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Transition-metal dichalcogenide monolayers are interesting materials in part because of their strong spin-orbit
coupling. This leads to intrinsic spin splitting of opposite signs in opposite valleys, so the valleys are intrinsically
spin polarized when hole doped. We study spin response in a simple model of these materials, with an eye to
identifying sharp collective modes (i.e., spin waves) that are more commonly characteristic of ferromagnets. We
demonstrate that such modes exist for arbitrarily weak repulsive interactions, even when they are too weak to
induce spontaneous ferromagnetism. The behavior of the spin response is explored for a range of hole dopings
and interaction strengths.
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I. INTRODUCTION

Two-dimensional materials based on honeycomb lattices
have become the subject of intense investigation in the past
few years due to their interesting band structure and associ-
ated topological properties. The low-energy dynamics of such
systems are typically dominated by states near the K and K ′

points in the Brillouin zone. The paradigm of this is realized
in graphene, a pure carbon honeycomb lattice, which hosts a
gapless spectrum with Dirac points at these locations [1] due
to a combination of inversion and time-reversal symmetry, as
well as the very weak spin-orbit coupling (SOC) typical of
light elements. More recently, transition-metal dichalcogenide
(TMD) monolayers, where a transition metal M (e.g., Mo
or W) resides on one sublattice and a dimer of chalcogen
X atoms (e.g., S, Se) resides on the other, have emerged
as important materials in this class [2,3]. These systems are
gapped at the K and K ′ = −K points, and the strong SOC
associated with M atoms leads to very interesting spin-valley
coupling near these points [4,5]. In particular, one finds spin-
up and -down components of the valence band well separated
in energy, with their ordering interchanged for the two valleys.
This allows for an effective valley polarization to be induced
when the system spin polarizes via pumping with circularly
polarized light [6–8]. The coupling of spin and valley in this
way has been dramatically demonstrated via the observation
of a valley Hall effect in this circumstance [9].

The locking of spin and valley degrees of freedom in TMD
monolayers is a unique feature of these materials. When hole
doped, it leads to a nonzero expectation value of σzτz, where
σz is a Pauli matrix for spin and τz is the analogous operator
for the valley index. This occurs without any interaction
present in the Hamiltonian yet is reminiscent of ferromag-
netic ordering, albeit without time-reversal symmetry break-
ing since this reverses both the spin and valley. Recently, it
was argued that for strong enough interactions, TMD systems
develop a spontaneous imbalance of spin and valley popula-
tions [10,11], which leads to actual ferromagnetic spin order

in the ground state. It thus becomes interesting to consider
how one might probe and distinguish these orderings. One
possible strategy is to investigate the spin response of the
system, both to search for sharp collective modes that are a
hallmark of ferromagnets and to understand broader features
of the response that demonstrate the ordering present in these
materials. This is the subject of our study.

We focus on the basic qualitative physics of this system by
employing a simple two-band model for MX2 compounds [4]
with a short-range repulsive interaction and compute the spin
response using the time-dependent Hartree-Fock approxima-
tion [12]. For concreteness quantitative results are computed
using parameters appropriate for MoS2, and we examine
results for several representative hole dopings and interaction
strengths. A typical result is illustrated in Fig. 1 for a system
with low hole doping, such that only a single spin species of
the valence band is partially unoccupied in each of the valleys.

For small wave vectors q, a sharp collective mode is visible
below a continuum of particle-hole spin-flip excitations which
are present even in the absence of interactions (although
the frequency interval where they reside is renormalized by
them). An interesting feature of the collective mode is that, for
low hole doping, it is present for arbitrarily weak interaction
strength, even if the system is not spin ferromagnetic. Its
presence may be understood as arising from the effective σzτz

polarization that is induced when the system is hole doped.
Interestingly, this is a direct analog of Silin-Leggett modes
[13,14] that appear when fermions become spin polarized by
an external magnetic field. In that system, the noninteracting
Hamiltonian induces a spin polarization in the ground state
which is not present spontaneously. Nevertheless, the combi-
nation of different Fermi surfaces for different spins, together
with exchange interactions which energetically favor ferro-
magnetism locally, leads to sharp, collective excited states of
low energy. These modes have been detected in spin-polarized
3He [15].

In the TMD system, an analogous sharp response appears
when the system absorbs angular momentum, typically from
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FIG. 1. Absorptive part of the spin response function Im
χτ (q, ω) for q = 0, chemical potential μ0 = −0.49�, and U0 =
0.2 eV, with τ = +1. Model parameters for band structure are given
in Table I. A sharp collective mode near ω ≈ −0.0845� is prominent
above a particle-hole continuum in the interval −0.092 � ω/� �
−0.087, where � = 1.66 eV.

a photon, and is dominated by excitations around one of
the two valleys. The spin response from the other valley is
negligible around these frequencies but can be seen at negative
frequencies, which is equivalent to absorption of photons
with the opposite helicity. This effect is well known in the
context of undoped TMD systems [6–8] where the particle-
hole excitations involve electrons excited from the valence
to the conduction band. In the present situation one finds
this behavior from excitations within the valence band, from
occupied spin states to unoccupied ones available due to the
doping of opposing spin. The resulting sharp modes are much
lower in energy than comparable exciton modes of an undoped
system [16–19].

True ferromagnetism in this system has been argued to
arise when interactions are sufficiently strong that unequal
populations of the two valleys become energetically favorable
[10,11], and for a hole-doped, short-range interaction model,
it occurs as a first-order transition at a critical interaction
strength Uc [11]. Within our model this results in an effective
shift of the bands relative to one another, so that a system
sufficiently clean and cold to allow observation of resonances
associated with collective spin modes would present them at
different frequencies for different helicities.

At higher dopings the valence bands will support two
Fermi surfaces in each valley, indicating that they contain
holes of both spins. Because of the opening of the second
Fermi surface the system now supports gapless spin-flip ex-
citations, albeit at finite wave vector. Regions in frequency
and wave vector where these exist are illustrated in Fig. 2,
along with the spin-wave dispersion for these parameters. Ob-
servation of such a continuum of gapless modes would allow
a direct demonstration of the spin-split Fermi surfaces in this
system. In practice, because these modes appear above wave
vectors of order q � 1/a, with a being the lattice constant,
their presence may be difficult to observe by direct elec-
tromagnetic absorption because of momentum conservation.

FIG. 2. The top panel, for μ0 = −0.49�, in which there is only
a single Fermi surface in the valley (demonstrated in Fig. 3), has
a continuum of particle-hole excitations (shown in green) below
some minimum frequency. The bottom panel has μ0 = −0.57�, for
which there are two Fermi surfaces in the valley, giving rise to the
continuum modes with vanishingly small energies for qx > 0.4k0,
with k0 = �/2ta. For both panels, U0 = 0.2eV and τ = +1. Other
parameters are listed in Table I. Blue lines illustrate the collective
spin-wave mode dispersion.

In real systems, disorder relaxes this constraint and may make
their detection feasible [20].

Our analysis also shows that the system, in principle,
supports a second collective spin-wave mode, one associated
with interorbital spin flips. This mode exists extremely close
to the edge of the continuum of particle-hole spin excitations
and in practice might be difficult to discern in the spin
response function. Its presence would presumably be more
easily detected in response functions that combine interorbital
excitations with spin flips.

This paper is organized as follows. In Sec. II we de-
scribe both the single-particle Hamiltonian and the interaction
model we adopt for this system. Section III describes a static
Hartree-Fock analysis of the system, demonstrating that the
effective single-particle Hamiltonian is rather similar to the
noninteracting one, with renormalized parameters. In Sec. IV
we carry out a time-dependent Hartree-Fock analysis of the
spin response function and show how one can identify poles
that signal allowed spin-flip excitations of the system. In
Sec. V we carry out an analytic analysis of the equations
generated in the previous section appropriate for low hole
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TABLE I. Values of various parameters for MoS2 from Ref. [4].

a t � λ

3.190 Å 1.059 eV 1.66 eV 0.075 eV

doping. Section VI provides results one finds from numerical
solutions for the spin response functions. We conclude with a
summary in Sec. VII.

II. MODEL OF THE SYSTEM

Our starting point is a simple two-band Hamiltonian for a
monolayer MX2, such as MoS2, developed through several
numerical, symmetry-based analyses [4] which capture the
electronic properties near the K,−K valleys. In the absence
of interactions this has the form

Hτ
0 (k) =

[
�/2 at (τkx − iky )

at (τkx + iky ) −�/2 + sτλ

]
, (1)

which is written in the basis |ψτ
c 〉 = |dz2〉 and |ψτ

v 〉 =
1√
2
(|dx2−y2〉 + iτ |dxy〉), where τ = ± is the valley index, t is

the hopping matrix element, and dz2 , dx2−y2 , dxy are orbitals
of the M atoms. (Here and throughout this paper we take
h̄ = 1.) Spin is a good quantum number, denoted by s = 1
for ↑ and s = −1 for ↓. The strength of spin-orbit coupling
is encoded in the parameter λ. In the ground state of this
Hamiltonian, states up to the chemical potential μ0, which is
tunable, in principle, via gating, are filled. Estimates [4] for
the parameters relevant to MoS2 are listed in Table I.

The energy eigenstates of the full Hamiltonian with mo-
mentum k and spin s will be denoted by φl,s (k), with l =
{τ, α} (α = ± for conduction and valence bands, respec-
tively), and have the form

φl,s (k) = 1√
2

⎛
⎜⎝

τe−iτφ
√

1 + αmsτ√
m2

sτ +a2t2k2

α
√

1 − αmsτ√
m2

sτ +a2t2k2

⎞
⎟⎠, (2)

with corresponding eigenvalues

εα
l,s (k) = τsλ

2
+ α

√
m2

sτ + (atk)2, (3)

where msτ = �−τsλ
2 and k =

√
k2
x + k2

y . The bands near the
K (τ = 1) valley, shown in Fig. 3, illustrate the distinct spin
structure of the system. The valence and conduction bands are
separated by a relatively large gap Eg = (� − λ) at k = 0,
whereas the two spin valence bands are further separated by
a smaller gap of magnitude Eλ = 2λ. This gap between the
spin-split valence bands remains almost constant for a range
of k until akt � �. Note that the two conduction bands of
the model are nearly degenerate. The K and −K valleys of
the system are related by time reversal, so that the spins of the
two bands are reversed in going from one to the other.

To write down an effective interaction, it is convenient to
define field operators of spin s projected into the set of states
defined in our model,

�s (r) = 1√
LxLy

∑
k,l

ei(k+Kτl
)·rφl,s (k)cl,s (k), (4)

FIG. 3. The band dispersion of Hamiltonian (1) showing a direct
band gap Eg between the valence and conduction bands and the
separation of spin-polarized bands in the conduction band. Positions
for two μ0 are marked in the right margin. k0 = �/2ta is the scale of
momentum. The parameters used are listed in Table 1, and τ = +1.

where cl,s (k) is the annihilation operator for the l, s state at
momentum k relative to the valley minima and maxima at
Kτl

= τlK, with the sign determined by the τ index implicit in
l, and LxLy is the area of the system. A repulsive interaction
among the band electrons can then be represented in the form

Hint = 1

2

∑
s,s ′

∫
d2rd2r′V (r − r′) :

�†
s (r)�s (r)�†

s ′ (r′)�s ′ (r′) :, (5)

where V represents a finite-range repulsive interaction. Phys-
ically, this arises from Coulomb interactions among the band
electrons; the finite range can be provided by a screening gate
or by carriers in the layer itself (although we will not treat
the screening dynamically in what follows). We assume the
screening length is large on the scale of the lattice constant,
so that intervalley contributions to the density �

†
s (r)�s (r)

oscillate rapidly and can be ignored when integrated over r.
This leads to the replacement

Hint → 1

2

∑
s,s ′

∑
τ,τ ′

∫
d2rd2r′V (r − r′) :

�†
sτ (r)�sτ (r)�†

s ′τ ′ (r′)�s ′τ ′ (r′) :, (6)

with

�sτ (r) = 1√
LxLy

∑
k,l

eik·rφl,s (k)cl,s (k)δτ,τl
, (7)

where τl is the valley content of the composite l index. At this
point we can make the approximation V (r − r′) = 2U0δ

2(r −
r′) and arrive at an interaction with the form

Hint = U
∑

{likiq}

∑
s,s ′

φ
†
l1s

(k1)φ†
l2s ′ (k2)φl3s ′ (k2 + q′)

× φl4s (k1 − q′)δτl1 ,τl4
δτl2 ,τl3

c
†
l1s

(k1)c†l2s ′ (k2)

× cl3s ′ (k2 + q′)cl4s (k1 − q′), (8)
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where U = U0
LxLy

. This is the interaction Hamiltonian that we
use in the Hartree-Fock analyses that follow.

III. HARTREE-FOCK APPROXIMATION

In order to carry out an analysis of the spin response in
this system within the time-dependent Hartree-Fock approxi-
mation, it is first necessary to find the density matrix of the
system within the static Hartree-Fock (HF) approximation.
This has the form

〈c†ls (k)cl′s ′ (k′)〉 = nls (k)δll′δss ′δk,k′ . (9)

Note in writing this, we have assumed that neither interband
nor intervalley coherence has formed in the system sponta-
neously. Performing a HF decomposition on Eq. (8) gives a
potential for an effective single-body Hamiltonian,

H HF
int = − 2U

∑
ll′,ss ′,k

δss ′
∑

a,b=A/B

c
†
lsφ

a∗
ls (k)

×
(∑

l′′
φa

ls (k)nl′′s (k)φb∗
l′′s (k)

)
φb

l′s (k)cl′s , (10)

where, for notational simplicity, we have used the a, b in-
dices to denote the orbital degree of freedom [A ≡ |dz2〉 and
B ≡ 1√

2
(|dx2−y2〉 + iτ |dxy〉)]. The full HF Hamiltonian for

electrons with wave vector k then becomes

H
0,HF
ls,l′s (k) = H 0

ls,l′s (k) − 2U
∑
ab

φa∗
ls (k)nab

s φb
l′s (k), (11)

with nab
sτl

= ∑
kl φ

a
ls (k)nls (k)φb∗

ls (k). The quantities nls need

to be determined self-consistently. Note in writing H
0,HF
ls,l′s (k),

we have dropped a term proportional to the total fermion
number which is a constant. In the orbital basis (l, l′) one may
write

H 0,HF(k) =
[

m̃sτ atτke−iτφ

atτkeiτφ −m̃sτ

]

+ τsλ/2 − U (nAA
sτ + nBB

sτ ), (12)

with renormalized mass m̃sτ = �−τsλ
2 − U (nAA

sτ − nBB
sτ ). For

a fixed density (obtained by fixing μ0), the value of m̃τs

is found numerically using the requirement that the values
nls (k) used to generate Eq. (12) yield wave functions that
produce the very same values; that is, the density matrix used
to generate the HF Hamiltonian is the same as what one finds
from its eigenvectors and eigenvalues. In the present case, the
wave functions have a functional form that is the same as that
of the free wave functions, Eq. (2), with modified parameters:

φl,s (k) = 1√
2

⎛
⎜⎜⎝

τe−iτφ

√
1 + αm̃sτ√

m̃2
sτ +a2t2k2

α

√
1 − αm̃sτ√

m̃2
sτ +a2t2k2

⎞
⎟⎟⎠. (13)

The energy eigenvalues then become

ε̃l,s (k) = τsλ

2
+α

√
m̃2

sτ+(atk)2 − U
(
nAA

τs + nBB
τs

)
, (14)

which is similar but not identical to the noninteracting energy
eigenvalues, Eq. (3). Here, in analogy with the previous sec-
tion, the index l = {τ, α} implicitly contains the valley index
τ as well as the conduction/valence band index α = ±1. In the
remainder of this paper, we will use these as the basis states
for our analysis.

IV. TIME-DEPENDENT HARTREE-FOCK
APPROXIMATION

Our focus in this study is the spin-spin response function

χτ (r − r′, t ) = −i�(t )〈[ρ+−
τ (r, t ), ρ−+

τ (r′, 0)]〉, (15)

with ρσσ ′
τ (r, t ) = �HF†

στ (r, t )�HF
σ ′τ (r, t ), with field operators

�HF
sτ (r) = 1√

LxLy

∑
k,l

eik·rφl,s (k)cl,s (k)δτ,τl
. (16)

The single-particle states appearing in this expression are the
HF wave functions, Eq. (13). We do not consider intervalley
particle-hole operators as this would involve large momentum
imparted to the system. Assuming translational invariance, in
momentum space the response function has the form

χτ (q, t ) = − i�(t )

LxLy

∑
{ki ,qi ,li }

fl1l2,↑↓(k1 + q, k1)fl3l4,↓↑(k2 − q, k2)
〈[
eiHtc

†
l1↑(k1 + q)cl2↓(k1)e−iH t , c

†
l3↓(k2 − q)cl4↑(k2)

]〉

≡ 1

LxLy

∑
{ki ,qi ,li }

fl1l2,↑↓(k1 + q, k1)fl3l4,↓↑(k2 − q, k2)χ̃l1l2l3l4 (k1, k2, q, t ), (17)

with

χ̃l1l2l3l4 (k1, k2, q, t ) = −i�(t )
〈[
eiHtc

†
l1↑(k1 + q)cl2↓(k1)e−iH t , c

†
l3↓(k2 − q)cl4↑(k2)

]〉
. (18)

It is implicit that the τl content of each l index on the right-hand side of this equation is a single value of τ , and the Hamiltonian
appearing in the e±iH t factors is H = H0 + Hint, using Eqs. (1) and (8). The weights fli lj ,σσ ′ (k1, k2) ≡ φ

†
liσ

(k1)φlj σ ′ (k2) are
wave function overlap factors, and the indices li have allowed values τl = ±1 and αl = ±1. To obtain an explicit expression for
χ̃ , we take a time derivative of its definition implicit in Eq. (17), which generates expectation values involving two-, four-, and
six-fermion operators. We approximate the last of these using a HF decomposition [12], leading to a closed expression for the
response function that involves elements of the static density matrix described in the last section. This is the form in which we
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carry out the time-dependent Hartree-Fock approximation. The resulting equation may be expressed as

i∂t χ̃l1l2l3l4 (k1, k2, q, t ) = {
nl1↑(k1 + q) − nl2↓(k1)

}
δl1l4δl2l3δk1,k2−q − [

ε̃l1,↑(k1 + q) − ε̃l2,↓(k1)
]
χ̃l1l2l3l4 (k1, k2, q, t )

+ 2U
∑
ab

{
φa

l1↑(k1 + q)
[
nl2↓(k1) − nl1↑(k1 + q)

]
φb∗

l2↓(k1)
}
χ̃ ab

↑↓l3l4
(k1, k2, q, t ), (19)

where

χ̃ ab
s1s2l3l4

(k2, q, t ) ≡
∑
l1l2k1

φa∗
l1s1

(k1 + q)φb
l2s2

(k1)χ̃l1l2l3l4 (k1, k2, q, t )

defines χ̃ ab
↑↓l3l4

and φa
l,s is the amplitude for the ath orbital [see Eq. (13)]. Some details leading up to Eq. (19) are provided in

Appendix A. Fourier transforming Eq. (19) with respect to time, with further work it may be cast in the form

−χ
cd,c′d ′
0 (q, ω) = χcd,c′d ′

(q, ω) − 2U0

∑
ab

χ
cd,ab
0 (q, ω)χab,c′d ′

(q, ω). (20)

Here U0 = LxLyU , χcd,c′d ′
(q, ω) ≡ 1

LxLy

∑
l3,l4,k χ̃ cd

↑↓l3l4
(k, q, ω)φc′

l4↑(k)φd ′∗
l3↓ (k − q), and

χ
ab,cd
0 (q, ω) = − 1

LxLy

∑
l3,l4,k2

nl4↑(k2) − nl3↓(k2 − q)

ω + iδ + ε̃l4,↑(k2) − ε̃l3,↓(k2 − q)
φa∗

l4↑(k2)φb
l3↓(k2 − q)φc

l4↑(k2)φd∗
l3↓(k2 − q) (21)

is the susceptibility associated with the single-particle
Hamiltonian H 0,HF , which may be viewed as a 4 × 4 matrix
written in the basis AA,BB,AB,BA.

Finally, we write Eq. (20) in matrix form and relate it to the
physical response function in Eq. (17), yielding

χτ (q, ω) = −Tr′{[1 − 2U0χ0(q, ω)]−1χ0(q, ω)}. (22)

In this equation, all the matrices are 4 × 4, but the Tr′

is taken only over the “diagonal” elements, Tr′χab,cd =∑
a,c=A,B χaa,cc. Equation (22) is one of our main results.
When Imχ (q, ω) 
= 0, the system may absorb energy from

a perturbation that flips an electron spin, so that the system has
spin excitations with energy ω at momentum q; as a function
of ω for fixed q, this comes either over a range of frequencies,
where there is a continuum of excitations, or as sharp poles
where there is a collective mode [12]. The latter case is charac-
terized by Det[1 − 2U0χ0(q, ω)] = 0. An example of χ (q, ω)
is illustrated in Fig. 1, where both a continuum and a sharp
collective mode are evident. Figure 4 shows the same example
on a linear scale. In this case a sharp collective mode is
expected at the point where the relevant determinant vanishes.
This mode is separated from the “incoherent” particle-hole
excitations whose edge is denoted by ωc.

In addition to the collective mode that is evident in Fig. 4, a
second mode arises very close to the particle-hole continuum
edge, which is rather difficult to discern in the response func-
tion due to its close proximity to the continuum excitations.
The presence of such a mode can be demonstrated explicitly
by examining the low-hole-doping limit. We now turn to this
discussion.

V. SPIN-WAVE MODES FOR SMALL HOLE DOPING

For small densities of holes, it is possible to make analyt-
ical progress on finding zeros of Det[1 − 2Uχ0(q, ω)] in the
limit q → 0, indicating the location of sharp, collective spin-
wave modes. Specifying τ = 1 as the valley we will focus
upon, the valence bands are indexed by α = −1 in Eq. (14).

The dominant contributions to χ0 in Eq. (21) come from
l3 = l4 = {τ = 1, α = −1}. This leads to the approximate
expression

χ̃
ab,cd
0 (q = 0) = − 1

LxLy

∑
k

Mab,cd (k)
�n(k)

ω + iδ + �ε̃(k)
,

(23)

where �n(k) = n↑(k) − n↓(k) and �ε̃(k) = λ − (m̃↑ −
m̃↓) − U [n↑(k) − n↓(k)] − 1

2 ( 1
m̃↑

− 1
m̃↓

)(atk)2 ≡ E0 − 1
2γ k2,

where E0 = λ − (m̃↑ − m̃↓) − U0[n↑(k) − n↓(k)] and
γ = ( 1

m̃↑
− 1

m̃↓
)(at )2. Notice we have employed a small

k expansion of ε̃(k), which works well because �n(k) differs
from zero only at small k in the low-hole-doping limit.

FIG. 4. Plot of a typical χ (q, ω), Eq. (22), showing the particle-
hole excitations of the spin-split valence bands below an energy ωc.
At ω1, there is a single collective mode visible for which the real
part of the denominator of Eq. (22) is zero. Here we have used q =
0, μ0 = −0.49�, τ = +1, and U0 = 0.2eV.
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The particle-hole continuum is identified by the interval
of ω for which ω + �ε̃(k) vanishes for some k where
�n(k) 
= 0. This range is given in the present approximation
by −E0 < ω < −E0 + 1

2γ k2
F ≡ ωc, where kF is the Fermi

wave vector for the pocket of holes in the valence band.
The matrix elements Mab,cd (k) = φa∗

↑ (k)φb
↓(k) can be ob-

tained by similarly expanding the Hartree-Fock wave func-
tions for small k,

φ̃s (k) ≈
[

e−iφ atk
2m̃s

−[
1 − (atk)2

8m̃2
s

]
]
, (24)

where only up to second-order terms in k are kept. To this
order the only relevant nonvanishing elements of the M matrix
are

MAA,BB = MBB,AA = (atk)2

4m̃↑m̃↓
,

MBB,BB = 1 − (atk)2

4m̃2
↑

− (atk)2

4m̃2
↓

,

MAB,BA = MBA,AB = (atk)2

4m̃2
↑

.

Except for MAA,AA, which vanishes to O(k2), all the other
entries of M contain phases of the form e−iφ , with φ being
the angle of k with respect to the kx axis, which vanishes
upon integration over momentum. Thus these do not con-
tribute to χ̃0. At q = 0, χ̃0 has a block-diagonal form, and
Det[1 − 2Uχ0(q, ω)] can be written as the product of two
subdeterminants, D1 and D2, given by

D1 = (
1 − 2U0χ̃

AA,AA
0

)(
1 − 2U0χ̃

BB,BB
0

)
− 4U 2

0 χ̃
AA,BB
0 χ̃

BB,AA
0 , (25)

D2 = 1 − 4U 2
0 χ̃

AB,BA
0 χ̃

BA,AB
0 . (26)

If either of these vanishes at an ω outside the particle-hole
continuum frequency interval, there is a sharp collective mode
at that frequency. Note that particular response functions
appearing in D1 and D2 indicate that the former is associated
with spin flips in which electrons remain in the same orbital,
while the latter arises due to electrons which both flip spin and
change orbital.

Using the integrals

I0 = 1

LxLy

∑
|k|<kF

1

ω + E0 − 1
2γ k2

=
∫ kF

0

kdk

2π

1

ω + E0 − 1
2γ k2

= − 1

2πγ
ln

(
ω + E0 − 1

2γ k2
F

ω + E0

)
(27)

and

I1 = 1

LxLy

∑
|k|<kF

k2

ω + E0 − 1
2γ k2

= 1

2πγ

[
−ω + E0

γ
ln

(
ω + E0 − 1

2γ k2
F

ω + E0

)
− k2

F

]
, (28)

the condition D1 = 0 reduces to

1 − 2U0

[
I0 − (at )2

4

(
1

m̃2
↑

+ 1

m̃2
↓

)
I1

]
= U 2

0 (at )4

4m̃2
↑m̃2

↓
. (29)

Similarly, D2 = 0 can be simplified to

I1 = ± 2m̃↑m̃↓
U0(at )2

. (30)

The condition (29) will be met for some value of ω outside
the particle-hole continuum for small interaction strength
U0. This can be understood as follows. For small U0, we
approximate the equation as

(at )2

4

(
1

m̃2
↑

+ 1

m̃2
↓

)
I1 ≈ I0 − 1

2U0
. (31)

Using the fact that

I1 = ω + E0

γ
I0 − k2

F

2πγ
,

this equation can be recast as

I0 =
(at/2)2

(
1

m̃2
↑

+ 1
m̃2

↓

) k2
F

2πγ
− 1

2U0

(at/2)2
(

1
m̃2

↑
+ 1

m̃2
↓

)
E0+ω

γ
− 1

. (32)

The numerator of the right-hand side of this equation is nega-
tive for small U0. As ω increases from large negative values,
the right-hand side is positive and increases in magnitude,
diverging at

ω = ωdiv ≡ −E0 + 4γ

a2t2

(
1

m̃2
↑

+ 1

m̃2
↓

)−1

. (33)

Importantly, ωdiv > ωc in the low-doping limit, so the di-
vergence is above the particle-hole continuum. Above ωdiv

the right-hand side increases uniformly from arbitrarily large
negative values, eventually vanishing at large positive ω. By
contrast, I0 diverges to large negative values as ω → −E0

from below and comes down from arbitrarily large positive
values starting at the particle-hole continuum edge ωc. This
guarantees there will be a crossing of the left- and right-hand
sides of Eq. (32) between this edge and ωdiv and a collective
mode with frequency ω1 in this interval. This is qualitatively
shown in Fig. 5. Note that for decreasing U0 this solution
moves closer to the particle-hole continuum, which we indeed
find numerically, as illustrated in Fig. 6. As is shown in
Appendix B, for small U0 and small hole doping, one can
show that for q = 0

ω1 ≈ −E0 + 1
2γ k2

F (1 + e−πγ/U0 ). (34)

The second condition (30), for small U0, can be satisfied
only for the negative sign of the right-hand side. The position
of the spin-wave mode at q = 0 can be approximately evalu-
ated to be

ω2 ≈ −E0 + 1
2γ k2

F (1 + e−ε0/k2
F U0 ), (35)

where ε0 = 8πm̃↑m̃↓/a2t2. It is clear from Eqs. (34) and (35)
that the separation of ω2 from the particle-hole continuum
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FIG. 5. Schematic representation of the left- and right-hand sides
of Eq. (32) as functions of ω, shown in red and blue, respectively. For
low enough kF , an isolated spin-wave mode is always present.

is very small when compared to that of ω1 for small hole
doping and for the relevant parameter range. This result is
again consistent with our numerical solutions, as illustrated
in Fig. 6.

We conclude this section with two comments on these
results. First, the appearance of a sharp collective mode
with arbitrarily small U0 supports the interpretation of the
noninteracting ground state as being effectively polarized
in a “pseudospin” spin variable, σzτz, as discussed in the
Introduction. When interactions are introduced, incoherent
particle-hole excitations are pushed up in energy via a loss of
exchange energy which, for repulsive interactions, generically
lowers the ground-state energy for a polarized state. However,
an appropriate linear combination of particle-hole pair states
can minimize this loss of exchange energy, leading to the
sharp collective mode.

Second, although we have demonstrated the existence of
two discrete modes, the second of these (at ω = ω2) lies
exceedingly close to the particle-hole continuum edge. This
means that small perturbations can easily admix these dif-
ferent kinds of modes together, making the detection of the
second mode challenging. Indeed, in our own numerics the

introduction of broadening in our discrete wave vector sum,
introduced to simulate the thermodynamic limit, typically
mixes this mode with the continuum. In this situation the
mode does not show up sharply in the response function we
focus upon. We note that our analysis shows the mode to be
associated with simultaneous spin flip and a change of orbital,
A ↔ B, so that we expect this second mode should show
up more prominently in more complicated response functions
that simultaneously probe both of these.

VI. NUMERICAL RESULTS AND DISCUSSION

In general, to compute χτ we need to know χ0. This can
be obtained numerically, and we accomplish this by approx-
imating the integral in Eq. (21) as a discrete sum. For our
calculations we discretize momenta onto a 100 × 100 two-
dimensional grid, with each momentum component running
from −k0 to +k0. We have checked that the contribution to χ0

dies off quickly within the range of momentum integration.
We also discretize ω to a set of 5000 points, within which
we compute physical response functions. A small but nonva-
nishing imaginary η is retained, of the order of the spacing
of the ω values, to produce the continuity expected in the
thermodynamic limit (where the momentum grid over which
we sum becomes arbitrarily fine). Figures 1 and 4 depict
typical results.

The response function (15) qualitatively describes the dy-
namics of an electron-hole pair between bands of opposite
spins. The lowest-energy excitations necessarily involve the
bands nearest the chemical potential μ. When μ is within
the gap so that the system is insulating, such an excitation
will have energy comparable to the band gap Eg ∼ 1 eV
[16–18]. On the other hand, when hole doped, the chemical
potential falls below the top of the valence band; electron-
hole pairs from the two spin species in the valence band
become available (see Fig. 3). The resulting excitations can
have energy of order λ ∼ 0.1 eV, a considerably lower energy
scale. Discrete poles in χ have infinite lifetime and represent
the collective spin-wave modes of the system; these can arise
only when interactions are included in the model. A set of
representative plots illustrating both the spin-wave dispersion
and the particle-hole continuum is shown in Fig. 7 for both the
valleys. Note the clear symmetry apparent between the two

FIG. 6. Spin-wave excitations and the particle-hole continuum as a function of the chemical potential μ0 shown for three different values
of the interaction strength U0 when q = 0. The green band corresponds to the particle-hole continuum, as shown in Fig. 4. The blue dashed
line corresponds to the isolated mode at frequency ω1 described in Figs. 4 and 5. The mode corresponding to Eq. (35) is barely visible as a red
line. The vertical lines indicate the boundary beyond which the stability condition is violated (see main text for details).
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FIG. 7. The blue line depicts the dispersion of the isolated spin-
wave excitation, i.e., the ω, qx points for which the real part of the
denominator of the spin susceptibility given by Eq. (22) vanishes.
The green continuum represents the particle-hole excitations for
which the denominator of Eq. (22) has a nonvanishing imaginary
component, as shown in Fig. 4. Here we have taken U0 = 0.2 eV.

valley responses when ω → −ω. This is a manifestation of
time-reversal symmetry and indicates that strong absorption
from a perturbation with one helicity in one of the two valleys
implies equally strong absorption in the other valley when the
helicity is reversed.

It is interesting to consider the possible consequences of
this if the system develops true ferromagnetism, which is
thought to occur above some critical interaction strength Uc

[10,11]. In the simplest description, this leads to different
self-consistent exchange fields and different hole populations
for each valley [11]. The computation of spin response in
this situation is essentially the same as carried out in our
study, but the effective chemical potential would be different
for each valley. In this case we expect the spin response
to be different for the two possible perturbations, reflecting
the broken time-reversal symmetry in the ground state. Such
behavior has indeed been observed for electron-doped TMDs
[10].

Another feature apparent in Fig. 6 is a cusp in the con-
tinuum spectrum, which appears at μ0 = μc ≈ −0.55�. This
is the point at which the chemical potential touches the top
of the lower valence band (Fig. 3). For μ0 > μc, a particle-
hole continuum is present only at nonvanishing frequencies

determined by the difference in energy between the highest
occupied and lowest unoccupied bands of opposite spins.
However, for μ0 � μc, low-energy particle-hole excitations
set in for processes in which (for one of the valleys) a spin-
down valence band electron is excited to the spin-up valence
band at finite wave vector but vanishing frequencies. This is
further illustrated in Fig. 2, in which one finds the continuum
excitations reaching down to zero energy, at a finite qx , only
when the chemical potential is below this critical value.

As is apparent from Fig. 4, the first spin-wave mode from
the condition (32) appears above the continuum. Further, for a
given U0, the separation from the continuum increases linearly
with increasing hole doping, as illustrated in Fig. 7, until
the chemical potential touches the top of the lower valence
band. At this point a cusp similar to that for the continuum
appears in the spin-wave dispersion. The linear increase of
the separation between the spin-wave mode and the top of
the particle-hole continuum at small hole doping can be
understood in the following way. As shown in Appendix B,
Eq. (32) can be approximated for small hole doping and small
U0 by

δ0

δ0 + c0δμ
≈ e−πγ/U , (36)

where δ0 is the separation of the spin wave from the continuum
and δμ is the change in chemical potential due to hole doping
and the constant c0 = γ /m̃↑. As the right-hand side of the
equation is independent of δμ, the solution δ0 should also be
proportional to δμ.

As discussed in the previous section, the second spin-wave
solution of Eq. (35) lies extremely close to the continuum
and so is almost invisible in our numerical solutions for the
range of the parameters we consider. One expects this mode
to be visible for larger U0 and larger hole doping. However,
in our calculations we find that the stability condition [12]
ω(−Imχτ ) > 0 fails for some range of ω for U0 large enough
that we are able to numerically resolve the mode from the
continuum. An example of this is shown in Fig. 8. The
point beyond which this stability condition is not satisfied
is indicated by vertical lines in Fig. 6. Note that, physically,
the instability we find in the response functions indicates that
the symmetry of the ground state we are assuming is broken,
very likely into a state with interorbital coherence. Whether
such a state exists at large U or is preempted by a first-order
transition into a state with different hole populations in the
valleys requires a more general Hartree-Fock study than we
have presented in this work and is left for future study.

VII. SUMMARY

In this paper, we have studied collective excitations of
a simple TMD model, showing that even without the for-
mation of spontaneous magnetic order, interactions induce
sharp collective modes that are commonly associated with
such order. The presence of these modes can be understood
as a consequence of intrinsic order induced by the strong
spin-orbit interaction that yields different energetic orderings
of spins in different valleys and arises when the system is
doped. The presence of these modes is a direct analog of
Silin-Leggett modes present in a simple Fermi liquid subject
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FIG. 8. Spin susceptibility for U0 = 0.5 eV, τ = +1, and μ0 =
−0.57�. Two discrete spin-wave modes (indicated by arrows)
are visible near ω = −0.055� and ω = −0.092�, with the sec-
ond mode very close to the continuum. However, the positivity
ω(−Imχ ) > 0 does not hold for all ω, implying that our assumed
Hartree-Fock state is not the true ground state.

to a magnetic field, such that the Fermi wave vector becomes
spin dependent. Our analysis is developed using the time-
dependent Hartree-Fock approximation of a physical spin
response function and reveals two sharp modes in addition to
a continuum of particle-hole excitations. While one of these
modes (associated with spin flips for electrons maintaining
their orbital index) breaks out from the continuum in a clear
way, the other (associated with electrons changing both spin
and orbital) remains very close to the continuum edge and is
difficult to distinguish independently. Signatures of how the
subbands are populated can be seen in properties of the spin
response functions when the chemical potential is modified,
which, in principle, can be accomplished by gating the system.

Our calculations indicate that with strong enough inter-
action the system becomes unstable. Within our model this
would likely be to a state with interorbital coherence, but first-
order instabilities in which the system spontaneously forms
unequal valley and spin populations are also possible, which
may preempt any instability indicated in linear response. The
validity of the simple model that we use, Eq. (1), is also
limited by the positions of other bands in the system, notably,
at the � point [4]. For MoS2, this separation is small as
bands near the � point lie 0.1–0.2 eV below the tops of the
bands at the K,K ′ points. The separation in energy is larger
for certain dichalcogenides, such as WS2, MoSe2, WSe2,
MoTe2, and WTe2, among others. Our results, which are
based on a simple two-band model near the K,K ′ points, will
change qualitatively when the Fermi energy is low enough
that bands at the � points contain holes. Whatever the true
ground state of the system, our formalism, in principle, allows
a calculation of the density matrix associated with it and
of collective modes around it. Moreover, the approach we
present can be extended to more general response functions
(for example, involving the spin and orbital simultaneously)
which could reveal further and perhaps clearer signatures of
the two collective modes we find in our analysis. Exploration
of these represents interesting directions for future work.
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APPENDIX A: DETAILS OF TIME-DEPENDENT HARTREE-FOCK APPROXIMATION

In this appendix we provide a few details of the calculation leading to Eq. (19). The equation of motion of χ̃ , Eq. (18), is

i∂t χ̃l1l2l3l4 (k1k2q, t ) = {
nl1↑(k1 + q) − nl2↓(k1)

}
δl1l4δl2l3δk1,k2−q + i�(t )

〈{[
H0, c

†
l1↑(k1 + q)cl2↓(k1)

]
(t ), c†l3↓(k2 − q)cl4↑(k2)

}〉
+ i�(t )

〈{[
Hint, c

†
l1↑(k1 + q)cl2↓(k1)

]
(t ), c†l3↓(k2 − q)cl4↑(k2)

}〉
. (A1)

The first commutator reads[
H0, c

†
l1↑(k1 + q)cl2↓(k1)

] =
∑

l

h0
ll1,↑(k1 + q)c†l↑(k1 + q)cl2↓(k1) −

∑
l′

h0
l2l′,↓(k1)c†l1↑(k1 + q)cl′↓(k1). (A2)

The first commutator appearing in the last term of Eq. (A1) is[
Hint, c

†
l1↑(k1 + q)cl2↓(k1)

]
= 2U

∑
{li ,ki }

[
fl6l7,↑↑(k6, k6 + q′)fl5l8,↑↑(k5, k5 − q′)c†l5↑(k5)c†l6↑(k6)cl7↑(k6 + q′)cl2↓(k1)δl1,l8δk5−q′,k1+q

+ fl6l7,↓↓(k6, k6 + q′)fl5l8,↓↓(k5, k5 − q′)c†l1↑(k1 + q)c†l5↓(k5)cl7↓(k6 + q′)cl8↓(k5 − q′)δl2,l6δk1,k6

− fl6l7,↑↑(k6, k6 + q′)fl5l8,↓↓(k5, k5 − q′)c†l5↓(k5)c†l6↑(k6)cl8↓(k5 − q′)cl2↓(k1)δl1,l7δk1+q,k6+q′

− fl6l7,↑↑(k6, k6 + q′)fl5l8,↓↓(k5, k5 − q′)c†l1↑(k1 + q)c†l6↑(k6)cl7↑(k6 + q′)cl8↓(k5 − q′)δl2,l5δk1,k6

]
. (A3)
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Here, for notational simplicity, we have absorbed the δτiτj
factors inside the fli lj ’s. We next employ the Hartree-Fock

approximation and find that the q′ = 0 terms cancel each other. The other terms are[
Hint, c

†
l1↑(k1 + q)cl2↓(k1)

]
→ −2U

∑
{li ,ki }

[
fl6l5,↑↑(k1 + q, k1 + q + q′)fl5l1,↑↑(k1 + q + q′, k1 + q)nl5↑(k1 + q + q′)c†l6,↑(k1 + q)cl2,↓(k1)

+ fl2l5,↓↓(k1, k1 + q′)fl5l8,↓↓(k1 + q′, k1)nl5↓(k1 + q′)c†l1,↑(k1 + q)cl8,↓(k1)

− fl6l1,↑↑(k1 + q − q′, k1 + q)fl2l8,↓↓(k1, k1 − q′)nl2↓(k1)c†l6,↑(k1 + q − q′)cl8,↓(k1 − q′)

+ fl2l8,↓↓(k1, k1 − q′)fl6l1,↑↑(k1 + q − q′, k1 + q)nl1↑(k1 + q)c†l6,↑(k1 + q − q′)cl8,↓(k1 − q′)
]
. (A4)

At this point, we would like to point out that because fli lj ∝ δτiτj
and τ1 = τ2, all the electronic operators have the same valley

index τ in this expression.
Finally, we introduce ρab

s1s2
(q) = ∑

ll′k φa∗
ls1

(k + q)c†l↑(k + q)cl′↓(k)φb
ls2

(k) and nab
s = ∑

kl φ
a
ls (k)nls (k)φb∗

ls (k) to write[
Hint, c

†
l1↑(k1 + q)cl2↓(k1)

] → −2U
∑
abl′

[
nab

↑ φb
l1↑(k1 + q)φa∗

l′↑(k1 + q)c†l′↑(k1 + q)cl2↓(k1) − nab
↓ φb

l′↓(k1)φa∗
l2↓(k1)

× c
†
l1↑(k1 + q)cl′↓(k1)

] + 2U
∑
ab

φa
l1↑(k1 + q)

[
nl1↑(k1 + q) − nl2↓(k1)

]
φb∗

l2↓(k1)ρab
↑↓(q). (A5)

Substituting Eqs. (A2) and (A5) in Eq. (A1), we obtain Eq. (19) of the main text.

APPENDIX B: SMALL HOLE DOPING

In this appendix, we supply some details underlying Eqs. (34) and (36). For small U0, assuming that the renormalized masses
m̃s are close to their noninteracting values, we can write

1

m̃2
↑

+ 1

m̃2
↓

≈
(

2

� − λ

)2

+
(

2

� + λ

)2

≈ 8

�2
. (B1)

Furthermore, we note

γ

(at )2
= 1

m̃↑
− 1

m̃↓
≈ 4

λ

�2
. (B2)

These allow Eq. (32) for small U0 and small hole doping to be written as

−1

2πγ
ln

(
ω − ωc

ω − ωc + 1
2γ k2

F

)
≈

k2
F

2π
− λ

U0

ω − ωc − 2λ + 1
2γ k2

F

, (B3)

where ωc = −E0 + 1
2γ k2

F is the boundary of the continuum of particle-hole excitations. Moreover, again for small U0, assuming
the upper valence band to have spin up (which is the case for τ = +1), we can write the chemical potential as μ0 ≈ − 1

2� + λ −
1
2

(at )2k2
F

m↑
, so that the change in μ0 due to hole doping can be written as δμ = 1

2
(at )2k2

F

m↑
. Using this in the above equation, we get

−1

2πγ
ln

(
ω − ωc

ω − ωc + c0δμ

)
≈ 1

2U0
, (B4)

where, for small δμ, ω − ωc and 1
2γ k2

F are neglected compared to λ. As the right-hand side is independent of δμ, the solution
ω − ωc should also scale as δμ.

When U0 is small, the above equation can be solved for ω = ω1 ≈ −E0 + 1
2γ k2

F (1 + e−πγ/U0 ). Note that this result differs
from that of Eq. (35) in that k2

F appears in the exponential in the latter. This renders |ω2 − ωc| much smaller than |ω1 − ωc| in
the low-hole-doping limit.
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