
bridized Hamiltonian is then HS = He + Hsd .

The central electron hopping system may contain the
Rashba spin-orbit coupling (RSOC) as He = H0 + HSOC:

H0 =
∑
αij

[εc†αicαi + (tc†αicαj + H.c.)]

= c†[(ε I + t K ) ⊗ σ 0]c, (1)

where c† = (c†↑1, c
†
↓1, . . . , c

†
↑N, c

†
↓N ), with c

†
αi (cαi ) being the

creation (annihilation) operator of the electron at ith site with
spin α. For simplicity we assume the on-site potential ε and
the nearest neighbor hopping integral t are homogeneous. I is
a N × N identity matrix and K is the symmetric electron net-
work with Kij = Kji = 1 if there exists a hopping connection
between sites i, j , otherwise 0. Without loss of generality, we
assume HSOC describes the RSOC Hamiltonian [72–77] as

HSOC =
∑
ij

[iδc†↑ic↓j + iδc
†
↓ic↑j + H.c.]

= c†[δ A ⊗ σx]c, (2)

where A is the antisymmetric Hermitian matrix that if Aij = i

then Aji = −i when RSOC exists between sites i, j , and δ is
the RSOC strength.

The interaction between the localized spin Si and the
conduction electron is described by the s-d interaction:

Hsd = −J

2

∑
iαβ

(c†αiσ αβcβi ) · Si , (3)

where J is the coupling strength of the s-d interaction and σ

is the vector of Pauli matrices.
Our goal is to obtain the indirect exchange interaction

among local spins, so that we need to trace out the electronic
degree of freedom. As such, the spin-spin exchange interac-
tion Hamiltonian can be written as

Hspin = 〈Hsd〉 = −J

2

∑
iαβ

〈c†αicβi〉σ αβ · Si (4)

by averaging out the electron degree of freedom, denoted as
〈· · · 〉. By using the Keldysh nonequilibrium Green’s functions
(GF) [78], Eq. (4) can be expressed as

Hspin = (−i)

(
−J

2

) ∑
iαβ

σ αβ · Si

∫ ∞

−∞

dω

2π
G<

βi,αi (ω), (5)

where G<
βi,αi (ω) is the Fourier transform of the lesser GF

G<
βj,αi (t ) = i〈c†αi (0)cβj (t )〉. (6)

Since we treat the effective spin exchange Hamiltonian
Hspin perturbatively up to the second order of J , we only
need to treat the nonequilibrium GF under the first-order
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perturbation,

G<
βi,αi (ω) = G

<(0)
βi,αi (ω)+

(
−J

2

)∑
jα′β ′

σ α′β ′

· Sj

[
G

(0)
βi,α′j (ω)G(0)

β ′j,αi (ω)
]<

, (7)

where G
<(0)
βi,αi (ω) is the Fourier transform of G

<(0)
βj,αi (t ) =

i〈c†αi (0)cβj (t )〉0. The superscript (0) denotes the nonequilib-
rium GF is for the unperturbed electronic system without cou-
pling to localized spins, but only including the pure electronic
Hamiltonian He + VT + ∑

v=L,R Hv . In the same manner,
the 〈· · · 〉0 means the average on the pure electronic system
without local-spin-electron hybridization.

The first term in Eq. (7) contributes to the local exchange
interaction of the electron spin and the local spin, where after
the perturbative treatment the electron spin behaves as the
effective local magnetic field on each local spin. Meanwhile,
the second term will contribute to the indirect exchange inter-
action among different local spins, resulting from exchanging
the itinerant electrons. In the present study, we focus on
the exchange interactions among different local spins that
are of prime interest, so we substitute the second term of
Eq. (7) into Eq. (5). We finally obtain the exchange interaction
Hamiltonian between Si and Sj (see Appendix A):

H
ij

spin = −i
J 2

4

∫ ∞

−∞

dω

2π
Tr

{
Si · [(

σ G(0)
ij

)(
σ G(0)

j i

)]< · Sj

+ Sj · [(
σ G(0)

j i

)(
σ G(0)

ij

)]< · Si

}
. (8)

Here G(0)
ij is the spin space matrix GF for the propagator

of an electron from j th site to ith site. Tr is the spin
space trace and (σ G(0)

ij )(σ G(0)
j i ) is the dyad defined as uv =∑

a,b=x,y,z uavb êa êb.
After a careful derivation and reorganization, we find the

spin Hamiltonian can be expressed as three parts:

H
ij

spin =
∑

a=x,y,z

J a
ij S

a
i Sa

j + Dij · (Si×Sj ) + dx
ij

(
S

y

i Sz
j + Sz

i S
y

j

)

+ d
y

ij

(
Sx

i Sz
j + Sz

i S
x
j

) + dz
ij

(
Sx

i S
y

j + S
y

i Sz
j

)
, (9)

where the first sum of Eq. (9) describes the anisotropic
Heisenberg interactions, the second term is the antisymmetric
helical DM interaction, and the others ones are the symmetric
helical KSEA interactions. The detailed expressions of all
coefficients are given by

J a
ij = −i

J 2

4

∫ ∞

−∞

dω

2π
Tr

× {[(
σa G(0)

ij

)(
σa G(0)

j i

)]< + [(
σa G(0)

j i

)(
σa G(0)

ij

)]<}
,

Da
ij = −i

J 2

8

x,y,z∑
b,c

εabc

∫ ∞

−∞

dω

2π
Tr

× {[(
σbG(0)

ij

)(
σ cG(0)

j i

)]< + [(
σ cG(0)

j i

)(
σbG(0)

ij

)]<}
,

da
ij = −i

J 2

8

x,y,z∑
b,c

ε̃abc

∫ ∞

−∞

dω

2π
Tr

× {[(
σbG(0)

ij

)(
σ cG(0)

j i

)]< + [(
σ cG(0)

j i

)(
σbG(0)

ij

)]<}
,

(10)

where εabc is the Levi-Civita symbol and ε̃abc = |εabc| with
a, b, c = x, y, z. Clearly, besides the synthesized anisotropic
Heisenberg interactions, the synthetic helical indirect ex-
change interactions possess two parts: antisymmetric DM
interaction and symmetric KSEA interaction, which are for-
mulated in terms of Keldysh nonequilibrium GFs. These
expressions are our main results, which are independent of
the choice of the central electronic Hamiltonian.

Finally, we note that both the mean-field approximation in
Eq. (4) and the perturbative approximation in Eq. (7) lead
to the final effective spin Hamiltonian Eq. (8) of the order
O(J 2). Thus, as in Ref. [79], our approximation is valid
when the effective spin-spin exchange coupling proportional
to J 2 dominates for small values of J . While the possible
Kondo effect may play a role for large J or extremely low
temperature [80] since the Kondo temperature scales expo-
nentially as exp(−1/|J |) [81], our approximation of effective
spin Hamiltonian works for the second order of O(J 2) for
small values of J , so that the Kondo effect is out of the scope
of the present work.

III. RESULTS AND DISCUSSIONS

As we will see in the following, the presence of merely
SOCs or spin polarized currents is able to synthesize and con-
trol the antisymmetric DM exchange interactions, along with
the same direction as the spin splitting. However, the appear-
ance of symmetric KSEA interactions requires both the SOCs
and spin polarized currents, with different splitting directions.

To demonstrate these, let us consider three cases. For
the first case, the system has RSOC but no spin polarized
current. The nonequilibrium GF G(0)

ij can be obtained from
the unperturbed nonequilibrium GF of the pure electronic
system H0 + ∑

v=L,R Hv + VT while including the RSOC of
σx term into the Dyson equation, which can be expressed as
G(0)

ij = G0
ij σ

0 + Gx
ij σ

x (see Appendix B). By substituting this
GFs into Eq. (10), one obtains

Dx
ij = J 2

2

∫ ∞

−∞

dω

2π
Tr

{[
G0

ijGx
ji − Gx

ijG0
ji

]<}
,

D
y

ij = Dz
ij = dx

ij = d
y

ij = dz
ij = 0. (11)

We find that the helical indirect DM interaction Dx
ij exists in

this case, due to the RSOC in the x direction that contains the
σx term. If we choose the RSOC of σy term in the y direction,
we will obtain nonzero Dy but other terms zero.

For the second case, the system has spin polarized current
but no RSOC. The spin polarization is in z direction, which
can result from the Zeeman splitting of the on-site potential
ε↑(↓), the system-reservoir coupling polarization VT,↑(↓), or
the spin-polarized Fermi distributions in the electronic reser-
voirs. Thus, the nonequilibrium GF G(0)

ij can be written as

G(0)
ij = G̃0

ij σ
0 + G̃z

ij σ
z (see Appendix B), so that one gets

Dz
ij = J 2

2

∫ ∞

−∞

dω

2π
Tr

{[
G̃0

ij G̃z
ji − G̃z

ij G̃0
ji

]<}
,

Dx
ij = D

y

ij = dx
ij = d

y

ij = dz
ij = 0. (12)
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FIG. 2. Example of two localized spins embedded in a two-site
electron chain with the Rashba spin-orbit coupling. This chain is
between the two thermalized electronic reservoirs.

Therefore, as expected nonzero helical DM vector Dz
ij appears

in the z direction that is different from the first case, and other
terms are all zero.

For the third general case, the system has not only RSOC
but also spin polarization with different splitting directions.
Assuming RSOC contributes the σx term and spin polarized
current contributes the σ z term, the two together will produce
the cross term σy in the nonequilibrium GFs, so that the
GF is generally expressed as G(0)

ij = G0
ij σ

0 + ∑
a=x,y,z Ga

ij σ
a .

Therefore, all the indirect helical exchange interactions ap-
pearing in Eq. (10), especially the symmetric KSEA interac-
tions da

ij , will all emerge when both RSOC and spin polarized
current are present with different polarization directions. In
the following we will analyze in detail an example of a two-
sites system, where both the analytic and numerical results
will be examined to demonstrate these general discussions.

A. Two-sites system as an example

Now, without loss of generality, we take two sites as an
intuitive example (see Fig. 2). Under the wide-band limit, after
a standard calculation (see Appendix A), we get the analytic
expression of indirect helical exchange coefficients

Dx
ij = 2tδ

∫ ∞

−∞
dω(ω − ε)(fL↓ + fL↑ + fR↓ + fR↑)Q,

D
y

ij = tδγ

2

∫ ∞

−∞
dω(fL↓ − fL↑ + fR↓ − fR↑)Q,

Dz
ij = − t2γ

2

∫ ∞

−∞
dω(fL↓ − fL↑ − fR↓ + fR↑)Q, dx

ij =0,

FIG. 3. DM interaction Dx
ij as functions of (a) chemical potential

μ = μL = μR and (b) bias voltage �V = μL − μR . The plots in
(b) are μL = �V

2 + 2, μR = −�V

2 + 2. Here ε = 0 meV, t = 1 meV,
J = 5 meV, TL = TR = 1 K, γ = 1

12 meV, while the colors refer to
different RSOC parameter δ.

d
y

ij = − tδγ

2

∫ ∞

−∞
dω(fL↓ − fL↑ − fR↓ + fR↑)Q,

dz
ij = δ2γ

2

∫ ∞

−∞
dω(fL↓ − fL↑ + fR↓ − fR↑)Q, (13)

with

Q =J 2γ
[
(ω − ε + δ)(ω − ε − δ) − t2 − γ 2

4

]
2π (| ω − E+ |2| ω − E− |2)2

, (14)

here E± = ε ± √
δ2 + t2 − i

γ

2 and fR(L)α = 1
e

(ω−μR(L)α )/TR(L) +1
are the Fermi-Dirac distribution functions of the thermal-
ized electronic reservoirs. γR(L)α = γ, μR(L)α and TR(L) are
the coupling coefficients, the chemical potentials, and the
temperatures of the right/left electronic reservoirs with spin
α, respectively. It is worthy of noting that the Heisen-
berg exchange interactions are obtained as J x

ij = (t2 +
δ2)

∫ ∞
−∞ dω(ω − ε)(fL↓ + fL↑ + fR↓ + fR↑)Q, J

y

ij = J z
ij =

(t2 − δ2)
∫ ∞
−∞ dω(ω − ε)(fL↓ + fL↑ + fR↓ + fR↑)Q, which

will recover the results in Ref. [60] when in the absence of
RSOC (δ = 0).

B. No spin polarization

First, we consider the system has RSOC but no spin
polarization, i.e., μL↑ = μL↓ = μL,μR↑ = μR↓ = μR . From
Eq. (13) we find that D

y

ij = Dz
ij = dx

ij = d
y

ij = dz
ij = 0. Only

(b)

FIG. 4. The plots in (a) are the integrand function K as functions of ω for μ = −7 meV, μ = −λ meV, μ = λ meV, and μ = 7 meV,
respectively. The plots in (b) are Dx

ij as functions of μ for the bounds of integrand ω ∈ (−∞, 0] (solid line) and ω ∈ [0,∞) (dash line),
respectively. Here ε = 0 meV, t = 1 meV, δ = 3 meV, J = 5 meV, TL = TR = 1 K, γ = 1

12 meV. The plots in (c) are schematic of how energy
levels are occupied by electrons of the thermalized electronic reservoirs.
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FIG. 5. Magnetic exchange interactions as functions of the average chemical potential μ0. Here ε = 0 meV, t = 1 meV, J = 5 meV,
TL = TR = 1 K, γ = 1

12 meV, �V↑ = −�V↓, μL↑ = μR↓ = �V↑
2 + μ0, and μL↓ = μR↑ = −�V↑

2 + μ0, while the colors refer to different δ

and V↑. The plot in (a) is Dx
ij , (b) is Dz

ij , and (c) is d
y

ij .

the term

Dx
ij (Si × Sj )x (15)

survives, different from that of the system without RSOC [60].
In Fig. 3(a) we give the results of Dx

ij as functions of
chemical potential μL(R) = μ for different RSOC parameter
δ, which corresponds to the equilibrium case. We can see that
Dx

ij can be tuned from positive (negative) to negative (posi-
tive) as μ changes. In Fig. 3(b) we give the results of Dx

ij as
functions of voltage bias �V = μL − μR for different RSOC
parameter δ. There are electric currents in this nonequilibrium
scenario. We can see that both the sign and magnitude of Dx

ij

can be controlled by nonequilibrium electric currents.
In order to understand behaviors of Dx

ij , we study the
integrand function of Eq. (13). In Fig. 4(a) we plot the
integrand function K = (ω − ε)(fL↓ + fL↑ + fR↓ + fR↑)Q
as a function of ω. In this case, the energy levels of con-
duction electron H0 are denoted as ±λ := ±√

t2 + δ2. When
μ � −λ, K = 0. This is because two energy levels have no
electrons. When μ closes −λ, we can see that K has obvious
nonzero value at ω = −λ. This is because the energy level
−λ start to be occupied by electrons. When μ closes λ, the
energy level −λ is all occupied and the electrons start jump
into the energy level λ. When μ � λ, the energy level λ is
fully occupied. For further study of the contribution of two
energy levels to Dx

ij , we give the results of Dx
ij as functions

of μ for a different range of integration ω ∈ (−∞, 0] and

ω ∈ [0,∞) in Fig. 4(b). For smaller μ, two energy levels are
not occupied by the electrons and the magnetic interaction is
not produced. When part of two energy levels are occupied
by electrons, the interaction is always negative. However,
when two energy levels are all occupied by electrons, the
interaction is positive for the energy level −λ and it is negative
for the energy level λ. And the positive interaction cancels
with the negative interaction. For the system which has bias
voltage μL = μR , each energy level will be filled twice by the
thermalized electronic reservoirs. Therefore, Dx

ij as functions
of �V have four peaks [see Fig. 3(b)]. Clearly the indirect
exchange interaction requires itinerate electrons rather than
frozen ones.

C. Spin polarized current

In this section we consider when the system has only spin
polarized current but no electric current. So we take the spin
voltage μL↑ = μR↓ and μL↓ = μR↑, so that the spin voltage
bias �V↑ = −�V↓ are opposite since �V↑ := μL↑ − μR↑
and �V↓ := μL↓ − μR↓. From Eq. (13) we know that D

y

ij =
dz

ij = dx
ij = 0. The nonvanishing helical terms

Dx
ij (Si × Sj )x + Dz

ij (Si × Sj )z + d
y

ij (Sx
i Sz

j + Sz
i S

x
j ) (16)

may survive. In Fig. 5 we show these coefficients of DM
and KSEA interactions as functions of μ0 for different δ

and �V↑. Here μ0 is the averaged chemical potential of the

FIG. 6. The plots in (a) are the integrand function K as functions of ω for μL↑ = μR↓ = −7 meV, μL↑ = μR↓ = −λ, μL↓ = μR↑ = −λ,
μL↑ = μR↓ = λ, μL↓ = μR↑ = λ, and μL↓ = μR↑ = 7 meV, respectively. The plots in (b) are Dx

ij as functions of μ for the bounds of integrand
ω ∈ (−∞, 0] (solid line) and ω ∈ [0,∞) (dash line), respectively. Here ε = 0 meV, t = 1 meV, δ = 3 meV, J = 5 meV, TL = TR = 1 K,
γ = 1

12 meV, �V↑ = 2 meV. The plots in (c) are schematic of how energy levels are occupied by electrons of the thermalized electronic
reservoirs.
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FIG. 7. Magnetic exchange interactions as functions of (a) av-
erage chemical potential μ0 when �V↑ = 2 meV and (b) spin
voltage bias �V↑ when μ0 = 2 meV. Here ε = 0 meV, t = 1 meV,
δ = 3 meV, J = 5 meV, TL = TR = 1 K, γ = 1

12 meV, �V↑=�V↓,

and μL↑ = �V↑
2 + μ0, μL↓ = −�V↑

2 + μ0 + 1, μR↑ = −�V↑
2 + μ0,

μR↓ = �V↑
2 + μ0 + 2. And the colors refer to different magnetic

exchange interactions.

thermalized electronic reservoir, i.e., μ0 = 1
2 (μ↑ + μ↓). From

Fig. 5 we can see that Dx
ij , Dz

ij , and d
y

ij are nonzero for δ = 0,
however, Dx

ij = d
y

ij = 0 and only Dz
ij = 0 for δ = 0. We find

that as long as in the presence of spin polarized current, the
indirect exchange interaction appears in z direction, Dz

ij . And
the KSEA interaction d

y

ij appears when both spin polarized
current and RSOC exist in the system. They can be transferred
from positive (negative) to negative (positive) as the μ0 in-
creases.

Similarly, we also study the integrand function of Eq. (13).
In Fig. 6 we plot the integrand function K as a function of ω

and Dx
ij as functions of μ0 for different range of integration

ω ∈ (−∞, 0] and ω ∈ [0,∞), respectively. Because the sys-
tem has opposite spin voltage bias, each energy level will be
filled first by a spin up electron of the left reservoir and a spin
down electron of the right reservoir and then by a spin down
electron of the left reservoir and a spin up electron of the right
reservoir. Therefore, Dx

ij have four peaks [corresponding to
Fig. 5(a)]. The behaviors of Dz

ij and d
y

ij can be understood by
similar arguments.

D. Spin polarized and electric currents

Finally, we consider that the system has both the electric
current and the spin polarized current, where the helical DM
and KSEA interactions are not zero. In Fig. 7 we show these
coefficients of DM and KSEA type interactions as functions of

μ0 and �V↑, respectively. We can see that these interactions
have eight peaks, corresponding to the eight ways for filling
levels of four different electrons, i.e., the left electron with
spin up or spin down, the right electron with spin up or spin
down.

IV. SUMMARY

In summary we have studied the nonequilibrium helical
indirect exchange interactions of local spins that embedded in
general open electronic systems. We have found that besides
the synthesized anisotropic Heisenberg interactions, there also
appear the synthetic helical indirect exchange interactions:
antisymmetric DM interaction and symmetric KSEA interac-
tion. When the system only has spin-orbit coupling or spin
polarized currents, it can synthesize and control the antisym-
metric DM exchange interactions, in the same direction as
spin splitting. However, the appearance of symmetric KSEA
interactions requires the system has not only the spin-orbit
coupling but also spin polarized currents with different split-
ting directions. Moreover, we can control the sign, magnitude,
and direction of indirect DM vectors and KSEA interactions
by bias voltage and spin voltage bias at nonequilibrium in
open quantum devices. These results and the framework
may find potential applications in magnonics and spintronics,
where the helical DM and KSEA interactions are important to
control the order symmetry of spin spiral and spin texture.
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APPENDIX A: GF DETAILS FOR THE
HELICAL INTERACTIONS

In order to calculate lesser GF G<
βi,αi (ω) of Eq. (5), we

defined the nonequilibrium GF as

Gβi,αi (t, t
′) = −i

〈
Tce

−i
∫

c
dτHsd (τ )cβi (t )c†αi (t

′)
〉
, (A1)

since we treat the effective spin exchange Hamiltonian Hspin

perturbatively up to the second order of J , we only need to
treat the nonequilibrium GF under the first-order perturbation,

Gβi,αi (t, t
′) = G

(0)
βi,αi (t, t

′) +
(

−J

2

) ∑
jα′β ′

σ α′β ′ · Sj

∫
c

dt1G
(0)
βi,α′j (t, t1)G(0)

β ′j,αi (t1, t
′), (A2)

where G
(0)
βj,αi (t ) = i〈c†αi (0)cβj (t )〉0. The 〈· · · 〉0 is the average on the unperturbed electronic system without coupling to localized

spins, but only including the pure electronic Hamiltonian He + VT + ∑
v=L,R Hv . By taking Fourier transform, we get

Gβi,αi (ω) = G
(0)
βi,αi (ω) +

(
−J

2

) ∑
jα′β ′

σ α′β ′ · SjG
(0)
βi,α′j (ω)G(0)

β ′j,αi (ω), (A3)
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and G<
βi,αi (ω) of Eq. (5) can be written as

G<
βi,αi (ω) = G

<(0)
βi,αi (ω) +

(
−J

2

) ∑
jα′β ′

σ α′β ′ · Sj

[
G

(0)
βi,α′j (ω)G(0)

β ′j,αi (ω)
]<

. (A4)

In the present study we focus on the exchange interactions among different local spins that are of prime interest, so we
substitute the second term of Eq. (A4) into Eq. (5). We finally obtain the exchange interaction Hamiltonian between Si and Sj :

H
ij

spin = −i
J 2

4

∑
i<j

∑
αβ

∑
α′β ′

{
(σ αβ · Si )(σ α′β ′ · Sj )

∫ ∞

−∞

dω

2π

[
G

(0)
βi,α′j (ω)G(0)

β ′j,αi (ω)
]<

+ (σ αβ · Sj )(σ α′β ′ · Si )
∫ ∞

−∞

dω

2π

[
G

(0)
βj,α′i (ω)G(0)

β ′i,αj (ω)
]<

}

= −i
J 2

4

x,y,z∑
a,b

∑
i<j

∑
αβ

∑
α′β ′

∫ ∞

−∞

dω

2π

(
σa

αβσ b
α′β ′S

a
i Sb

j

[
G

(0)
βi,α′j (ω)G(0)

β ′j,αi (ω)
]< + σa

αβσ b
α′β ′S

a
j Sb

i

[
G

(0)
βj,α′i (ω)G(0)

β ′i,αj (ω)
]<)

= −i
J 2

4

∫ ∞

−∞

dω

2π
Tr

{
Si · [(

σ G(0)
ij

)(
σ G(0)

j i

)]< · Sj + Sj · [(
σ G(0)

j i

)(
σ G(0)

ij

)]< · Si

}
, (A5)

where G(0)
ij is the spin space matrix GF for propagation of an electron from j th site to ith site and (σ G(0)

ij )(σ G(0)
j i ) is the dyad.

The spin Hamiltonian can be expressed as three parts:

H
ij

spin =
∑

a=x,y,z

J a
ij S

a
i Sa

j + Dij · (Si × Sj ) + dx
ij

(
S

y

i Sz
j + Sz

i S
y

j

) + d
y

ij

(
Sx

i Sz
j + Sz

i S
x
j

) + dz
ij

(
Sx

i S
y

j + S
y

i Sz
j

)
, (A6)

where the first sum of Eq. (A6) describes the anisotropic Heisenberg interactions, the second term is the antisymmetric DM
interaction, and the others ones are the symmetric KSEA interactions. The detailed expressions of all coefficients are given by

J a
ij = − i

J 2

4

∫ ∞

−∞

dω

2π
Tr

{[(
σa G(0)

ij

)(
σa G(0)

j i

)]< + [(
σa G(0)

j i

)(
σa G(0)

ij

)]<}
,

Da
ij = − i

J 2

8

x,y,z∑
b,c

εabc

∫ ∞

−∞

dω

2π
Tr

{[(
σbG(0)

ij

)(
σ cG(0)

j i

)]< + [(
σ cG(0)

j i

)(
σbG(0)

ij

)]<}
,

da
ij = − i

J 2

8

x,y,z∑
b,c

ε̃abc

∫ ∞

−∞

dω

2π
Tr

{[(
σbG(0)

ij

)(
σ cG(0)

j i

)]< + [(
σ cG(0)

j i

)(
σbG(0)

ij

)]<}
, (A7)

where εabc is the Levi-Civita symbol and ε̃abc = |εabc| with a, b, c = x, y, z.
We can calculate [G(0)

ij G(0)
j i ]< by using the Langreth formula
[
G(0)

ij G(0)
j i

]< = G<(0)
ij Ga(0)

ji + Gr (0)
ij G<(0)

j i , G<(0) = Gr(0)�<Ga(0). (A8)

Where the Gr(0) (Ga(0)) is the retarded (advanced) GF, and

Gr(0) = (Ga(0) )† = (ωI − He − �L − �R )−1. (A9)

Here �L(R) are the self-energy of the thermalized electronic reservoirs. In general, it depends on the structure of the thermal
reservoirs. In the present study, we do not consider the details of the thermal reservoirs and use the wide-band limit

�L(R) = − i

2
�L(R), �< = i(fLα�L + fRα�R ). (A10)

Where fR(L)α = 1
e

(ω−μR(L)α )/TR(L) +1
are the Fermi-Dirac distribution functions of the thermal reservoirs. μR(L)α , TR(L), and �L(R)

are the chemical potentials, the temperatures, and the coupling matrices of the thermal reservoirs, respectively. Here we set the
equal system-reservoir coupling γR(L)α = γ and for the system with spin polarization, the chemical potentials of the thermal
reservoirs depend on the spin of electron. It is different from that of Ref. [60], where the coupling matrices �L(R) depend on the
spin of electron.

It is worthy of emphasizing that our results are consistent with the previous known equilibrium RKKY results. Under
equilibrium case, TL = TR = T and γR(L)α = γ , when the system has no Rashba spin-orbit coupling (δ = 0), from Eq. (10)
we can clearly see that Da

ij = da
ij = 0 (a = x, y, z) and the system only have the isotropic Heisenberg exchage interactions

H
ij

spin =J 2Si · Sj

∫ ∞

−∞

dω

4π
Im

[
G

<(0)
↓i↓j

(
G

a(0)
↑j↑i + G

r (0)
↑j↑i

) + G
<(0)
↑i↑j

(
G

a(0)
↓j↓i + G

r (0)
↓j↓i

)]
. (A11)
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Now assuming μR(L)α = μ with spin degeneracy, we can employ the fluctuation-dissipation theorem through the relation
G<

ij (ω) = −2if (ω)ImGr
ij (ω), where f (ω) = fL(R)(ω) = 1

e(ω−μ)/T +1 is the Fermi-Dirac distribution function of the thermalized
electronic reservoir, and finally obtain

H
ij

spin = −J 2Si · Sj

∫ ∞

−∞

dω

π
f (ω)Im

[
G

r (0)
ij G

r (0)
ji

]
, (A12)

here G
r (0)
ij = G

r (0)
↑i↑j = G

r (0)
↓i↓j , which is in agreement with previous results [78].

APPENDIX B: DYSON EQUATIONS LEADING TO GENERAL RESULTS

For the system which has RSOC but no spin polarized current, the nonequilibrium GF G(0)
ij can be obtained from the

unperturbed nonequilibrium GF g of the pure electronic system H0 + ∑
v=L,R Hv + VT by the Dyson equation:

G(0) = g ⊗ σ 0 + g ⊗ σ 0HSOC g ⊗ σ 0 + g ⊗ σ 0HSOC g ⊗ σ 0HSOC g ⊗ σ 0 + · · ·
= (g + δ2 g Ag Ag + δ4 g Ag Ag Ag Ag + · · · ) ⊗ σ 0 + (δg Ag + δ3 g Ag Ag Ag + · · · ) ⊗ σx

=G0 ⊗ σ 0 + Gx ⊗ σx. (B1)

So the spin space matrix GF for propagation of an electron from j th site to ith site is G(0)
ij = G0

ij σ
0 + Gx

ij σ
x . As such, the DM

interaction in x direction can be obtained:

Dx
ij = − i

J 2

8

∫ ∞

−∞

dω

2π
Tr

{[
σy

(
G0

ij σ
0 + Gx

ij σ
x
)
σ z

(
G0

jiσ
0 + Gx

jiσ
x
)]< + [

σ z
(
G0

jiσ
0 + Gx

jiσ
x
)
σy

(
G0

ij σ
0 + Gx

ij σ
x
)]<

− [
σ z

(
G0

ij σ
0 + Gx

ij σ
x
)
σy

(
G0

jiσ
0 + Gx

jiσ
x
)]< − [

σy
(
G0

jiσ
0 + Gx

jiσ
x
)
σ z

(
G0

ij σ
0 + Gx

ij σ
x
)]<}

= − i
J 2

4

∫ ∞

−∞

dω

2π
Tr

{[(
iG0

ij σ
x − iGx

ij σ
0
)(
G0

jiσ
0 + Gx

jiσ
x
)]< + [( − iG0

jiσ
x + iGx

jiσ
0
)(
G0

ij σ
0 + Gx

ij σ
x
)]<

− [( − iG0
ij σ

x + iGx
ij σ

0
)(
G0

jiσ
0 + Gx

jiσ
x
)]< − [(

iG0
jiσ

x − iGx
jiσ

0
)(
G0

ij σ
0 + Gx

ij σ
x
)]<}

= J 2

2

∫ ∞

−∞

dω

2π
Tr

{[
G0

ijGx
ji − Gx

ijG0
ji

]<}
. (B2)

Other terms of Eq. (10) can be obtained similarly.
For the system which has spin polarized current but no RSOC. The spin polarization is in z direction, which can result from

the Zeeman splitting of the on-site potential ε↑(↓), the system-reservoir coupling polarization VT,↑(↓), or the spin-polarized Fermi
distributions in the electronic reservoirs. Therefore, the self-energy of the thermalized electronic reservoirs will be �<

L↑ = �<
L↓

and �<
R↑ = �<

R↓. And the GF G(0) can be written as

G(0) = G̃0 ⊗ σ 0 + G̃z ⊗ σ z, (B3)

where G̃0 = (G(0)↑↑ + G(0)↓↓)/2, G̃z = (G(0)↑↑ − G(0)↓↓)/2, and

G(0) =
(

G(0)↑↑ G(0)↑↓
G(0)↓↑ G(0)↓↓

)
.

So the spin space matrix GF for propagation of an electron from j th site to ith site is G(0)
ij = G̃0

ij σ
0 + G̃z

ij σ
z.
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