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We present a theoretical study of two-dimensional spatially and temporally varying magnetic textures in the
presence of spin-orbit coupling (SOC) of both the Rashba and Dresselhaus types. We show that the effective
gauge field due to these SOCs, contributes to the dissipative and reactive spin torques in exactly the same way
as in electromagnetism. Our calculations reveal that Rashba (Dresselhaus) SOC induces a chiral dissipation
in interfacial (bulk) inversion asymmetric magnetic materials. Furthermore, we show that in addition to chiral
dissipation «,, these SOCs also produce a chiral renormalization of the gyromagnetic ratio ., and show that
the latter is intrinsically linked to the former via a simple relation o, = (t/7ex)7., Where 7 and t are the
exchange time and the electron relaxation time, respectively. Finally, we propose a theoretical scheme based
on the Scattering theory to calculate and investigate the properties of damping in chiral magnets. Our findings
should in principle provide a guide for material engineering of effects related to chiral dynamics in magnetic

textures with SOC.
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I. INTRODUCTION

The recent years have witnessed a surge in research in
nanoscale magneto-electronics that focuses on the utilization
of the spin degree of freedom of electrons in combination with
its charge, to create new functionalities and devices such as
magnetic random access memories, hard drives, and sensors
[1,2]. The performance of these devices strongly depends on
the dissipation of magnetization dynamics. The latter detects
the energy required, the speed and efficiency at which these
devices operate. As a result, the qualitative estimation of
damping in magnetic materials is, in principle, indispensable
for piloting and designing alternative materials for different
spintronics applications.

Over the past years, several microscopic theories of mag-
netization dissipation in which SOC is the mediating interac-
tion via which angular momentum (and energy) is dissipated
by the precessing magnetization [3-5] have been proposed.
Recent theories have highlighted the important role that the
s-d interaction between the local magnetization and the spins
of itinerant electrons play in the dynamics of magnetization
[6]. Indeed, it has been shown that the interaction between a
nonuniform precessing magnetization and spins of itinerant
electrons give rise to a nonlocal contribution to the Gilbert
damping [7,8].

A class of magnetic materials that have attracted enormous
research interest owing to their offer of enhanced device per-
formances such as low threshold current density and ultrafast

*collins.akosa@riken.jp

2469-9950/2018/98(18)/184424(10)

184424-1

current-induced domain wall motion [9] are chiral magnets
common in materials with SOC and broken inversion symme-
try. It was recently pointed out that magnetization damping
in these materials include a chiral contribution [10-14]. Even
though this prediction is appealing towards the realization
of ultralow damping, little information is known about the
relative strength of the chiral with respect to the nonchiral
contributions to the damping. Furthermore, the nature of
the SOC in chiral magnets determines the type of magnetic
texture that can be stabilized in the system. Indeed, it has been
shown that an effective chiral energy, i.e., Dzyaloshinskii-
Moriya interaction can be derived from a microscopic model
of electrons moving in a magnetic texture in the presence of
SOC [15,16]. This chiral energy has been shown to stabilize
Néel (Bloch) domain walls in systems with Rashba (Dressel-
haus) SOC as a result of interfacial (bulk) inversion symmetry
breaking.

In this study, we present a theoretical study of an interplay
of Rashba and Dresselhaus SOCs in two-dimensional chiral
magnets with spatially and temporally varying magnetization.
We propose schemes based on the Green’s function formalism
and the scattering theory to qualitatively calculate the chiral
damping and chiral renormalization of the gyromagnetic ratio
inherent in these materials. We show that just as in the case
for chiral energy, these SOCs induce a chiral damping (c.)
and chiral renormalization of the gyromagnetic ratio (7.) that
are intrinsically linked via o, = (7/7ex)7., Where 7 and
T are the exchange time and the electron relaxation time,
respectively. Finally, we elucidate the nature and properties
of both the chiral and nonchiral contributions to damping in
these materials.

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.184424&domain=pdf&date_stamp=2018-11-21
https://doi.org/10.1103/PhysRevB.98.184424

C. A. AKOSA, A. TAKEUCHI, Z. YUAN, AND G. TATARA

PHYSICAL REVIEW B 98, 184424 (2018)

This work is organized as follows. In Sec. II, we introduce
the theoretical model based on the Green’s function formalism
employed to calculate the spin torque induced by a spatially
and temporally varying magnetization in the presence of
Rashba SOC and Dresselhaus SOC. In Sec. III, we study
the corresponding current-induced dynamics in the presence
of the torques calculated in the preceding section to obtain
analytical expressions and estimates of the chiral damping and
chiral renormalization of the gyromagnetic ratio. In Sec. IV,
we provide a scheme based on the Scattering theory to calcu-
late the chiral damping contribution. This scheme is applied
in Sec. V via a tight-binding model to numerically compute
and investigate the properties of chiral damping and thus
verify our theoretical model. Finally, in Sec. VI, we provide a
summary of the main results in this work.

II. THEORETICAL MODEL

In this section, we outline the theoretical framework em-
ployed to calculate the spin torque induced by a spatially
and temporally varying magnetization in the presence of both
Rashba SOC and Dresselhaus SOC. The calculated torques
are classified into dissipative or reactive based on whether
they are odd or even under time reversal symmetry. The dissi-
pative torques contribute to a damping that is proportional to
the first-order derivative of the magnetization and hence chiral
by nature [10-14]. The reactive torques contribute to the
renormalization of the gyromagnetic ratio, which is also chiral
[13,14]. Our considerations are based on a two-dimensional
inversion asymmetric magnet with spatially and temporarily
varying magnetization m(r, t) described by the Hamiltonian

52
A= 4 im0 6+, )

2m
where m is the mass of electron, P is the momentum operator,
J is the s-d exchange coupling between the local moment m
and the electrons with spin represented by the vector of Pauli
matrices 6. The third term on the right-hand side of Eq. (1)
represents an interplay of Rashba SOC due to interfacial
inversion symmetry breaking [17] and Dresselhaus SOC due

to bulk inversion symmetry breaking [18] given as

" BR . ~ . A
g = f(oypx —6.Py) (2a)
and
~ Bp . . . .
HD = f(o—xpx - pry), (2b)

of strength fr and Bp, respectively. In the case of mag-
netic textures, the exchange term in Eq. (1) includes off-
diagonal terms. This term is diagonalized via a local unitary
transformation in the spin space U(r, t)y=n(r,t)-6, ie.,
Ut(m - 0)U = o, where n = (cos ¢ sin %, sin ¢ sin %, cos %)
[19,20]. In the transformed space [rotating frame with the
spin quantization axis along m(r,t)], the electrons see a
background of a uniform ferromagnetic state that is coupled
to the corresponding spin gauge fields due to (i) the texture

Ay and (ii) the SOC AX, given as
ih . i R
Al = —2—Tr[a“UTVU] = —(m x Vm)* (3a)
e e

and
m
Ao = ool (3b)
respectively, where A% is given as
Ago,x )‘g()vx )‘go.x IBD ﬂR 0
)‘go,y )\f:o,y )”éo,y =|-B —Hp O 4
AL Moo Al 0 0 0
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and R*¥ are components of the rotation matrix given by
RHY =2ntn¥ — §H". (5)

Furthermore, this unitary transformation modifies spin-
dependent observables such as the spin torque and the
nonequilibrium spin density of itinerant electrons. In partic-
ular, the nonequilibrium spin density in the transformed (§)
and original (s) frames transforms as

st =RMEY. 6)

We recall that the presence of nonequilibrium spin density s
regardless of its source in a magnetic system, exerts a torque
T on the local magnetization m given as

JZ
Tz%mxs, %)

where qg is the lattice constant and 7 is the reduced Planck’s
constant. Therefore, to calculate the spin torque on the local
magnetization, it suffices to calculate §. In this study, we
focus on the time-varying magnetization as the primary source
of §. We treat the interaction between the spin gauge fields
A* = AX 4 A and the background conduction electrons in
the transformed frame to be weak; this allows us to apply the
perturbation theory to calculate §. In particular, we consider
the adiabatic limit in which the spins of electrons follow the
direction of the local magnetization, and calculate § via the
Green’s function approach [21], in which the spin gauge fields
A" are treated perturbatively (see Appendix A for details).
Since this work focuses on chiral effects, we consider only
up to first order in the spin gauge fields due to SOC. The
relevant contributions to the spin torque induced by the time-
dependent texture is calculated using Eq. (7) as (see Appendix
A for details)

T =C Al - V)m+Cm x (3,All - V)m
+C3[(m x 9;m) - (AL* - V)m]e,
+Cy[(m x 9m) - (A% - V)m]e, + Ty, (8)

where the in-plane and out-of-plane components of the SOC-
induced spin gauge fields are given as

| R A7} L _— puvevgc
A, =Am" and ALY =€ m A, ©)]

The last term on the right-hand side of Eq. (8) represents other
contributions to the torque given as

Tu = (Cs + Cemx (AL, - V)o,m. (10)

In domain walls, even though Ty is locally finite, it vanishes
upon the integration over space. The torque prefactors in
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Egs. (8) and (10) are given as

1 mad erJ*(J? —n?)

Cl=————————, 11a
1 47 K2 n(J?+n?) (11a)
1 ma? epJ?
Ch=——F2 11b
T2 B2 (PP (1p)
1 2epJ?(J? + 302
C3:__m_6;0w, (11c)
4 m* n(J2+n?)?
1 ma? epJn?
Cp=———2 11d
4 2 K2 (J2 +n2)? (11d)
1 maZ epd*n
Cs=———2—"— | 11
5 T R (J2+ p2)2 (1le)
1 mag egJ(J* —1n?
€ = — = ST ) 11

2 h2 ( J2 + 772)2
where n = /27, T being the elastic relaxation time of con-
duction electrons. Notice from Eq. (11) that C; and C3 > C;
and C4 and thus dissipative torque effects are dominant over
the reactive torque effects in chiral domain walls.

Observe that Eq. (8) includes torque terms that are both
dissipative (o< C; and C3) and reactive (o< C; and C4) based
on their symmetry under time reversal. Interestingly, Eq. (8),
which constitutes one of the main result of this study, shows
that in the presence of relaxation [22], the first two terms
of the torque takes the same form of the adiabatic (o< C)
and the nonadiabatic (xC,) spin transfer torque proportional
to (E-V)m and m x (E - V)m, respectively [6,23], where
E is the applied electric field expressed in terms of the
electromagnetic vector potential A (i.e., E = —9,A). In fact,
our result indicates that the effective gauge field of any origin
contributes to the torque in exactly the same way as the
electromagnetic gauge field. Even though this is as expected
from symmetry point of view, what is significant is that the
spin transfer torque arising from the gauge field due to spin-
orbit interaction, indeed, has a nature of a damping torque, as
the gauge field is linear in magnetization.

III. CURRENT-INDUCED CHIRAL
MAGNETIZATION DYNAMICS

The previous section was devoted to establishing the nature
of the spin torque that itinerant electrons exert on the local
magnetization as a result of a time-dependent background
magnetization in the presence of SOC. In this section, we
provide analytic expressions and a qualitative estimate of the
chiral contribution to both the damping and the gyromagnetic
ratio. To achieve this, we investigate the influence on dynam-
ics of chiral domain walls via the incorporation of Eq. (8) into
the equation of motion of the magnetization described by the
extended Landau-Lifshiftz-Gilbert (LLG) equation

om = —ym X Heer + aom x o,m + T, (12)

where for completeness we have included the phenomenolog-
ical Gilbert damping with constant ¢, y is the gyromagnetic
ratio, Hegr = _MolM: % is the effective field, £ is the energy
density, M, is the saturation magnetization, and p is the

permeability of free space. We consider a one-dimensional

Walker domain wall with magnetization parametrized by the
domain wall center X, and tilt angle ¢, and given in spheri-
cal coordinates as m = (cos ¢ sin 6, sin ¢ sin 6, cos ), where
O(x) =2tan~! (exp (sx;df“)), s = +1(—1) for 1} ({1) do-

main wall, ¢ = ¢(¢), and Aqy is the width of the wall. The
dynamics of the wall is given by coupled equations

_ 50, X,
(1T + 57:)3:¢ + ag =Ty (132)
)de
and
50; X,
(ctg + 500 )3 p — =T, (13b)
dw
where
+o00
Loy = 7V Hefr - €9()dx, (14)
2 —00

ey = (cospcosf,singcosd, —sinf) and ey = (—sing,
cos ¢, 0). The terms ¢, and y, in Eq. (13) represent the chiral
damping and chiral renormalization of the gyromagnetic ratio
and given as

7”"F,3s0
.= 15
gy 14 22)72 cos(¢ + o) (15a)
and
o= TP Tt gy (I5D)

C dhihgy 1412 /72

respectively, where np = vajer is the number of conduction

electrons at the Fermi level,

Bso =/ B + B3 (16a)
and
¢ = tan™' (Bp/Br) (16b)

characterizes the strength of the effective SOC present in the
material.

Equations (15a) and (15b) constitute one of the main
results of this work, from which we infer that (i) chiral
damping and chiral renormalization of the gyromagnetic ra-
tio are Fermi-surface effects since they are proportional to
the number of available conduction electrons at the Fermi
level. (ii) The chiral damping constant is proportional to the
elastic relaxation time of electrons (i.e. «. o 7), which is
well described by the SOC mediated breathing Fermi surface
mechanism for magnetization relaxation [24-26]. It is worthy
to note here that the source of electron relaxation can be from
scattering with impurities or the domain wall itself and hence
T should, in principle, depend on the domain wall width X4y,
and therefore makes the dependence of the «. on the domain
wall width a bit subtle. (iii) The chiral renormalization of
the gyromagnetic ratio is inversely proportional to exchange
strength (i.e., 7. o« 1/J) since tx = /i/2J and, therefore,
is more significant in weak ferromagnets. (iv) The chiral
damping and gyromagnetic ratio renormalization are related
via

O = (I/Tex)j;c- (17)
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This simple relation provides a means by which one effect can
be deduced with the knowledge of the other. It turns out that
similar correspondence has been established by Kim et. al.
[27], in the context of texture-induced intrinsic nonadiabatic-
ity in the absence of SOC. For a realistic estimate of these
effects, we consider typical material parameters such as S5, =
2x 107 eVm 1 =1x107"%5s, 7, = 1 x 1075 5, gy =
10 nm, and ng = 1, from which we obtain o, = 3 x 1072 and
Ye =3 X 1073. In general, for real ferromagnetic materials,
Tex /T <K 1, therefore from Eq. (17), it is expected that in chiral
magnets, chiral damping constitutes the dominant mechanism
that detects the dynamics of chiral domain walls [11,12].
Now that we have established the analytical form of the
dissipative torque given by Eq. (8), and the corresponding
estimate of the chiral damping and chiral gyromagnetic ratio
given by Egs. (15a) and (15b), respectively, in what follows,
we use the well established scattering theory of magnetization
dissipation based on the conservation of energy [28,30] to
compliment our analytical calculations and propose a scheme
to numerically compute the damping in chiral magnets.

IV. MAGNETIZATION DAMPING FROM THE
SCATTERING THEORY

In what follows, we compliment our analytical treatment
of the preceding sections by providing a scheme based on the
scattering theory of magnetization damping to calculate the
nonchiral and chiral damping [and hence the chiral renormal-
ization of the gyromagnetic ratio by virtue of Eq. (17)]. We
focus on dissipative torque terms in Eq. (8) and neglect the
chiral renormalization of the gyromagnetic ratio (i.e., torque
terms that are even under time reversal symmetry). However,
notice that effects associated with the chiral renormalization
of the gyromagnetic ratio can be straightforwardly inferred
from our calculations via Eq. (17), which establishes a simple
relation between chiral damping and chiral gyromagnetic ratio
renormalization due to SOC. The dynamics of magnetization
is well described by the extended Landau-Lifshiftz-Gilbert
equation given by

om = —ym x Her + opm x 9,m + Ty, (18)

Tgp is the dissipative contribution to the torque given in
Eq. (8). Again, we consider a one-dimensional Walker domain
wall parametrized by the domain wall center X, = X.(¢) and
tilt angle ¢ = ¢(¢). Furthermore, since the scattering theory
of magnetization dissipation is based on the conservation of
energy, we first calculate the rate of change of the magnetic
energy density from Eq. (18) as

ﬁ _ oM
dr

(agdm + Ty, X m) - 9,m, (19)

where the negative sign shows that energy is lost by the
magnetic system. Notice that the right-hand side of Eq. (19)
is bilinear in d,m and can therefore be rewritten in the form

d€é
= = Do(39)” + Dnd,$3, X, + Di(3, X.)’, (20)
where D,, Dj, and D, represents the out-of-plane, in-plane,

and mix dissipation, respectively. The substitution of Eq. (8)

into Eq. (19) yields

M, o
D, = K27 (4 + sa, sin 0) sin 6, 21a)
M, .
D = — Ho &, cos6 sin® 6, (21b)
M,
D= B 2 in?e, 2le)
14 )“dw

where o, is the chiral damping defined in Eq. (15a) and
&, represents a %-phase shift in ¢ of «. [i.e., @.(¢) =
(¢ —m/2)].

Interestingly, SOC induces in addition to the in-plane and
out-of-plane damping, a mix term D,, which is locally finite
as shown in Eq. (21b). Even though, in principle, the spatial
integration of Dy, vanishes, the nonequilibrium dynamics of
the magnetization might result to a finite value and hence
renormalizes the overall contribution of the chiral damping.
However, such corrections are expected to be small and,
hence, we neglect this effect in the rest of this study. The total
rate of energy loss by the magnetic system with cross sectional

area A is given as

dE tod

“_ f € (22)
dt oo dt

Following the representation of Eq. (20), Eq. (22) can be
rewritten in the form

dE
— = Do(3,9) + Di(3 X.)”, (23)
where
+o0
DO(,') = .A Do(i)dx, (24)
—00

and after performing the integration, we obtain

210 M, A,
Dy = O (0 1 sar) (252)
y
and
210 M, Ahgy
p; = KOs A (25b)

1258
The application of the scattering theory of magnetization
dissipation, in which the magnetic system is considered to be
at a constant temperature and the energy loss by the magnetic
system is equal to the total energy pumped into the system,

yields [28-32]

dE h ds dS?

— = —Tr| ———), (26)
dt  A4rm dt dt

where S is the scattering matrix at the Fermi energy. Further-

more, since S = S(m), we have that S = S(X.(¢), ¢(¢)) and
therefore Eq. (26) is transformed into

dE
o= Ao(3,0) + Ai(8,X )%, (27)

where

:
A, = %Tr(§ E) (28a)

¢ 9
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and

T
A = ETr( 95 95 ) (28b)

4 0X. 0X,
are proportional to the out-of-plane and in-plane contribution
to damping, respectively. Next, comparing Eqs. (23) and (27),
we have that

h ([0S dST
D,=A, = -Tr[ —— 29
A=7 r<a¢ a¢) %
and
h S ast
D,=A =-T ) 29b
A=7 r(axc axc> (29%)

Finally, we obtain the expression of the out-of-plane damping
using Eq. (25) and Eq. (29) as

3S aST
oo + sa, = CTI'(% g), (30)
where
yh
- 3D
SI"LOMSA)"dW

Equation (30) provides a very transparent way to extract both
the nonchiral and chiral contribution of the damping. Indeed,
since s = =£1 for 1 (J1) domain walls, the nonchiral and
chiral contribution of damping can be computed as

c (35, 9S8!, 85, 08!
T( 1 9ot 901 Pouy (32)

o) = — 11
dp 09 dp 09

and

(32b)

o, =

Corf 251 05}, _ 88, 88},
2 '\ 090 9¢ 09 )

respectively. Therefore the calculation of nonchiral, chiral,
and by extension chiral renormalization of the gyromagnetic
ratio requires the knowledge of the derivative of the scattering
matrix with respect to the domain wall tilt angle ¢. The deriva-
tion of a close form analytic expressions of the scattering ma-
trix in the presence of SOC is nontrivial even though asymp-
totic expressions have been derived in the limits kpigy > 1
[34] and kgigw < 1 [35-37], where kg is the Fermi wave
number. Therefore, in the following section, we calculate
these damping contributions by numerically computing the
derivatives of the scattering matrix and its conjugate with
respect to the tilt angle ¢ of a domain wall to ascertain the
correctness of the theoretical treatment presented above.

V. NUMERICAL RESULTS

In this section, we follow the procedure outlined in the
preceding section and numerically compute the nonchiral and
chiral contributions to the damping. To achieve this, we con-
sider a two-dimensional tight-binding model on a square lat-
tice with lattice constant aq. In our calculations, we consider a
scattering region of size 1001 x lOlag to ensure that a domain
wall of width A4y, = 154y is fully relaxed into a ferromagnet at
the contact with the left and right leads. The scattering matrix

Tilt angle (¢/7)

Tilt angle (¢/7)

FIG. 1. Shows the ¢ dependence of the nonchiral (dash lines)
and chiral (solid lines) contribution to the damping in the presence of
different SOC. Results show that «, is SOC-driven and proportional
to the Fermi energy evident in the smaller amplitude for (a) er =
—4.5t compared to (b) eg = —3.2¢. In all calculations with SOC,
Bso = 0.02¢.

and its derivatives are calculated with the help of KWANT pack-
age [33] from which the nonchiral and chiral contributions
of the damping are extracted based on Egs. (32a) and (32b),
respectively. Furthermore, in all our calculations, we consider
an exchange constant of J = —2¢/3 and an on-site energy
&; = 0. The damping parameters are calculated based on the
material parameters M; = 8 x 10° Am™!, gy = 0.35 nm.
Our numerical results of the ¢ dependence of the nonchiral
(dash lines) and chiral (solid lines) contributions to the damp-
ing in the presence of different SOC for different transport
energies, eg = —4.5¢ in Fig. 1(a) and ep = —3.2¢ in Fig. 1(b),
are in good agreement with our analytical predictions given by
Eq. (15a). Indeed, the relative increase in the strength of o, in
Fig. 1(b) compared to Fig. 1(a) shows that the effect is a Fermi
energy effect, i.e., o« eg. Furthermore, in the absence of SOC,
i.e., Bso = 0 (green curves), o, = 0, and «y is a constant. In
the presence of SOC, we considered three interesting cases:
(i) Bso = Br, i.e., fp = 0 (red curves), and from Eq. (16b),
¢ = 0, therefore, o, o< cos¢. (ii) Be = Bp, i.e., Br =0
(blue curves) similarly, ¢s, = /2, therefore, o, o sin ¢. (iii)
Br = Bp (black curves) and using similar arguments, ¢g, =
7 /4, therefore, o, o cos(¢ + m/4). It is worth mentioning
here that in the presence of SOC, the nonchiral damping «
shows a small oscillatory o< cos?(¢ + ¢so) as a result of small
SOC-induced anisotropic magnetoresistance. The complete
description of the ¢ dependence of «, presented here should,
in principle, provide a guide for material engineering of
effects related to damping in chiral magnets. The validity
of our analytical model is strengthened with the result of
the investigation of the dependence of chiral damping on
the strength of the SOC. Indeed, Figs. 2(a) and 2(b) show
that (i) the nonchiral damping o ,3320 [24], (ii) the chiral
damping a, o Bs,, and (iii) chiral and nonchiral damping are
Fermi energy effects, i.e., ox eg. This is, again, in agreement
with our analytical prediction of Eq. (15a). Observe that the
Dresselhaus SOC, which stabilizes Bloch walls in materials
with bulk inversion symmetry breaking, affects chiral damp-
ing in these materials in exactly the same way that the Rashba
SOC, which favors Néel in materials with interfacial inversion
symmetry breaking interaction, affects the chiral damping
in these materials. Furthermore, Dresselhaus (Rashba) SOC
induces no chiral contribution Néel (Bloch) as a result of the
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FIG. 2. Dependence of chiral and nonchiral damping on the
strength of the SOC for (a) &g = —4.5¢ and (b) &g = —3.2¢. Notice
that the blue and red curves as well as the green and black curves
are superimposed showing that the Dresselhaus SOC influences the
damping in Bloch walls (¢ = 7/2) exactly the same way Rashba
SOC influences it in Néel walls (¢ = 0).

sin ¢(cos ¢) symmetry of the chiral damping. Therefore our
work shows that the symmetry of the SOC-induced chiral
damping is inherited from the symmetry of the materials.

VI. CONCLUSIONS

We have carried out a detailed theoretical investigation of
the nature of spin torque and the corresponding dynamics gen-
erated by two-dimensional, spatially and temporally varying
chiral magnetic textures in the presence of both Dresselhaus
and Rashba SOCs. We employed the Green’s function formal-
ism to derive expressions for the nonequilibrium spin density
and hence the spin torque generated by a spatially and tem-
porally varying chiral magnetic textures in which the gauge
field induced by these SOCs is treated perturbatively. Our
result indicates that the effective gauge field associated with
these SOCs, and by extension of any origin, contributes to the
torque in exactly the same way as the electromagnetic gauge
field. In order to investigate the impact these torques have on
the dynamics of chiral magnets, we then incorporated the
calculated torques into the LLG equation that governs the dy-
namics of the magnetization and derived analytic expressions
for both the chiral damping o, and the chiral renormalization
of the gyromagnetic ratio y. and show that o, = (T/Tex)7e»
where 7.x and 7 are the exchange and electron relaxation
times, respectively. Furthermore, we propose a theoretical
scheme based on the scattering matrix formalism to calculate
and investigate the properties of damping in chiral magnets.
Our findings should, in principle, provide a guide for material
engineering of effects related to damping in chiral magnets.
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APPENDIX: NONEQUILIBRIUM SPIN
DENSITY CALCULATION

In this section, we present a detailed calculation of the
nonequilibrium spin density induced by a time-varying mag-
netization. To calculate the nonequilibrium spin density §, we
treat the spin gauge fields A* = A 4 A perturbatively in
the adiabatic limit of slow dynamics (72 < ep) and smooth
variation of the magnetization (¢ < kg), where €2, ¢, and
krp are the frequency, the wave number, and the Fermi wave
number, respectively. To simplify notation and render our
analysis trackable, we define the Green’s functions

1
Sho = 5 2(1 +00%) gk (Ala)
i = ! (Alb)
Skwo = ho—¢&; +ep+od +in’
such that g; , , = (8k.,,)" and n = 7i/27, where 7 is the
elastic relaxation time of conduction electrons. The nonequi-
librium spin density is defined up to linear order in €2 as

gu(q 1) = ehz Z 3 Au(q/ t)Tr[k-fr”gr<k+q k+q’/>
) - 144 ’ 1 A e
2mm L, 22"

"o
x&”ga<k+q 5 1 ,k—%)]

2
eh ; )
o AL 0 1)

x Tr(6" gi8i). (A2)
where g"®(k, k') is the retarded (advanced) Green’s func-

tion represented by g"®(k, k)= g,r((a) =1/2)Y,_(1+

ooi)gpy, with gf = (gd ) = 1/(—ex +er —oJ +in).

The dominant contributions are linear in ¢ and A, and they

are depicted in Fig. 3.
b) I
[
@/\AX

FIG. 3. Diagrammatic representation of the nonequilibrium spin
density §. The solid, wavy, and dashed lines represent the Green’s
function, spin gauge potential A,, and gauge potential due to SOC
A,,, respectively. (a) First order and (b) second order in A contribu-
tions to the nonequilibrium spin density.

(a) (

~ Aso
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1. First order in A

Up to first order in A, the diagram that contributes to the nonequilibrium spin density is given by Fig. 3(a), from which the
components of the spin density are computed as

eh?
$Mq. 1) = —— e~ —— AL ( q,z)ZTr(k,»a“g;+qa“g; ,,)
k
= - 2 2Qjat SOl(q I)szk 5M~8VZIm[ (gktr)z]
o=+ k
+ [6"* (8" Im 4 08" Re) 4 6"(6™Im — 66" Re)lg; _, (g,i’a)z}. (A3)

2. Second order in A

For completeness we also calculated the second order in A contribution to the nonequilibrium spin density as depicted in
Fig. 3(b) as

en’
2w m?

§Mq.1) = [0:A,(q', )AL, (g —q', 1) + 0 AL, (q'. DAL (g — ¢, 1)]

X ZTr(k,k,-& 81678168y + kik ;6" g,‘;a”g,r‘(%”gi)
k

Vg DAL (g —q. D] Tr(6"gpek)
k

2h3

ALi(q' DAL (g —q' )+ 8,AL (g DAL (g — ¢, 1)]
q

Zk k =5 (8])0 8VZ80Z)Re[g;c,a (gz,a)z - glrc,agli,fagz,a] - aevozlm(g;c,agli,ftfg;:,a)}

5 [5”7 (8 Re + 8”Tm)gy gt gb  + 878" Re — 8™ Im)gy (i ,)’]
+8"[8Y*(8”Re — 08 Im)g} , 84 _, 840 + 87 (8" Re + 06" Im)g} _, (g};,o)z]). (Ad)
The dominant contributions of the x and y components of the nonequilibrium spin density, §* and §”, are obtained as

eh? e*h

§ = o hiAL, > (8™ Im + 08" Re)Cy 5 + —(a,A“ A2+ d AL AL
o=+
x Y o8 (8 Re + 067 Im)Cy 5 + 8%(8" Re — 08" Im)C 4], (A5)
o=+
el e*h
¥ = = A, > (8™Im — 08" Re)Cy 5 + — (3, AL, AL, ; + 0, AL, AL,
am
o=+
x Z o[8"(8”Re — 08°*Im)Cs 4 + 8%*(8™Re + 68" Im)C) . ], (A6)
o=+
where Cy(2) , are calculated as
2
Cl,a = Z 8kg;(’70 (gla(,g)
k
e £
~ —vf de - -
oo (e—sp—o0J —in)e—cer+oJ+in)?
_ znvsp—l—oJ—i—tn
T2 (oJ +in2
_ TV 2 2 . 2 2 . 2 2
——2(12—_’_’72)2[77(-] + 0" +20¢ep)) +iep(JT—n") +iocJ(J7 + 1)l (A7)
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§ : r a a
CZ,U = 8kgk,agk,7agk,a
k

12

o0 €
_v/_wdg(s—sl:—i-al—in)(e—sF—oJ+in)(s—8p+ch+in)
nveg—oJ +in
Z oJ —in

TV

= _m(ﬂ + 1% —oepd — iepn).

The effective magnetic field HZ;; due to this nonequilibrium spin density is given by

* Ja(% X3x )=y
Hef? = —W(RM N +RM}S})

2
S [ AR 4 R JoReC, — (RIAL — RO AL i)
o=%

+ dm"[(RM AL, + R™ A JoRe(Ci o + Crp) — (RM AL, = R®AL,)Im(Cy o — Co6)]

— (3 AT, + 5 AL )RR + RWR™)oRe(Cr o — Cap) — (RMR™ = RWR™IM(Cy 4 + Ca )]

+ %m” "[(AY;AY, — AL AL )oReCy o — (AL AL, + AL, AY,)ImCy 4 ]

+4§m”A;,[(RWAg — RM™AY,)oReCy o + (RM AL, + RMAY)ImC, . |

+ AL (RMR™ + RMWR™)oRe(Ci o — Cr6) — (RMRY — RPR™IM(C) 5 + Cop) -
N3

Here we used the relations

AR = 2 (A — A5 R,
R = zh—e(Ai’,,»m" — AL RM),
AR = 20 (AL — A5 R,

O R" = —zh—e(A;im" — A;iR’“‘).

To make our calculation tractable and simplify notation, we define constants C; as

Ja0 m egJ(J? —1n?)

Ja2
C, =——CRe Cio+Crp)= _—
1 Zia( 1o +Cao) = 2 R R

2w
Ja Jaz m epJ?
C OI Clo—Cpo)=>20"_ F7
2= mz( L, 20) = 21 B2 (J2 + 2)>
Jao m egJ (J? +3n%)
27 B2 2n(J2 + n2)?2
2

J
= “OReZa(cla—cm—

Jaim  epn
27 B2 (J2 +n?)?

Jao Jaim  epnJ
—Re Clo=—F"">S""5 55"
ZO L 21 B2 (J2 + 2)>

Ja? J ep(J? —
Co=—DmY ¢y, =- Jag m ex(J? — 1)
o=+

Ja?
Cy=— OImZ(Cla+C20)__

27 2m B2 2(J2 +n2)?
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From which we obtain
vV

AL
H = — ;’” { —2m"3;[Cs(m x 9;m)* — Cgd;m"] + 3,m"[C;(m x 9;m)* — C,0;m"]

€
+0;m - (m x 0,m)[C3(8"" — m"m") — C4e""’m°] + 2m"m"[C50;m - (m x 9,;m) + C¢0;m - 9,;m]

4 2
— gmm;t[csaim“ + Co(m x m)*] — EeaiA;,[@(a“” — mtm®) — C4e’“"’m”]}. (A20)

Note that the last two terms proportional to AZ, and 9; A%, are expected to cancel out for gauge invariance with the other
prop st s, p gaug

contributions we do not consider here.) In the above calculation, we used the following relations for spin gauge field As:

h
RUCAY, + R™WA), = —2—(m x 0;m)*, (A21)
. s, .
h
RMAL, —RMWAL, = —z—aim“, (A22)
’ e
: . h
O AS; + 8 A5, = - dm - (m x 9m), (A23)
: 5, e
RMR™ + RWRY = ¥ —m*m", (A24)
RMRY — RPR™ = etm?, (A25)
A2
ALAL — AGAY, = <2—> dim - (m x 9;m), (A26)
o o e
A\ 2
ALA +HALAL = —(2—> dm - 9,m. (A27)
T o e
The spin torque is then computed using
T=—ymx H};. (A28)
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