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We present a bond-operator theory (BOT) suitable for the description of both magnetically ordered phases
and paramagnetic phases with singlet ground states in spin-1/2 magnets. This technique allows one to trace the
evolution of quasiparticles across the transition between the phases. Some elementary excitations described in
the theory by separate bosons appear in conventional approaches as bound states of well-known quasiparticles
(magnons or triplons). The proposed BOT provides a regular expansion of physical quantities in powers of 1/n,
where n is the maximum number of bosons that can occupy a unit cell (physical results correspond to n = 1).
Two variants of BOT are suggested: for two and for four spins in the unit cell (two-spin and four-spin BOTs,
respectively). We consider spin-1/2 Heisenberg antiferromagnets (HAF) on a simple square lattice bilayer by
the two-spin BOT. The ground-state energy E , the staggered magnetization M , and quasiparticle spectra found
within the first order in 1/n are in good quantitative agreement with previous results both in paramagnetic
and in ordered phases not very close to the quantum critical point between the phases. By doubling the unit
cell in two directions, we discuss spin-1/2 HAF on a square lattice using the suggested four-spin BOT. We
identify the magnon and the amplitude (Higgs) modes among fifteen spin-2, spin-1, and spin-0 quasiparticles
arising in the theory. The magnon spectrum, E , and M found in the first order in 1/n are in good quantitative
agreement with previous numerical and experimental results. We observe a special moderately damped spin-0
quasiparticle (“singlon” for short) whose energy is smaller than the energy of the Higgs mode in the most part of
the Brillouin zone. By considering HAF with Ising-type anisotropy, we find that both Higgs and singlon modes
stem from two-magnon bound states, which merge with two-magnon continuum not far from the isotropic limit.
We demonstrate that singlons appear explicitly in “scalar” correlators one of which describes the Raman intensity
in B1g symmetry. The latter is expressed in the leading order in 1/n via the singlon Green’s function at zero
momentum, which shows an asymmetric peak. The position of this peak given by the singlon energy coincides
with the position of the so-called “two-magnon” peak observed experimentally in, e.g., layered cuprates.
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I. INTRODUCTION

Search and characterization of elementary excitations
(quasiparticles) is of fundamental importance for the modern
theory of strongly interacting many-body systems. A wealth
of collective phenomena are discussed in terms of appropriate
quasiparticles, interaction between them, and their decay into
other elementary excitations. Then, the role of convenient and
powerful theoretical approaches allowing to introduce and
to operate with suitable elementary excitations is important.
Theories relying on expansions around exactly solvable limits
are of particular importance because they allow to describe
accurately a certain area of parameter space. Examples in-
clude 1/N expansions, where N is the number of flavors or the
number of order-parameter components, ε expansions, where
ε = dc − d, d and dc being the space dimension and the upper
or lower critical dimension, respectively, and 1/S expansions,
where S is the spin value [1–3]. Such theories provide in
some cases even quantitatively accurate results far beyond the
formal domain of their applicability.

*asyromyatnikov@yandex.ru

One of such approaches is 1/S expansion, which is based
on Holstein-Primakoff (or on Dyson-Maleev) spin trans-
formation [1,4]. It allows to describe magnetic systems in
ordered phases in terms of elementary excitations named
magnons. In most cases, one can find only a few first terms
in 1/S series for observable quantities. It is well known, how-
ever, that even truncated 1/S series can provide surprisingly
accurate results even when the formal condition of the theory
applicability, S � 1, is far from being fulfilled. The notable
example is a spin-1/2 Heisenberg antiferromagnet (HAF) on
a square lattice [5]. 1/S-expansion failed to work well near
phase transitions when the nature of elementary excitations
changes: e.g., near classical phase transitions or near quantum
phase transitions (QPTs) when extra critical modes appear.

A prominent example of the latter situation is QPT from
a magnetically ordered phase to a dimerized phase with a
singlet ground state, when the amplitude (Higgs) mode comes
into play [3,6,7]. The Higgs mode is one of the fundamental
collective excitations arising in various systems with sponta-
neously broken continuous symmetry and corresponding to
fluctuations of the order parameter amplitude (along with
Goldstone excitations corresponding to fluctuations of the
order parameter phase) [8]. It is not convenient to take it into
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account within 1/S-expansion because the amplitude mode
arises in this technique as a pole of a two-magnon vertex
[6,7]. To obtain this pole, one has to take into account infinite
number of diagrams. The amplitude mode has attracted much
attention recently as it bears close correspondence with Higgs
modes in particle physics [8]. Deep in the ordered phase,
the amplitude mode is a high-energy excitation with finite
lifetime caused by decay into two Goldstone quasiparticles;
due to its damping, it is undetectable deep in the ordered
phase in measurements of order-parameter correlators [9–11]
(the longitudinal spin susceptibility in magnetic systems),
while it is visible in scalar correlators [11] (many-spin, or
bond-bond, correlators in magnetic systems [11–13]). Recent
advances in experimental neutron techniques allowed the ob-
servation of the amplitude mode in TlCuCl3 near the pressure-
induced QPT, where the Higgs mode is sharp [14,15]. It has
been proposed also that interaction between the amplitude
mode and magnons is responsible for the rotonlike mini-
mum in magnon spectrum at k = (π, 0) in spin-1/2 HAF
on a square lattice [16,17]. This minimum is not described
quantitatively by standard analytical approaches including
1/S expansion (see Refs. [16–20] and references therein).
Then, it has been argued recently that an excitation of two
Higgs quasiparticles by light is responsible for a shoulderlike
anomaly in the Raman intensity in B1g geometry arising in
some layered cuprates near the so-called “two-magnon” peak
[13].

The amplitude mode has been discussed, so far, analyti-
cally either using field-theoretical approaches [3,9–11,13] or
using bond-operator theories (BOTs) [6,21,22]. Originally,
some variants of bond-operator spin representations have been
proposed to describe paramagnetic phases with singlet ground
states [6,21–26]. BOTs that are able to describe both the
ordered and the dimerized phase (and QPT between the two)
have been also developed [6,7,21]. There is a separate Bose
operator in such BOTs describing the Higgs excitation that
makes these techniques much more precise and convenient
compared with, e.g., 1/S expansion [6]. It is explicitly seen
in these theories that the Higgs mode turns into a spin-0
excitation (one of triplet excitations called triplons) upon
transition to the dimerized phase. A weakness of the majority
of BOTs suggested, so far, is the absence of an expansion
parameter (see Refs. [7,21] for an extended discussion). This
has been dealt with in dimerized phases in Ref. [6] by in-
troducing a formal parameter n of the maximum number of
bosons that can occupy a bond [the ordered phase can be also
considered with this technique near the quantum critical point
(QCP) between the two phases in terms of “condensation” of
triplons]. A variant of BOT is proposed in Refs. [7,21], which
allows one to find observable quantities in both phases as a
series in powers of 1/d. Results obtained by this approach
in the first order in 1/d are in quantitative agreement with
other numerical and analytical findings (see also below) [12].
A drawback of this technique is that it does not allow us to
calculate the Higgs mode damping.

BOT proved to be very useful in discussions of other
elementary excitations, which are normally treated as bound
states of conventional quasiparticles. Thus, in our previous
paper [27], we discuss a QPT from fully polarized to a
nematic phase in a frustrated spin-1/2 quasi-one-dimensional

ferromagnet in a strong magnetic field. The nematic phase ap-
pears in this system as a result of condensation of two-magnon
bound states upon field decreasing [28]. We double the unit
cell along the chain in Ref. [27] and develop a BOT, which
takes into account all spin degrees of freedom in each unit cell.
Three bosonic quasiparticles arise in that technique, two of
which carry spin 1 and describe two parts of the conventional
magnon mode. We argue in Ref. [27] that the third boson
carries spin 2 and describes the two-magnon bound states,
which condense at QCP. The problem is exactly solvable
within that formalism in the saturated phase. The presence of
the bosonic mode in the theory, which softens at QCP, makes
the QPT consideration substantially standard [27].

One of the aims of the present paper is to show that there
exist quasiparticles inside ordered phases whose role has not
been fully clarified yet. Below, we propose BOTs for two and
for four spins in the unit cell. The suggested spin represen-
tations are parametrized in such a way that they are suitable
for consideration in both ordered and paramagnetic phases.
Thus these approaches allow us to trace the evolution of
elementary excitations across QPTs and on moving between
different exactly solvable limits. These representations depend
on the formal parameter n, the maximum number of bosons in
the unit cell, in such a way that the theory allows a regular
expansion in powers of 1/n (which differs, however, from
the variant of 1/n expansion suggested in Ref. [6] for the
dimerized phase and the neighborhood of QCP). Remarkably,
the spin commutation algebra is reproduced at any n � 1 that
guarantees, in particular, existence of Goldstone excitations in
ordered phases with spontaneously broken continuous sym-
metry in any order in 1/n. Thus we overcome the problem
of many previous BOTs (see Refs. [7,21] for an extended
discussion).

Indeed, the value of expansion in powers of 1/n might
seem questionable in the physically relevant case of n = 1
(as the value of 1/S expansion at S ∼ 1, though). Thus, after
introduction of the spin representation for two spins in the unit
cell in Sec. II A, we discuss in Sec. II B in detail spin-1/2
HAF on a square lattice bilayer, which has been well studied
before by various methods. The latter circumstance provides a
good opportunity to test the ability of the proposed formalism.
We demonstrate in Sec. II B that the ground-state energy E ,
staggered magnetization M , and quasiparticle spectra found
within the first order in 1/n (and taken at n = 1) are in good
quantitative agreement with previous results not very close to
QCP. Thus the situation with the proposed 1/n expansion is
very similar to that with 1/S expansion in spin-1/2 HAF on a
square lattice, where corrections of the first order in 1/S give
the main renormalization of observables [5].

We introduce in Sec. III the spin representation for four
spins in the unit cell assuming for definiteness that the unit cell
has the form of a plaquette. The theory is quite cumbersome
in this case as it contains fifteen Bose operators. We apply
this formalism to spin-1/2 HAF on a square lattice in Sec. IV
by doubling the unit cell in two directions. Results of our
calculation in Sec. IV A of E and M in the first order in 1/n are
in good and in excellent quantitative agreement with previous
findings, respectively.

We consider in Sec. IV B the evolution of quasiparticle
spectra from the exactly solvable limit of isolated plaquettes to
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FIG. 1. spin-1/2 HAF on a square lattice bilayer considered
using the suggested bond-operator formalism with two spins in
the unit cell. Lattice sites belonging to two different sublattices in
the ordered phase are distinguished by color [spins S1 and S2 in
representation (3)].

HAF on the square lattice. There is a QPT on this way from the
paramagnetic to the ordered phase which helps us to identify
the Higgs mode among other spin-0 excitations. We find that
along with high-energy spin-2, spin-1, and spin-0 excitations
there is a special spin-0 quasiparticle which is purely singlet
in the disordered phase. Such singlet excitations appeared in
previous BOTs with two spins in the unit cell as singlet bound
states of two triplons [29,30]. Singlet excitations in paramag-
netic phases can be called singlons for short. We call their
counterpart also singlons in the ordered phase, where they
are no more singlet. We introduce the Ising-type anisotropy
to the system and consider the exactly solvable Ising limit to
demonstrate that the amplitude mode and singlons stem from
two-magnon bound states which enter into the two-magnon
continuum not far from the isotropic limit.

We calculate in Sec. IV C quasiparticle spectra in spin-
1/2 HAF on a square lattice within the first order in 1/n

and demonstrate that both amplitude and singlon modes are
moderately damped. We find that singlons lie below the
amplitude mode in the major part of the Brillouin zone (BZ).
The magnon spectrum is in good quantitative agreement with
previous numerical and experimental results even around k =
(π, 0).

We demonstrate in Sec. IV D that singlons are not visible
in dynamical spin structure factors but they appear explicitly
in “scalar” correlators, one of which describes the Raman
intensity in B1g symmetry. We show that the latter is expressed
in the leading order in 1/n via the singlon Green’s function
at zero momentum, which possesses an asymmetric peak at
ω ≈ 2.74J , where J is the exchange coupling constant. The
peak position (but not the width) coincides with the position
of the “two-magnon” peak in Raman intensity observed ex-
perimentally in, e.g., layered cuprates. The spectral weight
of this peak is comparable with that of the “two-magnon”
peak obtained before at ω ≈ 3.3J within 1/S expansion in
the ladder approximation. However, an analysis is needed in
further orders in 1/n to describe the experimental data in
every detail, which we carry out elsewhere.

In the forthcoming paper [31], we will discuss using the
proposed formalism spin- 1

2 J1–J2 HAF on a square lattice,
where the frustrating J2 > 0 exchange coupling is added
between next-nearest-neighbor spins. We will demonstrate,
in particular, that the singlon spectrum moves down and the
singlon damping decreases upon J2 increasing (the spectrum
remains gapped at all J2, however). Singlons become long-
lived quasiparticles and their spectrum nearly merges with
the magnon spectrum in the most part of BZ at J2 ≈ 0.3J1.
Singlons are purely singlet low-energy excitations in the
paramagnetic phase (i.e., at 0.4J1 < J2 < 0.6J1).

We provide a summary and a conclusion in Sec. V. One
appendix is added with details of the analysis.

II. BOND-OPERATOR FORMALISM FOR TWO
SPINS IN THE UNIT CELL

We develop in this section a BOT for two 1/2 spins in
the unit cell bearing in mind, for definiteness, the spin-1/2
HAF on a simple square lattice bilayer shown in Fig. 1 whose
Hamiltonian has the form

H = J
∑

j

S1j S2j +
∑
〈i,j〉

(S1iS1j + S2iS2j ), (1)

where J � 0, indices 1 and 2 enumerate layers (spins in the
unit cell), the intralayer exchange coupling constant is set to
be equal to unity, and 〈i, j 〉 denote nearest-neighbor sites in
a layer. This model has been well studied before by various
methods (see, e.g., Refs. [7,12,21] and references therein) and
provides a good opportunity to test the ability of the proposed
formalism. It is well known, in particular, that the QPT arises
in this model at J = Jc ≈ 2.52 from the Néel ordered state
to the dimerized phase.

A. Spin representation

To derive a representation for spins S1j and S2j in the
j th unit cell, we introduce three Bose operators a

†
j , b

†
j , and

c
†
j , which create three mutually orthogonal spin states from a

vacuum |0〉 as follows:

|0〉 = cos α|↑↓〉 − sin α|↓↑〉 ,
a†|0〉 = |a〉 = |↑↑〉 ,

(2)
b†|0〉 = |b〉 = |↓↓〉 ,
c†|0〉 = |c〉 = sin α|↑↓〉 + cos α|↓↑〉 ,

where α is a real parameter. It is seen that the vacuum |0〉
is a singlet state at α = π/4 whereas the Néel order (i.e.,
〈0|Sz

1|0〉 = −〈0|Sz
2|0〉 	= 0) arises when sin α 	= cos α. Param-

eter α allows one to connect smoothly the singlet and the Néel
ordered phases. We propose the following representation for
S1j , S2j , and (S1j S2j ):

S+
1j = −a

†
jPj sin α + Pjbj cos α + c

†
j bj sin α + a

†
j cj cos α, (3a)

S−
1j = −Pjaj sin α + b

†
jPj cos α + b

†
j cj sin α + c

†
j aj cos α, (3b)

Sz
1j = n

cos 2α

2
+ sin 2α

2
(Pjcj + c

†
jPj ) + a

†
j aj sin2 α − b

†
j bj cos2 α − c

†
j cj cos 2α, (3c)

184421-3



A. V. SYROMYATNIKOV PHYSICAL REVIEW B 98, 184421 (2018)

TABLE I. Results of action of spin operators S1j , S2j , and (S1j S2j ) on spin states defined in Eqs. (2).

Sz
1 Sz

2 S+
1 S+

2 (S1S2)

|0〉 cos 2α

2 |0〉 + sin 2α

2 |c〉 − cos 2α

2 |0〉 − sin 2α

2 |c〉 − sin α|a〉 cos α|a〉 − 1+2 sin 2α

4 |0〉 + cos 2α

2 |c〉
|a〉 1

2 |a〉 1
2 |a〉 0 0 1

4 |a〉
|b〉 − 1

2 |b〉 − 1
2 |b〉 cos α|0〉 + sin α|c〉 − sin α|0〉 + cos α|c〉 1

4 |b〉
|c〉 sin 2α

2 |0〉 − cos 2α

2 |c〉 − sin 2α

2 |0〉 + cos 2α

2 |c〉 cos α|a〉 sin α|a〉 cos 2α

2 |0〉 − 1−2 sin 2α

4 |c〉

S+
2j = a

†
jPj cos α − Pjbj sin α + c

†
j bj cos α + a

†
j cj sin α, (3d)

S−
2j = Pjaj cos α − b

†
jPj sin α + b

†
j cj cos α + c

†
j aj sin α, (3e)

Sz
2j = −n

cos 2α

2
− sin 2α

2
(Pjcj + c

†
jPj ) + a

†
j aj cos2 α − b

†
j bj sin2 α + c

†
j cj cos 2α, (3f)

(S1j S2j ) = −n2 1 + 2 sin 2α

4
+ n

cos 2α

2
(Pjcj + c

†
jPj ) + n

1 + sin 2α

2
(a†

j aj + b
†
j bj ) + nc

†
j cj sin 2α, (3g)

where

Pj =
√

n − a
†
j aj − b

†
j bj − c

†
j cj (4)

is a projector on the physical subspace (consisting of states
with no more than n bosons in a unit cell) and n = 1. It is easy
to verify that the operators in the left-hand side of Eq. (3) act
on the spin states defined in Eqs. (2) as operators in the right-
hand side if n = 1 (see also Table I). An algorithm can be
easily formulated to construct Es. (3) from the result of action
of spin operators on states (2). This algorithm (which can be
programmed, e.g., in MATHEMATICA) can be easily generalized
to the case of more than two spins in the unit cell (see below).

It can be verified straightforwardly that for any α and
n � 1, representation (3) reproduces the spin commutation
algebra of operators S1j and S2j (i.e., [Sδ

1j , S
β

1j ] = iεδβγ S
γ

1j ,

[Sδ
2j , S

β

2j ] = iεδβγ S
γ

2j , and [Sδ
1j , S

β

2j ] = 0) and (S1j S2j ) given
by Eq. (3g) commutes with S1j + S2j . Notice that projec-
tor Pj could contain n − a

†
j aj − b

†
j bj − c

†
j cj in any positive

power. It is for the spin algebra fulfillment that the power
is equal to 1/2 in Eq. (4). Parameter n can be considered
arbitrary in all derivations with the Bose-analog of the spin
Hamiltonian. However, only the case of n = 1 has the physical
meaning. It is seen that similar to the Holstein-Primakoff
representation [4], Eq. (3) has zero matrix elements between
states from the Hilbert subspace with no more than n bosons
in the unit cell (“physical” subspace) and states with more
than n bosons (“unphysical” subspace). Besides, it is shown
below that the constant term in the Bose analog of the spin
Hamiltonian is of the order of (1/n)−2, terms linear in Bose
operators are O((1/n)−3/2), bilinear terms are of (1/n)−1

order, etc. [32]. Then, expressions for physical observables
can be obtained as series in the formal parameter 1/n, and
n plays a role very much similar to the spin value S in
Holstein-Primakoff transformation.

Parameter α is to be found by minimization of the ground-
state energy. In the singlet phase, α = π/4 and Eqs. (3a)–
(3f) are equivalent to the spin representation suggested in
Ref. [6] for consideration of dimerized states [33]. Then,

Eqs. (3a)–(3f) are a generalization of that representation,
which is able to describe both singlet and magnetically or-
dered phases as well as transitions between them. However,
our representation (3g) of operator (S1j S2j ) differs from that
in Ref. [6], where (S1j S2j ) is expressed using Eqs. (3a)–(3f)
at n = 1. As a result, in the singlet phase, the 1/n expansion
suggested in the present paper differs from the variant of 1/n

expansion proposed in Ref. [6]. We find it more convenient
to derive Bose analogs of all spin operators in the unit
cell [including (S1j S2j )] using the same procedure described
above: it allows us to make all terms in the Hamiltonian
containing the same number of Bose operators to be of the
same order in 1/n. It should be stressed that the reproduction
of the spin commutation algebra of operators S1j and S2j by
Eq. (3) and the commutativity of (S1j S2j ) [see Eq. (3g)] with
S1j + S2j guarantee the existence of Goldstone excitations in
the ordered phase within any order in 1/n.

B. spin-1/2 HAF on square lattice bilayer

Substituting Eq. (3) into Hamiltonian (1) and expanding
the square root in projector (4), one obtains

H = E +
∞∑
i=1

Hi , (5)

where E is a constant and Hi stand for terms containing
products of i Bose operators. In particular, we have

E
N

= −n2

4
(2 + J + 2 cos 4α + 2J sin 2α), (6)

H1√
N

= n3/2 cos 2α

2
(J − 4 sin 2α)(c0 + c

†
0), (7)

H2 =
∑

k

(Ak(a†
kak + b

†
kbk ) + Bk(akb−k + a

†
kb

†
−k )

+Ekc
†
kck + Dk

2
(c†kc

†
−k + ckc−k )), (8)
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(b) (c)(a)

FIG. 2. Diagrams giving corrections of the first-order in 1/n to
(a) the ground-state energy and staggered magnetization, and [(b)
and (c)] to self-energy parts.

where N is the number of unit cells in the lattice and

Ak = n

2
(J + J sin 2α + 4 cos2 2α

− 2(cos kx + cos ky ) sin 2α),

Bk = n(cos kx + cos ky ),
(9)

Ek = n(J sin 2α + 4 cos2 2α − (cos kx + cos ky ) sin2 2α),

Dk = −n(cos kx + cos ky ) sin2 2α.

Minimization of E [see Eq. (6)] gives the following value
α0 of α in the leading order in 1/n:

sin 2α0 =
{J /4, if J < Jc0 = 4,

1, if J � Jc0.
(10)

At α = α0, the linear term (7) vanishes in the Hamiltonian
and one obtains in the leading order in 1/n, E

2N
= −n2(16 +

4J + J 2)/32 and − 3
8n2J for J < Jc0 and J � Jc0, cor-

respondingly. M = 〈Sz
1j 〉 = −〈Sz

2j 〉 = n
2 cos 2α0 is equal to

n
√

16 − J 2/8 and 0 when J < Jc0 and J � Jc0, respec-
tively. Then, we find in agreement with previous results
[6,7,21] that the system shows a QPT from the ordered to
the dimerized phase at J = Jc, where Jc = Jc0 = 4 in the
leading order in 1/n.

Bare spectra of a, b, and c quasiparticles read as

ε
(a)
0k = ε

(b)
0k =

√
A2

k − B2
k, (11)

ε
(c)
0k =

√
E2

k − D2
k. (12)

In the ordered phase (i.e., at J < Jc0), a and b quasiparticles
have a gapless spectrum and describe the conventional doubly

degenerate magnon mode while c quasiparticle represents the
gapped amplitude (Higgs) mode. In the paramagnetic phase
(i.e., at J > Jc0), all quasiparticles have the same gapped
spectrum and represent the well-known triplons.

First 1/n corrections to observable quantities can be
found by the conventional diagrammatic technique. As
in Refs. [20,27], we use a technique, which operates
with anomalous Green’s functions of the type Gcc(ω, k) =
−i

∫
dteiωt 〈T ck(t )ck(0)〉 and Green’s functions of the

“mixed” type Gab(ω, k) = −i
∫

dteiωt 〈T ak(t )bk(0)〉 not in-
volving Bogoliubov transformations. Then, one deals with
sets of Dyson equations for the Green’s functions within this
approach. Such a technique is more compact and, thus, more
convenient for cumbersome calculations.

H3 and H4 terms in the Hamiltonian lead to diagrams
of the first order in 1/n for the self-energy parts shown in
Figs. 2(b) and 2(c). Besides, as soon as the coefficients in the
Hamiltonian depend on α, renormalization of α contributes
also to the renormalization of observables. By making all
possible couplings of Bose operators in H3 (taken at α = α0),
one derives the first-order correction to H1 and obtains the
correction to α0 from the requirement that H1 should vanish.
Corrections to the ground-state energy E and to the staggered
magnetization M = 〈Sz

1j 〉 come from the α renormalization
and from all possible couplings of Bose operators in H2 and
in bilinear terms in Eq. (3c), respectively [see the diagram in
Fig. 2(a)]. For example, one obtains after simple calculations
for J = 2,

α = α0 − 0.1205
1

n
, (13)

E
2N

= −7

8
n2 − 0.1049n, (14)

M = 〈
Sz

1j

〉 = −〈
Sz

2j

〉 =
√

3

4
n − 0.1318. (15)

M and the ground-state energy per spin are presented in
Figs. 3(a) and 3(c) as functions of J , which have been found
in the first order in 1/n and taken at n = 1. As is seen,
our results are consistent with those of a series expansion
technique [34] and self-consistent spin-wave approach [6] not
very close to the QCP Jc ≈ 2.52. We obtain that M vanishes
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FIG. 3. (a) Staggered magnetization M in spin-1/2 HAF on a square lattice bilayer found using the series expansion technique (taken from
Ref. [34]), self-consistent spin-wave theory (taken from Ref. [6]), and the bond-operator theory (BOT) in the first order in 1/n (present study).
(b) M and the gap in the spectrum of the amplitude (Higgs) mode �H calculated within the first order in 1/n and taken at n = 1. (c) The
ground-state energy E per spin obtained using the series expansion (taken from Fig. 3 in Ref. [34]) and the BOT.
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FIG. 4. (a)–(c) Spectra of elementary excitations [magnons and the amplitude (Higgs) mode] in spin-1/2 HAF on square lattice bilayer in
the ordered phase. Results are obtained using the series expansion technique (taken from Ref. [34]), quantum Monte Carlo (QMC) calculation
on a sample with 2 × 20 × 20 sites (taken from Ref. [12]), and the bond-operator theory (BOT) developed in the present paper. (d)–(f) Spectra
of elementary excitations (triplons) in the dimerized state. The estimated uncertainty of quasiparticles energies in QMC data is indicated by
the symbol size.

at

Jc1 = 4 − 0.6752
1

n
, (16)

which gives Jc1 ≈ 3.3248 at n = 1 (nearly the same value of
Jc1 ≈ 3.3684 was obtained [7,12,21] within the first order in
1/d-expansion at d = 2).

Bare and renormalized spectra of quasiparticles are pre-
sented in Fig. 4 for some J values both in ordered and in
disordered phases. It is seen that the magnon and triplon
spectra found within the first order in 1/n are in good
agreement with available previous numerical results obtained
using QMC and series expansion not very close to the QCP

(Jc ≈ 2.52). Notice that the magnon spectrum remains gap-
less in the ordered phase in the first order in 1/n as it must
be. The amplitude mode acquires a damping due to the decay
on two magnons described by the diagram shown in Fig. 2(c).
Spikes in the Higgs mode damping accompanied by abrupt
changes in its energy is the appearance of the Van Hove
singularities from the two-particle density of states (similar
anomalies were observed, e.g., in magnon spectra in the first
order in 1/S in noncollinear magnets [35,36]). The amplitude
mode damping is overestimated near QCP in the first order in
1/n because bare spectra are used to calculate it. However, its
energy �H at k = 0 vanishes nearly together with the order
parameter [see Fig. 3(b)]. The slightly different values of J

=0.21Δ(b)

(0,0)(Π,Π)(Π,0)

=0.04Δ(c)

(0,0)(Π,Π)(Π,0)
0

1

2

3

4

5

;�
k

Higgs mode:
 energy (1/d expansion)
 energy (1/n expansion)
 damping (1/n expansion)

Ε k

(0,0)(Π,Π)(Π,0)(0,0)

=1.21Δ(a)

FIG. 5. Spectra of the amplitude (Higgs) mode in spin-1/2 HAF on a square lattice bilayer obtained in the first order in 1/d (Refs. [7,12])
and in the first order in 1/n (present study). Results are shown for different values of parameter δ defined by Eq. (17), which measures the
distance to the QCP in considered first orders in 1/n and 1/d .
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FIG. 6. Basis spin functions for the bond-operator technique in the case of four spins in the unit cell which has the form of a plaquette.
Normalization factors are omitted for clarity. For each spin function, corresponding values are indicated of the total spin S and its
projection Sz.

at which M and �H vanishes is, evidently, a result of the
restriction of 1/n expansion by the first terms. Magnon and
triplon energies found in Ref. [12] in the first order in 1/d are
also consistent with QMC data presented in Fig. 4.

A comparison is presented in Fig. 5 of the amplitude mode
energy found within first orders of 1/d- and 1/n- expansions
for three values of parameter

δ = 2

J − 2

Jc1
(17)

measuring the distance to the critical point within the con-
sidered order in 1/n or 1/d. A good agreement is seen in
Fig. 5 between the two analytical approaches. In turn, the
results of the 1/d expansion presented in Fig. 5 are consistent
with corresponding QMC data for the same value of δ, as it is
shown in Ref. [12] (see panels for g = 1, 2, and 2.4 in Fig. 7
of Ref. [12]).

To conclude this section, we point out that first 1/n correc-
tions give the main renormalization of observable quantities
not very close to QCP. Consideration of further order correc-
tions is out of the scope of the present paper.

III. BOND-OPERATOR FORMALISM FOR FOUR
SPINS IN THE UNIT CELL

We build the bond-operator formalism in the case of four
spins in the unit cell using the basis presented graphically in
Fig. 6. Bearing in mind the application in further discussion
of this formalism to HAFs on a square lattice, we choose the
unit cell in the form of a plaquette. As soon as we derive the
spin representation which can be used both in ordered and
in paramagnetic phases, we choose states for the basis that
are eigenfunctions of the total spin S of the plaquette and its
projection Sz on the quantized axis. Fifteen Bose operators
should be introduced that are labeled according to the Sz value
of the corresponding state (see Fig. 6):

a
†
i |0〉 = |ai〉, i = 1, 2, 3, 4, 5,

b
†
i |0〉 = |bi〉, b̃

†
i |0〉 = |b̃i〉, i = 1, 2, 3, 4, (18)

c†|0〉 = |c〉, c̃†|0〉 = |c̃〉.
Bosons a, b (b̃), and c (c̃) describe spin-0, spin-1, and spin-
2 excitations, respectively. To be able to describe the Néel
ordered phase, the wave function of the ground state |0〉 as
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xk

yk

2 2
0

FIG. 7. The chemical and magnetic Brillouin zones (BZs) are
presented (the largest and the middle squares, respectively) for the
simple square lattice. The distance between nearest lattice sites is set
to be equal to unity. The smallest (red) square and the green area are
the first and the second BZs, correspondingly, in the case of four sites
in the unit cell, which has the form of a plaquette.

well as |a4〉 and |a5〉 should be found as linear combinations
of basis functions containing spin states with checkerboard
motifs (i.e., |φ1,2,3〉 in Fig. 6) [37]:

|0〉 = cos α cos β|φ1〉 + cos α sin β|φ3〉 − sin α|φ2〉,
|a4〉 = sin α cos β|φ1〉 + sin α sin β|φ3〉 + cos α|φ2〉,
|a5〉 = − sin β|φ1〉 + cos β|φ3〉. (19)

In particular, α = β = 0 in a HAF containing isolated plaque-
ttes with exchange coupling between only nearest spins.

We have realized the program of finding the spin represen-
tation which is proposed above for two spins in the unit cell:
we have created an analog of Table I and expressions similar
to Eq. (3), which have the same matrix elements. Then, as in
Eq. (3), we have multiplied by n constant terms and multiplied
all terms linear in Bose operators by the projector [cf. Eq. (4)]

Pj =
√√√√n −

5∑
i=1

a
†
ij aij −

4∑
i=1

(b†ij bij + b̃
†
ij b̃ij ) − c

†
j cj − c̃

†
j c̃j .

(20)

We have obtained as a result quite cumbersome expressions,
which are presented in Appendix A. It has been checked
straightforwardly that the resultant expressions for spin com-
ponents reproduce the spin commutation algebra of operators
S1j , S2j , S3j , and S4j in j th plaquette and that the Bose
analogs of operators (Smj Snj ), where m, n = 1, 2, 3, 4, com-
mute with the Bose analog of S1j + S2j + S3j + S4j .

It is seen that many new quasiparticles appear in the con-
sidered formalism as compared, e.g., with the conventional
spin-wave theory or BOTs with two spins in the unit cell.
One should bare in mind that momenta of quasiparticles in
the proposed technique are restricted to the first Brillouin zone
(BZ), which is half the magnetic BZ (see Fig. 7). Then, four

spin-1, bosons in the suggested technique should describe two
magnons in the magnetic BZ. Spin-0 quasiparticles are from
sector with Sz = 0, where, as it is well known, bound states of
two magnons and the amplitude (Higgs) mode live. Then, it is
clear that two a quasiparticles should correspond to the am-
plitude mode. We demonstrate below in detail by the example
of HAF on a simple square lattice how to identify magnons
and the Higgs mode among spin-1 and spin-0 excitations,
respectively, and how to restore their spectra in magnetic BZ
from spectra of the introduced bosons found within the red
region in Fig. 7. We find below that the rest four spin-1 ele-
mentary excitations (as well as spin-2 quasiparticles) describe
high-energy excitations in spin-1/2 HAF on a square lattice.
It is shown also that a1 quasiparticle is a special elementary
excitation, which lies below the Higgs mode in the major part
of BZ and which is purely singlet in paramagnetic phases.

IV. SPIN-1/2 HAF ON SIMPLE SQUARE LATTICE

We apply now the formalism suggested in the previous
section to spin-1/2 HAF on a simple square lattice whose
Hamiltonian has the form

H =
∑
〈i,j〉

SiSj , (21)

where the exchange coupling constant is set to be equal
to unity. We proceed in much the same manner as in the
case of the square lattice bilayer. The difference is that all
the derivations are lengthy and have to be done only on a
computer.

A. Ground-state energy and staggered magnetization

After the unit cell doubling in two directions and sub-
stitution of the Bose analogs of spin operators presented in
Appendix A to spin Hamiltonian (21), we obtain Eq. (5),
where the first two terms have the form

E
N

= −n2

12
(3(4 − cos 2α − cos 4α) + 2(11

− 2 cos 2α) cos2 α cos 2β − 4
√

2 sin2 2α sin 2β ), (22)

H1√
N

= n3/2

(
1

4
(1 − 3 cos 2β ) sin 2α + 1

6
sin 4α(3 + cos 2β

− 2
√

2 sin 2β )

)
(a40 + a

†
40)

+ n3/2

(
4

3

√
2 cos α sin2 α cos 2β

+ 1

6
(10 cos α − cos 3α) sin 2β

)
(a50 + a

†
50), (23)

and N is the number of unit cells in the lattice. The remaining
terms in Eq. (5) are quite lengthy and we do not present them
here. H1 vanishes at values of α and β, which minimize E .
The staggered magnetization reads in the leading order in 1/n

as

M = n
sin 2α(

√
2 cos β − sin β )

2
√

3
. (24)
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Taking into account first 1/n corrections to H1, to the ground-
state energy E , and to M , one obtains

α = 0.6486 − 0.1081
1

n
, (25)

β = −0.1879 + 0.1396
1

n
, (26)

E
4N

= −0.5841n2 − 0.0717n, (27)

M = 〈
Sz

1j

〉 = −〈
Sz

2j

〉 = 〈
Sz

3j

〉
= −〈

Sz
4j

〉 = 0.4381n − 0.1367. (28)

Equations (27) and (28) give, correspondingly, −0.656 and
0.301 at n = 1, which are very close to values of ≈ − 0.667
and ≈0.3 obtained before by many methods [5]. Then, similar
to 1/S-expansion, first 1/n corrections give the main contri-
bution to renormalization of the ground-state energy and the
staggered magnetization [38].

B. Elementary excitations. Harmonic approximation

Before presenting spectra of quasiparticles in the first order
in 1/n, it is instructive to consider them in the harmonic
approximation in special cases of weakly coupled plaquettes
and in the Ising limit. This allows us to trace the evolution
of elementary excitations from the simple exactly solvable
limits to regimes with considerable quantum fluctuations. We
also relate in this way some quasiparticles introduced in the
suggested formalism with elementary excitations observed
before by conventional methods.

1. Isolated and interacting plaquettes

Spin states presented in Fig. 6 are eigenfunctions of an
isolated plaquette, in which case the ground state |0〉 = |φ1〉,
|a4〉 = |φ2〉, and |a5〉 = |φ3〉 [i.e., α = β = 0 in Eq. (19)]. One
obtains for the bilinear part of the Hamiltonian of HAF with
zero interplaquette interaction,

Hisol
2 =

∑
k

((b†1kb1k + b̃
†
1kb̃1k + a

†
4ka4k )

+ 2(b†2kb2k + b̃
†
2kb̃2k + b

†
3kb3k + b̃

†
3kb̃3k + a

†
1ka1k

+ a
†
2ka2k + a

†
3ka3k ) + 3(c†kck + c̃

†
kc̃k

+ b
†
4kb4k + b̃

†
4kb̃4k + a

†
5ka5k )). (29)

Then, three degenerate dispersionless branches arise in this
limit. We trace the evolution of spectra by introducing the
exchange coupling constant between nearest-neighbor spins
from different plaquettes λ (λ = 0 and 1 correspond to fully
isolated plaquettes and HAF on square lattice, respectively).
The minimum of E is located at α = β = 0 for λ < λc ≈
0.375, whereas α, β, and M become finite at λ > λc signi-
fying QPT to the ordered phase at λ = λc [39].

H2 becomes very cumbersome at λ 	= 0. It contains 55 and
95 terms at λ < λc and λ > λc, respectively. In particular,
at λ > λc, there are terms of the type a

†
mkank, b

†
mkbnk, and

b̃
†
mkb̃nk with m 	= n, terms amkan−k (and a

†
mka

†
n−k), and terms

bmkb̃n−k (and b
†
mkb̃

†
n−k). However, operators ck, c̃k, and a1k

enter in H2 only in combinations c
†
kck, c̃†kc̃k, and a

†
1ka1k at any

λ. As a result, it is impossible to associate a spectrum branch
with the introduced bosons at finite λ (except for c, c̃, and a1).
Nevertheless, just for the purposes of better presentation and
more convenient tracing of spectra evolution, we relate below
a spectrum branch with the introduced bosons by considering
residues of 15 Green’s functions,

χAB (ω, k) = i

∫ ∞

0
dteiωt 〈[Ak(t ), B−k(0)]〉, (30)

where A = B† runs over all a, b, b̃, c, and c̃ operators. We
associate (roughly!) boson A with a spectrum branch if the
absolute value of the corresponding residue of χAA† (ω, k)
exceeds 0.15 at least on a half of the first BZ. Then, A can
be associated with more than one branch in this way.

As soon as the operator of the interplaquette interaction
commutes with the total spin, the classification is valid in the
disordered phase of energy levels according to values of the
total spin and its projection. Then, boson a1 describes the only
purely singlet quasiparticle in the singlet phase. We call these
singlet excitations singlons for short. In the ordered phase,
a1-quasiparticles are not singlet because the classification
of levels according to the total spin values breaks in the
thermodynamical limit [1,40]. To the best of our knowledge,
no special name has been proposed for such quasiparticles
in the ordered phase. For brevity, we call them below also
singlons in the ordered phase.

It is seen from Eqs. (A1)–(A8) that spectra of all spin-1
quasiparticles and all spin-0 ones (except for a1!) appear
in the ordered phase as poles of dynamical spin structure
factors (DSSFs) χ+−(ω, k) and χzz(ω, k), which are given by
Eq. (30) with A = S+, B = S− and A = B = Sz, respectively
[χ+−(ω, k) and χzz(ω, k) contain in the leading order in
1/n Green’s functions of b (b̃) and a2,3,4,5 operators, corre-
spondingly]. Spin operators read in our terms as S

γ

k = S
γ

1k +
e−iky/2S

γ

2k + e−i(kx+ky )/2S
γ

3k + e−ikx/2S
γ

4k, where the double
distance between nearest spins is set to be equal to unity and
spins in the unit cell are enumerated clockwise starting from
its left lower corner. To probe a1 quasiparticles, one has to
consider many-spin correlators, e.g., the bond-bond correlator
given by Eq. (30) with Ak = Bk = ∑

i e
−i(kRi )(SRi

SRi+ry
),

where ry is a vector connecting two nearest lattice sites. This
correlator contains also poles corresponding to other spin-0
branches. It is also shown below that the Raman spectrum is
related in the leading order in 1/n with the imaginary part of
χ

a1a
†
1
(ω, 0).

Spectra of quasiparticles in the harmonic approximation
are shown in Fig. 8 for selected values of λ. There are five
different spectrum branches at 0 < λ � λc [see Fig. 8(a)].
The lower branch is triply degenerate and it corresponds to
the well-known triplons whose spectrum softens at λ = λc

and it splits at λ � λc. The branch characterized by Sz = 0
detaches from the doubly degenerate branch of spin-1 ex-
citations (magnons) forming the Higgs (amplitude) mode at
λ > λc [see Fig. 8(b)].

Spectra are presented in Fig. 8(c) at λ = 1. Notice that the
lattice symmetry is restored at λ = 1 and one has to recover
somehow within the considered formalism the conventional
picture of elementary excitations of HAF with two degenerate
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FIG. 8. Spectra of elementary excitations obtained using the suggested formalism in the harmonic approximation for selected values of
parameter λ, which controls the strength of interplaquette coupling (λ = 0 and 1 correspond to fully isolated plaquettes and HAF on square
lattice, respectively). Each branch of excitations is associated with introduced bosons according to values of residues of the corresponding
Green’s function (30) as it is explained in the text. (a) and (b) describe the neighborhood of the QCP from the paramagnetic phase to the ordered
one. Insets in panel (c) show residues of dynamical spin structure factors χ+− (lower two insets) and χzz (upper two insets) corresponding to
pointed branches. (d) Spectra presented in (c) but drawn in the magnetic BZ (see Fig. 7) as it is explained in the text.

magnons and one amplitude mode in the magnetic BZ (see
Fig. 7). It is easy to see from Fig. 8(c) that a simple exten-
sion of obtained spectra to the green area in Fig. 7 (which
is the second BZ in this case) would lead to low-energy
spin-1 excitations in the magnetic BZ having zero energy
at k = (π, 0) that would contradict the conventional wisdom
about magnons. The common picture can be restored by
consideration of observable quantities (e.g., DSSFs). Let us
consider first the transverse DSSF χ+−(ω, k) in the leading
order in 1/n [i.e., we take into account only linear in Bose
operators terms in Eqs. (A5)–(A8)]. Then, χ+−(ω, k) contains
only Green’s functions of b and b̃ operators. Graphics of its
residues (shifted by k0 = (π, π ) for convenience) correspond-
ing to two lower spin-1 branches are shown in two lower
insets of Fig. 8(c). It is seen that the residue corresponding
to the lower spin-1 branch is finite inside the red area in Fig. 7
and it drops rapidly upon going deep into the green area (in

particular, it is exactly zero at k = (π, 0) in the considered
harmonic approximation). The situation with the second spin-
1 branch is inverse: the residue is finite within the green area
and it drops rapidly to zero inside the red area. As it is seen
from the two upper insets of Fig. 8(c), similar situation arises
in the case of two lowest branches of spin-0 excitations upon
consideration of χzz(ω, k + k0). Residues of other spin-0 and
spin-1 excitations do not show similar rapid reductions inside
red or green areas. We draw in Fig. 8(d) the obtained spectra
in the magnetic BZ not showing branches in the red and
green areas with drastically reduced corresponding residues of
DSSFs. It is shown below that the gaps between red and blue
(green and gray) curves on borders of the red and the green
areas are reduced in the first order in 1/n so that the curves in
these two couples look more like continuations of each other.
However, the gaps in the magnon and the amplitude mode
spectra do not disappear completely in the first order in 1/n.
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2. Ising-type anisotropy and Ising limit

It is instructive also to consider within the suggested for-
malism HAF with Ising-type anisotropy

HIsing =
∑
〈i,j〉

(
Sz

i S
z
j + A

2
(S+

i S−
j + S−

i S+
j )

)
, (31)

where 0 � A < 1. Of particular interest is the exactly solv-
able Ising limit (A = 0) in which case one obtains α = π/4,
tan 2β = −2

√
2, M = 0.5, H2i+1 = 0, where i is integer, and

HIsing
2 =

∑
k

(2(b†2kb2k + b
†
1kb1k + b̃

†
4kb̃4k + b̃

†
3kb̃3k )

+ 3(a†
1ka1k + a

†
2ka2k + a

†
3ka3k + a

†
5ka5k )

+ 4(c†kck + c̃
†
kc̃k + b

†
4kb4k + b

†
3kb3k + b̃

†
2kb̃2k

+ b̃
†
1kb̃1k + a

†
4ka4k )), (32)

where the following Bose operators are introduced:
b1k = (b1k + b4k )/

√
2, b4k = (b1k − b4k )/

√
2, b̃1k =

(b̃1k + b̃4k )/
√

2, and b̃4k = (b̃1k − b̃4k )/
√

2. It can be
shown using the spin representation presented in Appendix A
that there are no 1/n-corrections to spectra of quasiparticles
because all corresponding diagrams contain contours which
can be walked around while moving by arrows of Green’s
functions (integrals over frequencies in such diagrams give
zero) [41]. Then, we observe in magnetic BZ, two degenerate
spin-1 modes (magnons) with energy 2 (the well-known
result [42]) and four spin-0 excitations within the red area in
Fig. 7 having energy 3 [see Eq. (32)]. It is well known that
there are four two-magnon bound states with energy 3 within
the magnetic BZ in the Ising antiferromagnet [42]. Then,
four spin-0 modes observed using the proposed technique
correspond to the conventional two-magnon bound states.
Consideration of χzz(ω, k + k0) at 0 < A < 1 similar to that
presented above shows that two of four lower spin-0 modes
are continuation of each other in the red and green areas
in Fig. 7 [one obtains pictures similar to two upper insets
in Fig. 8(c)]. We believe that the rest two-magnon bound
states arise in our formalism as bound states of two spin-1
excitations. However, a detailed consideration of this point is
out of the scope of the present paper.

Notice that the Higgs mode [green and grey curves in
Figs. 8(c) and 8(d)] as well as singlons stem from the two-
magnon bound state modes in the considered HAF with the
Ising-type anisotropy. We observe that they dive into the two-
magnon continuum at A ≈ 0.8 in agreement with previous
considerations [42,43].

C. Elementary excitations. Renormalized spectra

The spectra of low-energy elementary excitations found
in the first order in 1/n are shown in Fig. 9 [cf. Fig. 8(d)].
It is seen from Fig. 9 that the magnon spectrum obtained
within our technique is in good quantitative agreement with
the experiment in CFTD (the worse agreement is near the
borders between green and red areas in Fig. 7). In particular,
notice a good quantitative agreement near k = (π, 0), where
1/S expansion shows the slow convergence pointed out in
Ref. [20].
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 damping

FIG. 9. Spectra of low-energy elementary excitations in spin-1/2
HAF on a square lattice found using the proposed bond-operator
technique (BOT) in the first order in 1/n. Also shown are magnon
spectra obtained by series expansion around the Ising limit [44],
within the spin-wave theory (SWT) in the second [45,46] and in the
third [20] orders in 1/S, and neutron scattering experiment in CFTD
[18,47]. Borders of the first BZ with four spins in the unit cell are
shown by red vertical lines (see Fig. 7).

The experimental data in CFTD are described perfectly
within two different theoretical approaches suggested in
Refs. [18,19] and Refs. [16,17]. It is argued in Refs. [16,17]
that the dip in the magnon spectrum around k = (π, 0) is
due to the magnon attraction stimulated by strong magnon-
Higgs scattering. Within our approach, the magnon-Higgs
interaction comes from the diagram shown in Fig. 2(c), where
one intrinsic line stands for the magnon Green’s function
and another line corresponds to Green’s functions of a2,3,4,5

operators. However, the magnon spectrum at k = (π, 0) is
not practically renormalized by 1/n corrections: ε(π,0) ≈ 2.23
and 2.25 in the harmonic approximation and in the first order
in 1/n, respectively [values of corrections from α and β

renormalization, and from diagrams shown in Figs. 2(b) and
2(c) are −0.08, 0.91, and −0.81, correspondingly]. Then, our
results do not support clearly the magnon attraction picture
as a source of the spectrum anomaly near k = (π, 0). As for
previous explanations of this anomaly as a result of decon-
finement [18] or “partial deconfinement” [19] of magnons into
two spinons near k = (π, 0), our approach is not intended to
treat magnons in this way. Then, we cannot confirm using our
results none of the physical pictures suggested so far for the
magnon spectrum anomaly near k = (π, 0). A comprehensive
consideration of the neighborhood of k = (π, 0) requires also
time-consuming calculations of DSSFs within the suggested
formalism, which will be carried out elsewhere.

We suggested in our recent papers [48,49], an approach for
the description of low-energy singlet sector of spin-1/2 HAFs.
In particular, a spectrum of low-energy singlet excitations can
be found by this technique. While it is natural to expect that
this approach is suitable for disordered phases with singlet
ground states, we try to apply it in Ref. [48] to HAF on a
simple square lattice taking into account that all excitations
in the ordered phase can be classified according to the spin
value before proceeding to the thermodynamic limit [1,40].
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We obtain in Ref. [48] that the spectrum of singlet excitations
lies below the magnon spectrum around k = (π, 0). Most
likely, this result is an artifact related to the fact that we
go in Ref. [48] beyond the applicability of the method.
This conclusion is supported by consideration of the Raman
intensity in the next section, where we show that the position
of the peak obtained experimentally in layered cuprates
coincides with the singlon energy at k = 0 [spectra are
equivalent of a1 boson at k = 0 and at k = (π, 0)]. Besides,
it will be shown in our forthcoming paper [31] that singlon
spectra in the disordered phase of J1–J2 HAF on a square
lattice found within the first order in 1/n are in excellent
agreement with those obtained in Ref. [49].

It is seen also from Fig. 9 that there are moderately damped
spin-0 excitations above the magnon branch, the lower of
which are the amplitude mode and singlons. Remarkably,
singlons lie below the Higgs mode almost in the whole
BZ. As it is pointed out above, singlons cannot be detected
explicitly via DSSFs. Only many-spin correlators can contain
a contribution from the Green’s function of a1 quasiparticles.
We show now that Raman scattering in B1g geometry probes
these excitations with k = 0.

D. Raman spectrum

The standard theory of Raman scattering is based on an
effective Loudon-Fleury Hamiltonian for the interaction of
light with spin degrees of freedom, which has the form HLF =∑

〈q,m〉 (eiRqm)(ef Rqm)(SqSm), where a common factor is
omitted in the right-hand side, ei and ef are polarization
vectors of incoming and outgoing photons, and Rqm is a
vector connecting nearest-neighbor sites [50]. This theory
is expected to work well when energies of incoming and
outgoing photons are considerably smaller than the gap be-
tween conduction and valence bands. Much attention has been
paid previously to the Raman scattering in the so-called B1g

symmetry in which case ei is directed along a diagonal of a
square, ef ⊥ ei , and the intensity of light is proportional to
the imaginary part of susceptibility (30), where Ak and B−k
should be replaced by

H
B1g

LF =
∑
〈q,m〉

SqSm −
∑

〈〈q,m〉〉
SqSm, (33)

〈q,m〉 and 〈〈q,m〉〉 denote nearest-neighbor spins along x and
y directions, respectively.

It is well known that in square-lattice HAF the B1g Raman
spectrum has a broad asymmetric peak (referred to in the
literature as “two-magnon” peak) at ω ≈ 3, which has been
attributed to scattering from magnon pairs with opposite mo-
menta [51–55]. In particular, this picture has been obtained in
the insulating parent compounds of high-Tc superconductors
[56,57]. There is also a shoulderlike structure at ω ≈ 4 in
La2CuO4 (see Fig. 10). Within the spin-wave theory, the B1g

scattering is dominated by two-magnon excitations which give
a peak around ω ≈ 3.3 as a result of ladder diagrams summa-
tion [52–55]. However, the peak form and the shoulderlike
feature appearing in some compounds has not been explained
within the spin-wave theory. It has been argued recently
by expressing the problem in terms of an effective O(3)
model that the Raman spectrum contains a two-magnon and a
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FIG. 10. Raman spectrum obtained experimentally in La2CuO4

(taken from Ref. [56]) and using the suggested bond-operator theory
(BOT). In the leading order in 1/n, the Raman intensity is given
by the imaginary part of the singlon susceptibility χ ′′

a1a
†
1

(ω, 0) [see

Eqs. (35) and (36)]. Experimental data are presented for the ex-
change coupling constant J = 147 meV, which is close to the value
143(2) meV obtained from inelastic neutron scattering [58]. The
green line is the result of calculation of χ ′′

a1a
†
1

(ω, 0) in the first order

in 1/n with extra damping of 0.4J of all high-energy quasiparticles
(see the text). Each set of data is multiplied by a factor to make the
peak height to be equal to unity.

two-Higgs contribution [13]. It is demonstrated in Ref. [13]
that the latter can be responsible for the shoulderlike anomaly
in La2CuO4.

Within our formalism, one obtains in the leading order in
1/n from Eqs. (33), (A1)–(A8), and (A20),

H
B1g

LF =
√

3nN cos α cos β(a10 + a
†
10). (34)

Then, the Raman intensity has the form in the leading order in
1/n,

I (ω) = 3nN cos2 α cos2 β
(
χ ′′

a1a
†
1
(ω, 0) + χ ′′

a
†
1a1

(ω, 0)
)
, (35)

where χ ′′
a1a

†
1

(ω, 0) is the imaginary part of susceptibility (30)

with A = B† = a1. The contribution of the second term in
brackets in Eq. (35) is negligibly small compared to that from
the first term, which reads as

χ ′′
a1a

†
1
(ω, 0) = −Im

(
1

ω − ε
(a1 )
00 − �a1 (ω, 0)

)
, (36)

where ε
(a1 )
0k ≈ 3.1 is the bare spectrum of singlons. We obtain

after calculation of the self-energy part �a1 (ω, 0) in the
first order in 1/n that Eq. (36) shows an asymmetric peak at
ω ≈ 2.74 corresponding to the renormalized singlon energy at
k = 0 (see Fig. 9) and a shoulder extending up to ω ≈ 4 (see
Fig. 10). It is seen from Fig. 10 that the position of the peak in
La2CuO4 (taken as an example) is reproduced quite accurately
whereas the peak width is underestimated. The spectral weight
of the peak is equal to 3nNπ cos2 α cos2 β ≈ 5.6Nn in the
leading order in 1/n [see Eqs. (25), (26), (35), and (36)].
This value is comparable at n = 1 with the spectral weight
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FIG. 11. Diagrams in the first few orders in 1/n for spin-spin
and scalar correlators considered within the suggested bond-operator
formalism.

of ≈4.4N (calculated using Eqs. (3.23) or (3.28) of Ref. [54])
of the “two-magnon” peak obtained at ω ≈ 3.3 within the
spin-wave formalism. Notice also that the decay of singlons
into two spin-1 excitations makes the main contribution to the
imaginary part of �a1 (ω, 0) at ω = 3 ÷ 4 (i.e., in the shoulder
region).

Indeed, one has to consider the Raman intensity in further
orders in 1/n, where, in particular, diagrams appear describ-
ing two-spin-1 and two-spin-0 contributions [see Eqs. (33),
(A1)–(A8), (A20), and Fig. 11]. The corresponding analysis
requires quite time-consuming calculations, which will be
carried out in future. Here, we present only the result of
nonrigorous attempt to go beyond the first order in 1/n by
taking into account the most pronounced renormalization of
bare spectra. The latter is the finite damping of all elementary
excitations except for magnons arising in the first order in 1/n

(renormalization of quasiparticles energies does not exceed
20%). To take into account the quasiparticles damping phe-
nomenologically, we repeat the calculation of the self-energy
part �a1 (ω, k) in Eq. (36) in the first order in 1/n adding “by
hand” 0.4i with proper signs to all poles of Green’s functions
except for those corresponding to magnons (cf. Fig. 9). The
result for the Raman intensity is presented in Fig. 10 by
green line. The peak position and its spectral weight do not
practically change while its width triples.

V. SUMMARY AND CONCLUSION

In this paper, we present a bond-operator theory (BOT) for
the description of both magnetically ordered phases and para-
magnetic phases with singlet ground states in spin-1/2 mag-
netic systems. This technique provides a regular expansion of
physical quantities in powers of 1/n, where n is the maximum
number of bosons, which can occupy a unit cell (physical
results indeed correspond only to n = 1). Two variants of
BOT are suggested: for two and for four spins in the unit
cell. To probe the formalism, we consider first a paradigmatic
model with two spins in the unit cell, spin-1/2 HAF on a
square lattice bilayer, which has been discussed before by
many other methods. We show that the ground-state energy
E , the staggered magnetization M , and quasiparticle spectra
found within the first order in 1/n are in good quantitative
agreement with previous results both in paramagnetic and in
ordered phases not very close to QCP between the two.

By doubling the unit cell in two directions, we discuss
spin-1/2 HAF on a square lattice using the suggested BOT
with four spins in the unit cell. We identify spin-1 magnon
and spin-0 amplitude (Higgs) modes among fifteen spin-2,
spin-1, and spin-0 elementary excitations. E and M found
in the first order in 1/n are, respectively, in good and in
excellent quantitative agreement with previous numerical and
experimental results. The magnon spectrum calculated in the
first order in 1/n is also in good quantitative agreement with
previous experimental and numerical results even around k =
(π, 0), where a dip in the spectrum was found not described
quantitatively by standard analytical approaches including
1/S-expansion.

We find a special spin-0 quasiparticle which is purely
singlet (singlon) in the paramagnetic phase, which has not
been discussed widely, so far, in the ordered phases, and which
lies below the Higgs mode in the ordered phase of spin-1/2
HAF in the most part of the Brillouin zone. We call it also
singlon in the ordered state bearing in mind that it is no more
singlet upon the breaking of the continuous symmetry. By
considering HAF with Ising-type anisotropy, we show that
both Higgs and singlon modes stem from two-magnon bound
states, which merge with two-magnon continuum not far from
the isotropic limit. We demonstrate that singlons do not appear
explicitly in spin susceptibilities but they become visible in
scalar correlators, one of which describes the Raman intensity
in B1g symmetry. We show that the latter is expressed in the
leading order in 1/n via the singlon Green’s function at zero
momentum, which shows an asymmetric peak. The position
of this peak coincides with the position of the two-magnon
peak observed experimentally in, e.g., layered cuprates. The
spectral weight of this peak is comparable with that of the
two-magnon peak obtained before within 1/S expansion in
the ladder approximation. However, an analysis is needed in
further orders in 1/n to describe the experimental data in
every detail, which will be performed elsewhere.

The suggested BOTs appear as efficient (although quite
cumbersome) techniques allowing to discuss not only the
well-known elementary excitations (magnons and triplons)
but also those which arise in conventional techniques as poles
of many-particle vertices (the amplitude mode, singlons, two-
magnon, or two-triplon bound states).
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APPENDIX: SPIN REPRESENTATION FOR FOUR SPINS IN THE UNIT CELL

We present in this appendix Bose analogs of spin operators in the case of four spins in the unit cell having the form of
a plaquette. All expressions have been derived as it is explained in the main text (see Sec. III). Spins are enumerated in the
plaquette clockwise starting from its left lower corner:

Sz
1j = −nu1 sin 2α + u2 cos α(Pja2j + a

†
2jPj ) + u1 cos 2α(Pja4j + a

†
4jPj ) − u2 sin α(Pja5j + a

†
5jPj )

+u1 sin 2α(a†
1j a1j + a

†
2j a2j + a

†
3j a3j + 2a

†
4j a4j + a

†
5j a5j + b

†
3j b3j + b̃

†
3j b̃3j )
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+
(

1

4
+ u1 sin 2α

)
(b†1j b1j + b

†
4j b4j ) +

(
1

2
+ u1 sin 2α

)
(b†2j b2j + c

†
j cj )

−
(

1

4
− u1 sin 2α

)
(b̃†1j b̃1j + b̃

†
4j b̃4j ) −

(
1

2
− u1 sin 2α

)
(b̃†2j b̃2j + c̃

†
j c̃j )

+ 1

4
(4u2 sin αa

†
2j a4j − 2a

†
1j a3j − 4u1a

†
2j a5j + 4u2 cos αa

†
4j a5j +

√
2b

†
1j b3j + b

†
1j b4j

−
√

2b
†
3j b4j −

√
2b̃

†
1j b̃3j − b̃

†
1j b̃4j +

√
2b̃

†
3j b̃4j + H.c.), (A1)

Sz
2j = nu1 sin 2α − u2 cos α(Pja3j + a

†
3jPj ) − u1 cos 2α(Pja4j + a

†
4jPj ) + u2 sin α(Pja5j + a

†
5jPj )

−u1 sin 2α(a†
1j a1j + a

†
2j a2j + a

†
3j a3j + 2a

†
4j a4j + a

†
5j a5j + b

†
2j b2j + b̃

†
2j b̃2j )

+
(

1

4
− u1 sin 2α

)
(b†1j b1j + b

†
4j b4j ) +

(
1

2
− u1 sin 2α

)
(b†3j b3j + c

†
j cj )

−
(

1

4
+ u1 sin 2α

)
(b̃†1j b̃1j + b̃

†
4j b̃4j ) −

(
1

2
+ u1 sin 2α

)
(b̃†3j b̃3j + c̃

†
j c̃j )

+ 1

4
(2a

†
1j a2j − 4u2 cos αa

†
4j a5j − 4u2 sin αa

†
3j a4j + 4u1a

†
3j a5j +

√
2b

†
1j b2j

− b
†
1j b4j +

√
2b

†
2j b4j −

√
2b̃

†
1j b̃2j + b̃

†
1j b̃4j −

√
2b̃

†
2j b̃4j + H.c.), (A2)

Sz
3j = −nu1 sin 2α − u2 cos α(Pja2j + a

†
2jPj ) + u1 cos 2α(Pja4j + a

†
4jPj ) − u2 sin α(Pja5j + a

†
5jPj )

+u1 sin 2α(a†
1j a1j + a

†
2j a2j + a

†
3j a3j + 2a

†
4j a4j + a

†
5j a5j + b

†
3j b3j + b̃

†
3j b̃3j )

+
(

1

4
+ u1 sin 2α

)
(b†1j b1j + b

†
4j b4j ) +

(
1

2
+ u1 sin 2α

)
(b†2j b2j + c

†
j cj )

−
(

1

4
− u1 sin 2α

)
(b̃†1j b̃1j + b̃

†
4j b̃4j ) −

(
1

2
− u1 sin 2α

)
(b̃†2j b̃2j + c̃

†
j c̃j )

+ 1

4
(2a

†
1j a3j − 4u2 sin αa

†
2j a4j + 4u1a

†
2j a5j + 4u2 cos αa

†
4j a5j −

√
2b

†
1j b3j

+ b
†
1j b4j +

√
2b

†
3j b4j +

√
2b̃

†
1j b̃3j − b̃

†
1j b̃4j −

√
2b̃

†
3j b̃4j + H.c.), (A3)

Sz
4j = nu1 sin 2α + u2 cos α(Pja3j + a

†
3jPj ) − u1 cos 2α(Pja4j + a

†
4jPj ) + u2 sin α(Pja5j + a

†
5jPj )

−u1 sin 2α(a†
1j a1j + a

†
2j a2j + a

†
3j a3j + 2a

†
4j a4j + a

†
5j a5j + b

†
2j b2j + b̃

†
2j b̃2j )

+
(

1

4
− u1 sin 2α

)
(b†1j b1j + b

†
4j b4j ) +

(
1

2
− u1 sin 2α

)
(b†3j b3j + c

†
j cj )

−
(

1

4
+ u1 sin 2α

)
(b̃†1j b̃1j + b̃

†
4j b̃4j ) −

(
1

2
+ u1 sin 2α

)
(b̃†3j b̃3j + c̃

†
j c̃j )

+ 1

4
(4u2 sin αa

†
3j a4j − 4u1a

†
3j a5j − 2a

†
1j a2j − 4u2 cos αa

†
4j a5j −

√
2b

†
1j b2j

− b
†
1j b4j −

√
2b

†
2j b4j +

√
2b̃

†
1j b̃2j + b̃

†
1j b̃4j +

√
2b̃

†
2j b̃4j + H.c.), (A4)

S+
1j = 1

12
(2

√
3 cos α cos β((

√
2b

†
3j + 2b

†
1j )Pj + Pj (

√
2b̃3j + 2b̃1j ))

+
√

3 cos α sin β((3
√

2b
†
4j − 2b

†
3j +

√
2b

†
1j )Pj + Pj (3

√
2b̃4j − 2b̃3j +

√
2b̃1j ))

+ 3 sin α((
√

2b
†
4j − 2b

†
3j −

√
2b

†
1j )Pj + Pj (

√
2b̃1j + 2b̃3j −

√
2b̃4j )))

+
(

u3a4j − 1

4
(2a2j −

√
6 cos βa5j )

)
b
†
4j − 1√

2
(a1j + a3j )b†2j + (u4a4j − u2a5j )b†3j

+
(

u5a4j − 1

2
(a2j − 2u6a5j )

)
b
†
1j +

(
u9a

†
4j + 1

4
(2a

†
2j +

√
6 cos βa

†
5j )

)
b̃4j
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+ 1√
2

(a†
3j − a

†
1j )b̃2j + (u7a

†
4j − u2a

†
5j )b̃3j +

(
1

2
a
†
2j + u8a

†
4j + u6a

†
5j

)
b̃1j

+ 1

2
(b̃†4j +

√
2b̃

†
3j − b̃

†
1j )c̃j + 1

2
(b4j +

√
2b3j − b1j )c†j , (A5)

S+
2j = 1

12
(−2

√
3 cos α cos β((

√
2b

†
2j + 2b

†
1j )Pj + Pj (

√
2b̃2j + 2b̃1j ))

+
√

3 cos α sin β((3
√

2b
†
4j + 2b

†
2j −

√
2b

†
1j )Pj + Pj (3

√
2b̃4j + 2b̃2j −

√
2b̃1j ))

+ 3 sin α((−
√

2b
†
1j − 2b

†
2j −

√
2b

†
4j )Pj + Pj (

√
2b̃1j + 2b̃2j +

√
2b̃4j )))

+
(

u9a4j + 1

4
(2a3j +

√
6 cos βa5j )

)
b
†
4j − (u7a4j − u2a5j )b†2j + 1√

2
(a1j − a2j )b†3j

−
(

a3j

2
+ u8a4j + 1

2
√

6
(cos β − 2

√
2 sin β )a5j

)
b
†
1j +

(
u3a

†
4j − 1

4
(2a

†
3j −

√
6 cos βa

†
5j )

)
b̃4j

− (u4a
†
4j − u2a

†
5j )b̃2j + 1√

2
(a†

1j + a
†
2j )b̃3j +

(
1

2
a
†
3j − u5a

†
4j − u6a

†
5j

)
b̃1j

+ 1

2
(b̃†1j −

√
2b̃

†
2j + b̃

†
4j )c̃j + 1

2
(b1j −

√
2b2j + b4j )c†j , (A6)

S+
3j = 1

12
(−2

√
3 cos α cos β((

√
2b

†
3j − 2b

†
1j )Pj + Pj (

√
2b̃3j − 2b̃1j ))

+ 3 sin α((
√

2b
†
4j + 2b

†
3j −

√
2b

†
1j )Pj − Pj (

√
2b̃4j + 2b̃3j −

√
2b̃1j ))

+
√

3 cos α sin β((3
√

2b
†
4j + 2b

†
3j +

√
2b

†
1j )Pj + Pj (3

√
2b̃4j + 2b̃3j +

√
2b̃1j )))

+
(

u3a4j + 1

4
(2a2j +

√
6 cos βa5j )

)
b
†
4j + 1√

2
(a1j − a3j )b†2j − (u4a4j − u2a5j )b†3j

+
(

u5a4j + 1

2
(a2j + 2u6a5j )

)
b
†
1j +

(
u9a

†
4j − 1

4
(2a

†
2j −

√
6 cos βa

†
5j )

)
b̃4j

+ 1√
2

(a†
1j + a

†
3j )b̃2j − (u7a

†
4j − u2a

†
5j )b̃3j −

(
1

2
a
†
2j − u8a

†
4j − u6a

†
5j

)
b̃1j

+ 1

2
(b̃†4j −

√
2b̃

†
3j − b̃

†
1j )c̃j + 1

2
(b4j −

√
2b3j − b1j )c†j , (A7)

S+
4j = 1

12
(2

√
3 cos α cos β((

√
2b

†
2j − 2b

†
1j )Pj + Pj (

√
2b̃2j − 2b̃1j ))

− 3 sin α((
√

2b
†
1j − 2b

†
2j +

√
2b

†
4j )Pj − Pj (

√
2b̃1j − 2b̃2j +

√
2b̃4j ))

+
√

3 cos α sin β((3
√

2b
†
4j − 2b

†
2j −

√
2b

†
1j )Pj + Pj (3

√
2b̃4j − 2b̃2j −

√
2b̃1j )))

+
(

u9a4j − 1

4
(2a3j −

√
6 cos βa5j )

)
b
†
4j + (u7a4j − u2a5j )b†2j − 1√

2
(a1j + a2j )b†3j

+
(

a3j

2
− u8a4j − u6a5j

)
b
†
1j +

(
u3a

†
4j + 1

4
(2a

†
3j +

√
6 cos βa

†
5j )

)
b̃4j

+ (u4a
†
4j − u2a

†
5j )b̃2j − 1√

2
(a†

1j − a
†
2j )b̃3j −

(
1

2
a
†
3j + u5a

†
4j + u6a

†
5j

)
b̃1j

+ 1

2
(b̃†1j +

√
2b̃

†
2j + b̃

†
4j )c̃j + 1

2
(b1j +

√
2b2j + b4j )c†j , (A8)

1

n
(S1j S2j + S2j S3j + S3j S4j + S4j S1j ) = −n

4
(3 − cos 2α + 6 cos2 α cos 2β )

+
(

1

4
(1 − 3 cos 2β ) sin 2α(Pja4j + a

†
4jPj ) + 3

2
cos α sin 2β(Pja5j + a

†
5jPj )

)

+ 1

4
(3 − cos 2α + 6 cos2 α cos 2β )(a†

1j a1j + a
†
2j a2j + a

†
3j a3j )
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− 1

2
cos 2α(1 − 3 cos 2β )a†

4j a4j + 1

4
(3(3 + cos 2α) cos 2β + 2 sin2 α)a†

5j a5j

+ 3 cos β sin α sin β(a†
4j a5j + a4j a

†
5j )

+ 1

4
(7 − cos 2α + 6 cos2 α cos 2β )(b†4j b4j + b̃

†
4j b̃4j + c̃

†
j c̃j + c

†
j cj )

+ 1

4
(3 − cos 2α + 6 cos2 α cos 2β )(b†2j b2j + b

†
3j b3j + b̃

†
2j b̃2j + b̃

†
3j b̃3j )

− 1

2
cos2 α(1 − 3 cos 2β )(b†1j b1j + b̃

†
1j b̃1j ), (A9)

1

n
(S1j S3j + S2j S4j ) = n

2
− (2a

†
1j a1j + a

†
2j a2j + a

†
3j a3j + b

†
2j b2j + b

†
3j b3j + b̃

†
2j b̃2j + b̃

†
3j b̃3j ), (A10)

where Pj is given by Eq. (20) and

u1 = 1

2
√

3
(sin β −

√
2 cos β ), (A11)

u2 = 1

2
√

3
(cos β +

√
2 sin β ), (A12)

u3 = 1

2
√

2
(
√

3 sin α sin β − cos α), (A13)

u4 = 1

2
√

3
(
√

3 cos α +
√

2 cos β sin α − sin α sin β ), (A14)

u5 = 1

2
√

6
(
√

3 cos α + 2
√

2 cos β sin α + sin α sin β ), (A15)

u6 = 1

2
√

6
(cos β − 2

√
2 sin β ), (A16)

u7 = 1

2
√

3
(
√

2 cos β sin α −
√

3 cos α − sin α sin β ), (A17)

u8 = 1

2
√

6
(2

√
2 cos β sin α −

√
3 cos α + sin α sin β ), (A18)

u9 = 1

2
√

2
(cos α +

√
3 sin α sin β ). (A19)

Representations for S− operators are obtained from Eqs. (A5)–(A8) by Hermitian conjugation.
The Raman operator discussed in Sec. IV D contains the following combination:

S1j S2j − S2j S3j + S3j S4j − S4j S1j =
√

3 cos α cos β(Pja1j + a
†
1jPj ) − a

†
2j a3j − a

†
3j a2j

+
√

3 cos β sin α(a†
1j a4j + a

†
4j a1j ) −

√
3 sin β(a†

1j a5j + a
†
5j a1j )

− b
†
2j b3j − b

†
3j b2j − b̃

†
2j b̃3j − b̃

†
3j b̃2j . (A20)
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