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Spiral plane flops in frustrated helimagnets in external magnetic field
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We discuss theoretically frustrated Heisenberg spiral magnets in magnetic field H. We demonstrate that small
anisotropic spin interactions (single-ion biaxial anisotropy or dipolar forces) select the plane in which spins rotate
(spiral plane) and can lead to the spiral plane flop upon in-plane field increasing. Expressions for the critical
fields Hf lop are derived. It is shown that measuring of Hf lop is an efficient and simple method of quantifying the
anisotropy in the system (as the measurement of spin-flop fields in collinear magnets with axial anisotropy). Cor-
responding recent experiments are considered in spiral magnets some of which are multiferroics of spin origin.
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I. INTRODUCTION

Multiferroics with coexisting magnetic and ferroelectric
orders have attracted a lot of attention recently [1]. The
possibility to realize cross control between magnetism and
electricity in such compounds would lead to many desirable
applications. For instance, strong enough magnetoelectric
coupling would allow us to manage magnetic memory by
electric field [2]. In so-called multiferroics of spin origin
ferroelectricity is induced by some types of magnetic ordering
and magnetoelectric coupling in such compounds is discov-
ered to be strong [1,3,4]. There are three main mechanisms of
ferroelectricity of spin origin: exchange-striction mechanism,
inverse Dzyaloshinskii-Moriya (DM) mechanism, and spin-
dependent p-d hybridization mechanism [1]. Noncollinear
spin ordering induced, e.g., by frustration is indispensable for
the second and the third mechanisms.

While the appearance of noncollinear magnetic textures in
frustrated helimagnets is mainly caused by the competition
between different exchange couplings, fine details of the spin
ordering depend on usually weak low-symmetry relativistic
interactions (anisotropy and dipolar forces). In particular, they
fix the plane in which spins rotate (spiral plane) and, in turn,
the direction of the electric polarization P which is related
with the spiral plane orientation [1]. The smallness of the
anisotropic interactions opens a way to handle orientation of
the spiral plane and P by, e.g., small magnetic field [4].

It is well known that in collinear antiferromagnet a spin-
flop transition of the first-order type takes place in magnetic
field H applied along the easy axis [5,6]. Sublattices magne-
tizations stay parallel to H at H < Hf lop and they become
nearly perpendicular to the field after the flop at H > Hf lop

forming a canted antiferromagnetic spin arrangement. Well
known relations are Hf lop ∼ S

√
DJ � Hs ∼ SJ , where S is

the spin value, D � J is the anisotropy value, J is the ex-
change coupling constant, and Hs is the saturation field [5,6].
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A similar phenomenon has been observed both experi-
mentally (see, e.g., Refs. [7–9]) and numerically (see, e.g.,
Refs. [10,11]) in frustrated Heisenberg spiral magnets. With-
out anisotropy, the spiral plane is perpendicular to any fi-
nite H. On the other hand, the spiral plane can be fixed
by anisotropic interactions so that the spiral order is only
slightly deformed by small in-plane magnetic field. However
the spiral plane flops at some critical field Hf lop and becomes
perpendicular to H at H > Hf lop as it is illustrated by Fig. 1.
To the best of our knowledge, the spiral plane flops have not
been described analytically so far. It is the aim of the present
paper to fill up this gap.

In Sec. II we discuss in details a simple model of frustrated
Heisenberg magnet with small single-ion biaxial anisotropy.
At H = 0, a slightly distorted spiral ordering arises in the
classical ground state of the system, where spins rotate in the
plane containing easy and middle axes. Spin arrangement and
expressions for Hf lop are found analytically for field directed
along principal axes. We show that similar to collinear mag-
nets Hf lop ∼ S

√
DJ � Hs ∼ SJ .

It is well known that dipolar forces can be the main
anisotropic interaction in helimagnets containing magnetic
ions with L = 0 (e.g., Mn2+ and Eu2+) in which anisotropy
of spin-orbit origin is strongly suppressed. In particular, mag-
netodipolar interaction was shown to be important for the
description of transitions in many multiferroics of spin origin
[12]. Then, we discuss in Sec. III the spiral plane flops in
frustrated Heisenberg magnets with dipolar interaction. The
results obtained are qualitatively similar to those observed for
the system with biaxial anisotropy.

In Sec. IV we analyze the systems in arbitrary directed
magnetic field. We find that spiral plane flops can happen only
if the external magnetic field lies in the spiral plane stabilized
at H = 0. In contrast to collinear magnets, where the spin flop
takes place only for a very narrow range of field directions
along the easy axis [13], the spiral plane flop occurs for any
field direction within the plane. Corresponding expressions
for Hf lop are derived.
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FIG. 1. (a) Illustration of the flop of the plane in which spins
rotate (spiral plane) upon in-plane field H increasing. The spiral
plane containing the easy z and the middle y axes flops to the xy

plane. (b) Spins lie in the yz plane at small field and form a helix
slightly deformed by the field and anisotropy. (c) Spin arrangement
after the flop (conical spiral).

In Sec. V using our theory we describe experimentally
observed field-induced spiral plane reorientations in several
compounds including multiferroics of spin origin. We believe
that our results could be useful for interpreting experimental
data in many frustrated helimagnets in external magnetic field.
We point out in conclusion (Sec. VI) that measurement of
Hf lop provides an easy and efficient way to quantify the
anisotropy in frustrated helical magnets.

II. SPIRAL PLANE FLOP IN FRUSTRATED HELIMAGNET
WITH BIAXIAL ANISOTROPY

In this section we consider a simple model containing
frustrating exchange interaction and a small single-ion biaxial
anisotropy. We assume that the frustration leads to a spiral in
the classical ground state.

A. Model and general consideration

The system Hamiltonian reads as

H = Hex + Han + Hz,

Hex = −1

2

∑
i,j

Jij (Si · Sj ),

Han = −
∑

i

[
D

(
Sz

i

)2 + E
(
S

y

i

)2]
,

Hz = −
∑

i

(h · Si ), (1)

where D > E > 0, h = gμBH, x and z axes are the hard and
the easy ones, respectively, there is one spin in a unit cell,
and the lattice is assumed arbitrary in all general derivations
below. After the Fourier transform

Sj = 1√
N

∑
q

Sqe
iqRj , (2)

where N is the number of spins in the lattice, Hamiltonian (1)
acquires the following form:

Hex = −1

2

∑
q

Jq(Sq · S−q), (3)

Han = −
∑

q

[
DSz

qS
z
−q + ESy

qS
y
−q

]
, (4)

Hz = −
√

N (h · S0). (5)

We assume that Jq has two equivalent maxima at q = ±k
so that a plane spiral arises in the classical ground state at
h = D = E = 0. The plane at which spins lie can be fixed by
small anisotropy and/or magnetic field which can also distort
the spiral order.

For theoretical description of a cone helix, we introduce
the local right-hand orthogonal coordinate frame at the j th
site (see Ref. [14])

ζ̂j = (â cos kRj + b̂ sin kRj ) cos α + ĉ sin α,

η̂j = −â sin kRj + b̂ cos kRj , (6)

ξ̂j = −(â cos kRj + b̂ sin kRj ) sin α + ĉ cos α,

where â, b̂, and ĉ are some mutually orthogonal unit vectors,
and α is a cone angle (α = 0 in the plane spiral). Then, the
spin at the j th site is expressed as

Sj = S
ζ

j ζ̂j + S
η

j η̂j + S
ξ

j ξ̂j , (7)

where

S
ζ

j = S − a
†
j aj ,

S
η

j �
√

S

2
(aj + a

†
j ), (8)

S
ξ

j � i

√
S

2
(a†

j − aj )

is the Holstein-Primakoff transformation [15] in which square
roots are replaced by unity. It is convenient to rewrite local
basis vectors (6) as

ζ̂j = (AeikRj + A∗e−ikRj ) cos α + ĉ sin α

η̂j = iAeikRj − iA∗e−ikRj (9)

ξ̂j = −(AeikRj + A∗e−ikRj ) cos α + ĉ cos α,

where auxiliary vectors A = (â − ib̂)/2 and A∗ = (â + ib̂)/2
are introduced. Then, we have from Eqs. (7) and (9) after
Fourier transform (2)

Sq = SA
q A + SA∗

q A∗ + Sc
qĉ, (10)

where

SA
q = S

ζ

q−k cos α + iS
η

q−k − S
ξ

q−k sin α,

SA∗
q = S

ζ

q+k cos α − iS
η

q+k − S
ξ

q+k sin α, (11)

Sc
q = Sζ

q sin α + Sξ
q cos α.

Substituting Eqs. (10) and (11) into Eqs. (3) and (4), one
obtains

Hex = −1

2

∑
q

[
(sin2 αJq + cos2 αJq,k )Sζ

qS
ζ
−q

+ Jq,kS
η
qS

η
−q + (cos2 αJq + sin2 αJq,k )Sξ

qS
ξ
−q

+ sin α cos α(Jq − Jq,k )
(
Sζ

qS
ξ
−q + Sξ

qS
ζ
−q

)
+ i cos αNq,k

(
Sη

qS
ζ
−q − Sζ

qS
η
−q

)
+ i sin αNq,k

(
Sξ

qS
η
−q − Sη

qS
ξ
−q

)]
, (12)
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where Jq,k = (Jq+k + Jq−k )/2 and Nq,k = (Jq+k − Jq−k )/2,
and

Han = −D
∑

q

(
SA

q Az + SA∗
q A∗

z + Sc
qcz

)
× (

SA
−qAz + SA∗

−qA
∗
z + Sc

−qcz

)
−E

∑
q

(
SA

q Ay + SA∗
q A∗

y + Sc
qcy

)
× (

SA
−qAy + SA∗

−qA
∗
y + Sc

−qcy

)
. (13)

B. Ground-state energy of the plane helix at finite anisotropy
and h = 0

At zero field, the spin texture in the classical ground state
is a slightly distorted (due to the anisotropy) spiral in which
spins lie in the yz plane. Then, we take â = ey, b̂ = ez,
and ĉ = ex in Eq. (6), where ex,y,z are unit vectors directed
along corresponding axes. To find the ground-state energy and
the spin arrangement, we substitute Eqs. (8) into Eqs. (12)
and (13) and put α = 0. One obtains the Hamiltonian in the
following form:

H = Eyz

0 + H1 + H2. (14)

Henceforth E0 denotes part of the Hamiltonian without
bosonic operators (constant term), H1 = H1an + H1z con-
tains linear in bosonic operators terms which arise from the
anisotropy and Zeeman energy, and H2 is bilinear in bosonic
operators. At h = 0 (H1z = 0) one obtains

1

N
Eyz

0 = −S2Jk

2
− S2(D + E)

2
, (15)

1√
N
H1an = i(D − E)

(
S

2

)3/2

(a−2k − a2k + a
†
2k − a

†
−2k ),

(16)

H2 =
∑

q

(
Cqa

†
qaq + Bq

aqa−q + a
†
qa

†
−q

2

)
, (17)

where

Cq = S

2
(2Jk − Jq,k − Jq + D + E), (18)

Bq = −S

2
(Jq,k − Jq + D + E). (19)

We omit the so-called Umklapp terms in H2 which have the
form a

†
qaq±2k, aqa−q±2k, and a

†
qa

†
−q±2k and which are propor-

tional to D − E. As it is explained below, their contribution to
the ground-state energy and the spin arrangement is small.

Terms linear in Bose operators H1an arise in Hamiltonian
(14) because we assume in derivation of Eqs. (12) and (13)
that the spiral ordering is undisturbed [see Eq. (6)]. To elim-
inate the linear terms from the Hamiltonian (14), we perform
the following shift in operators:

a2k �→ ρ+eiϕ+ + a2k, a
†
2k �→ ρ+e−iϕ+ + a

†
2k,

a−2k �→ ρ−eiϕ− + a−2k, a
†
−2k �→ ρ−e−iϕ− + a

†
−2k, (20)

where ρ± and ϕ± are real constants. Linear terms vanish if the
following equalities hold:

−i
D − E

2
S

√
S

2

√
N + C2kρ+e−iϕ+ + B2kρ−eiϕ− = 0,

i
D − E

2
S

√
SN

2
+ C2kρ−e−iϕ− + B2kρ+eiϕ+ = 0. (21)

A solution of Eqs. (21) has the form

ϕ+ = −ϕ− = π/2,

ρ+ = ρ− = −
√

N

√
S

2

D − E

Jk − J3k
. (22)

A correction �Eyz
an to the constant Eyz

0 also arises after shift
(20) which has the form −N (C2kρ

2
+ + C−2kρ

2
− + (B2k +

B−2k )ρ+ρ−)/2. Substituting Eqs. (22) to this formula, one
obtains

1

N
�Eyz

an = −S2(D − E)2

2(Jk − J3k )
. (23)

One has for the spin arrangement from Eqs. (8)–(11) after
taking into account shift (20) and Eqs. (22)

Sj = S

[
ez

(
1 + D − E

Jk − J3k

)
sin kRj

+ ey

(
1 − D − E

Jk − J3k

)
cos kRj

+ D − E

Jk − J3k
(ez sin 3kRj + ey cos 3kRj )

]
. (24)

Then, we obtain that the in-plane anisotropy leads to an
elliptical distortion of the spiral and to the third harmonic of k.

Umklapp terms would complicate considerably the above
analysis. In particular, one would have to consider shifts of
the form (20) for momenta 2nk, where n is any integer. As
a result, an infinite set of equations would arise instead of
Eqs. (21). Fortunately, Umklapp terms are proportional to
D − E. Then, it is easy to realize that their contribution to
Eqs. (23) and (24) is of the third order in small parameter
(D − E)/J which can be safely neglected.

C. Ground-state energy of the plane helix at finite anisotropy
and in-plane magnetic field

Let us take into account the in-plane magnetic field di-
rected along the z axis. One obtains from Eqs. (5) and (8)–(11)
the following contribution to H1:

1√
N
H1z = −h

2

√
S

2
(ak + a−k + a

†
k + a

†
−k ) (25)

which contains Bose-operators on momenta ±k rather than
±2k [cf. Eq. (16)]. To eliminate H1z, we perform a shift
similar to Eq. (20)

ak �→ ρ̃+eiϕ̃+ + ak, a
†
k �→ ρ̃+e−iϕ̃+ + a

†
k,

a−k �→ ρ̃−eiϕ̃− + a−k, a
†
−k �→ ρ̃−e−iϕ̃− + a

†
−k. (26)
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Linear terms vanish when

−h

2

√
SN

2
+ Ckρ̃+e−iϕ̃+ + Bkρ̃−eiϕ̃− = 0,

−h

2

√
SN

2
+ Ckρ̃−e−iϕ̃− + Bkρ̃+eiϕ̃+ = 0 (27)

that gives

ϕ̃+ = ϕ̃− = 0,

ρ̃+ = ρ̃− = h
√

NS/2

S(2Jk − J0 − J2k )
. (28)

The correction to the ground-state energy appearing as a result
of the shift (26) reads as

1

N
�Eyz

z = − h2

2(2Jk − J0 − J2k )
. (29)

It can be shown that the correction to the ground-state energy
for the field directed along y axis is also given by Eq. (29).
Thus, we obtain from Eqs. (15), (23), and (29) for the energy
of the spiral in which all spins lie in the yz plane

1

N
Eyz = −S2Jk

2
− S2(D + E)

2
− S2(D − E)2

2(Jk − J3k )

− h2

2(2Jk − J0 − J2k )
. (30)

D. Ground-state energy of conical helix

We calculate now the ground-state energy of the conical
spiral in which spins rotate in the xy plane [see Fig. 1(c)]. In
this case, all spins are canted towards magnetic field direction
(i.e., z axis) and α 	= 0. It is convenient to take â = ex, b̂ =
ey , and ĉ = ez in Eq. (6). The angle α is to be chosen to
eliminate linear in a0 and a

†
0 terms in the Hamiltonian. As

usual, these α values minimize the system classical energy
having the form

1

N
Exy

0 = −S2(J0 sin2 α + Jk cos2 α)

2
− S2D sin2 α

− S2E cos2 α

2
− hS sin α. (31)

The minimum of Exy

0 is achieved at

sin α = h

S(Jk − J0 − 2D + E)
≈ h

S(Jk − J0)
. (32)

We obtain from Eqs. (31) and (32) in the leading orders in
small parameters E/J, D/J , and h/J

1

N
Exy

0 = −S2Jk

2
− S2E

2
− h2

2(Jk − J0)
. (33)

One has also to eliminate terms in the Hamiltonian linear in
a±2k and a

†
±2k stemming from the anisotropy. Calculations

similar to those performed above in Sec. II B lead to the
following correction to the ground-state energy [cf. Eq. (23)]:

1

N
�Exy

an = − S2E2

2(Jk − J3k )
. (34)

Thus, we obtain from Eqs. (33) and (34) for the energy of the
conical spiral in which spins rotate in the xy plane

1

N
Exy = −S2Jk

2
− S2E

2
− S2E2

2(Jk − J3k )

− h2

2(Jk − J0)
. (35)

E. Spiral plane flop in magnetic field

Let us compare now energies Eyz and Exy of the plane and
the conical spirals given by Eqs. (30) and (35), respectively. It
is seen that Eyz < Exy at h = 0. However, the field correction
in Eq. (35) is smaller than that in Eq. (30) because Jk > J2k
(remember, Jq is maximized at q = ±k). Thus, Exy becomes
smaller than Eyz at h > hf lop, where hf lop is determined in
the leading order in small parameters by the equation

S2D = h2
f lop

Jk − J0
− h2

f lop

2Jk − J0 − J2k
. (36)

Then, the spiral plane flop takes place at the critical field hf lop

for which we have from Eq. (36)

hf lop = S
√

DJ̃ , (37)

where

J̃ = (Jk − J0)(2Jk − J0 − J2k )

Jk − J2k
. (38)

Notice that hf lop ∼ S
√

DJ is much smaller than the satura-
tion field

hs = S(Jk − J0) (39)

found from Eq. (32) because hs ∼ SJ .
The critical field hf lop given by Eqs. (37) and (38) is related

to hs as

hf lop =
√

2SDhs (40)

if the exchange interaction satisfies the condition J0 ≈ J2k in
which case

J̃ ≈ 2(Jk − J0) = 2hs/S. (41)

One expects that the latter equality is fulfilled not so rare as
soon as points q = 0 and q = 2k are symmetric according
to q = k at which Jq is maximized. Equation (40) may be
very useful in determination of the anisotropy value from
experimentally obtained values of hf lop and hs . Interestingly,
Eq. (40) coincides with the spin-flop field in collinear magnets
with small easy-axis anisotropy D. As it follows from the
above discussion, one should substitute D by E in Eqs. (37)
and (40) if the magnetic field is directed along the y axis.

III. SPIRAL PLANE FLOP IN FRUSTRATED
HELIMAGNET WITH DIPOLAR FORCES

In this section, we show that small magnetodipolar interac-
tion has a similar impact on the spiral ordering as the biaxial
anisotropy discussed above. The system Hamiltonian has the
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form (1), where Han should be replaced by

Hd = 1

2

∑
i,j

D
αβ

ij Sα
i S

β

j ,

Dαβ

ij = ω0
v0

4π

(
1

R3
ij

− 3Rα
ijR

β

ij

R5
ij

)
, (42)

where v0 is the unit cell volume and

ω0 = 4π
(gμB )2

v0
� J (43)

is the characteristic dipolar energy. We have after Fourier
transform (2)

Hd = 1

2

∑
q

Dαβ
q Sα

q S
β
−q. (44)

Tensor Dαβ
q /2 has three eigenvalues λ1(q) � λ2(q) � λ3(q)

corresponding to three orthogonal eigenvectors v1(q), v2(q),
and v3(q).

At h = 0, the classical ground-state energy per spin −Jq +
(λ2(q) + λ3(q))/2 is minimized at an incommensurate vector
k which is close to the momentum maximizing Jq. Then,
v1(k), v2(k), and v3(k) are the hard, the middle, and the easy
axis for magnetization along which we direct x, y, and z

axes, respectively. Notice that Dαβ

k is diagonal in this basis.
One obtains from Eqs. (8)–(11) for terms linear in bosonic
operators, which arise in Eq. (44) only at q = ±2k

1√
N
H1d = i[λ2(k) − λ3(k)]

(
S

2

)3/2

× (a−2k − a2k + a
†
2k − a

†
−2k ). (45)

Linear terms (45) have the same form as those arisen in the
case of biaxial anisotropy [see Eq. (16)]. Corrections to the
ground state energies can be calculated in much the same way
as it is done above for the biaxial anisotropy.

As a result, one has to compare the following ground-state
energies if the magnetic field is directed along the z axis [cf.
Eqs. (30) and (35)]:

1

N
Eyz = −S2Jk

2
− S2[2λ1(k) − λ2(k) − λ3(k)]

2

− h2

2(2Jk − J0 − J2k )
, (46)

1

N
Exy = −S2Jk

2
− S2[λ1(k) − λ2(k)]

2

− h2

2(Jk − J0)
. (47)

The critical field value at which the spiral plane flop takes
place reads as [cf. Eq. (37)]

hf lop = S

√
[λ1(k) − λ3(k)]J̃ , (48)

where J̃ is given by Eq. (38). If the external magnetic field is
along the y axis, the spiral plane flop occurs at

hf lop = S

√
[λ1(k) − λ2(k)]J̃ . (49)

Equations (48) and (49) can be related to hs using Eq. (41) if
J0 ≈ J2k.

IV. FLOPS AT ARBITRARY FIELD DIRECTION

Let us assume now that the external magnetic field

h = h(sin t cos f, sin t sin f, cos t ) (50)

is directed arbitrary. For definiteness, we consider the system
with the biaxial anisotropy (1). An extension to the system
with dipolar forces can be made straightforwardly as in
Sec. III. Let us characterize the spiral plane by the vector
normal to it

n(θ, ϕ) = (sin θ cos ϕ, sin θ sin ϕ, cos θ ). (51)

It is convenient to introduce two components of the magnetic
field: perpendicular to the spiral plane hn and the in-plane
component hτ whose values read as

hn = h[sin θ sin t cos (ϕ − f ) + cos θ cos t], (52)

hτ =
√

h2 − h2
n. (53)

In terms of these quantities, the system energy has the form

E (θ, ϕ)

NS2
� −E(cos2 ϕ + cos2 θ sin2 ϕ) + D sin2 θ

2
− h2

n

2J̃ S2
,

(54)

where the angle-independent term −Jk/2 − h2/2S2(2Jk −
J0 − J2k ) is omitted and J̃ is given by Eq. (38).

We analyze now the stability of the spiral planes with
respect to small variations in θ and ϕ using Eq. (54). Let us
start with spin rotation in the yz plane (i.e., θ = π/2, ϕ = 0).
In particular, energy (54) is minimal in this case at h = 0. Let
us discuss the stability of such spin texture at finite magnetic
field by considering angle variations of the form

θ = π

2
− δθ, ϕ = δϕ. (55)

The energy variation reads as

δE (θ, ϕ)

NS2
= E(δϕ)2 + D(δθ )2

2

− h2

J̃ S2
(δθ cos t + δϕ sin t sin f ) sin t cos f

− h2

2J̃ S2
[(δϕ)2 sin2 t (sin2 f − cos2 f )

+ 2δθδϕ cos t sin t sin f

+ (δθ )2(cos2 t − sin2 t cos2 f )]. (56)

Notice that there are field-dependent terms in Eq. (56) linear
in δθ and δϕ. They vanish if the magnetic field lies in the yz

plane (i.e., at f = π/2) and if h is parallel to the x axis (i.e., at
t = 0). In other cases, linear terms lead only to a continuous
rotation of the spiral plane by the external magnetic field
[n(θ, ϕ) rotates towards the magnetic field direction]. No
spiral plane flops can happen also if the the magnetic field
is oriented along the x axis because h-dependent terms in
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Eq. (56) read in this case as

h2

2J̃ S2
[(δϕ)2 + (δθ )2] (57)

that results in a stable energy minimum for the spin texture in
the yz plane.

If h lies in the yz plane (i.e., at f = π/2), we have for
h-dependent terms in Eq. (56)

− h2

2J̃ S2
[(δϕ)2 sin2 t + 2δθδϕ cos t sin t + (δθ )2 cos2 t].

(58)

The energy minimum at θ = π/2 and ϕ = 0 is stable until
δE (θ, ϕ) remains a positively defined quadratic form, i.e., if
the following inequality holds:

ED − h2

J̃ S2
(E cos2 t + D sin2 t ) > 0. (59)

The field value at which the spiral plane flop takes place can
be found from Eq. (59) with the result

hf lop = S

√
J̃

ED

E cos2 t + D sin2 t
(60)

which is a generalization of Eq. (37) for arbitrary t . The
generalization of Eqs. (48) and (49) has the form

hf lop =S

√
J̃

[λ1(k) − λ2(k)][λ1(k) − λ3(k)]

[λ1(k) − λ2(k)] cos2 t+[λ1(k) − λ3(k)] sin2 t
.

(61)

The generalization of Eq. (40) reads as

hf lop =
√

2Shs

ED

E cos2 t + D sin2 t
. (62)

Let us discuss now the orientation of the spiral plane after
the flop when h lies in the yz plane. We have carried out an
analysis of the stability of the configuration with θ = t and
ϕ = f similar to that performed above. We have found that
the anisotropy provides terms in the energy linear in angles
variations if the field is not directed along y or z axes. Thus,
we make a conclusion that if the external magnetic field is
in the yz plane but θ 	= 0 or π/2, n is not parallel to h after
the flop and it smoothly rotates towards h upon further field
increasing.

V. POSSIBLE APPLICATIONS

We discuss in this section application of the theory pro-
posed above to particular spiral materials. Co-doped MnWO4

with the dopant concentration 0.05 is thoroughly investigated
experimentally in Ref. [16]. Mn0.95Co0.05WO4, in contrast to
pure MnWO4 [17], is in a multiferroic cycloidal phase at small
T . Application of in-plane magnetic field leads to a spon-
taneous flop of the spin rotation plane perpendicular to the
field at h = hf lop ≈ 10 T � hs ≈ 60 T [16]. If h is directed
along the hard axis, the spin rotation plane stays intact. This
picture is very similar to that we obtain above theoretically.
The difference is that for h directed along the medium axis

the flop is replaced by a rather rapid but continuous rotation of
the spiral plane in a field interval of about 4 T. The latter may
be attributed to local anisotropy of Co ions and requires more
careful consideration. Since Mn2+ ions are in a spherically
symmetric state with L = 0 and S = 5/2, it is expected that
the anisotropy of the spin-orbit origin is strongly suppressed
and the main anisotropic interaction in the system is the
dipolar one. We have calculated eigenvalues of the dipolar
tensor Dαβ

q for pure MnWO4 and substituted them to Eqs. (48)
and (49) for hf lop estimation in Mn0.95Co0.05WO4. Values of
J0, Jk, and J2k arisen in Eqs. (48) and (49) have been cal-
culated using exchange coupling constants found from fitting
of neutron experimental data in Ref. [18]. For magnetic field
along the easy axis, we find hf lop = 8 T while the experimen-
tally observed [16] value is ≈10 T. For magnetic field directed
along the medium axis, we obtain hf lop = 6.5 T which lies in
the middle of the field interval, where the continuous rotation
of the spiral plane is observed experimentally [16]. Notice also
that hf lop found using Eq. (41) via experimentally obtained hs

is only 20% smaller than that obtained above although J0 is
1.5 times as large as J2k.

EuNiGe3 is a helimagnet with equally possible spiral vec-
tors k = ( 1

4 , δ, 0), ( 1
4 ,−δ, 0), and (δ, 1

4 , 0) allowed by the
tetragonal symmetry, where δ = 0.05 [19]. Magnetodipolar
interaction is expected to be very important in this material
because exchange constants are rather small and Eu2+ ions are
in a spherically symmetric state with L = 0 and S = 7/2 [19].
It can be shown [20] that dipolar forces make the spiral plane
be perpendicular to k in agreement with experimental ob-
servations. It is believed that a small Dzyaloshinskii-Moriya
interaction is responsible for the finite δ [21]. Magnetic field
directed along a and b tetragonal axes results in the spiral
plane flop accompanied with changing k by another equiva-
lent spiral wave vector [19]. Then, the theory presented above
should be modified to describe such flops (as it is done in
Ref. [22] for a collinear antiferromagnet). However, k does
not change significantly during the flop if h is parallel to
the c axis and our theory can work in this case. Calculations
show that λa (k) − λc(k) = 0.135 K in Eq. (48). To estimate
J̃ given by Eq. (38) and appearing in Eq. (48), we assume
that J2k ≈ J0 in which case J̃ is related to hs [see discussion
after Eq. (41)]. It was found experimentally that the satura-
tion field hs ≈ 6 T in EuNiGe3 [19]. As a result, we obtain
hf lop = 2.05 T which matches excellently the experimentally
observed value ≈2 T [19].

Spiral plane flops have been reported recently also in
many others spiral magnets many of which are multiferroics:
LiCu2O2 [23–25], NaCu2O2 [26], CuCrO2 [27–29], CuCl2

[30], LiCuVO4 [8,31,32], and KCu3As2O7(OD)3 [33] to men-
tion just a few. In all of them the anisotropy of spin-orbit origin
is expected to overcome significantly the dipolar forces. On
the other hand, values of anisotropy have not been determined
yet in these compounds so that we cannot check our theory in
these cases.

VI. SUMMARY AND CONCLUSION

To conclude, we present a theory of field-induced flops of
plane in which spins rotate in frustrated Heisenberg helimag-
nets with small anisotropic interactions, biaxial anisotropy,
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and dipolar forces. We find that flops occur upon the field
increasing if the field lies in the spiral plane stabilized at
h = 0. The spiral plane becomes perpendicular to the field
after the flop (see Fig. 1). The critical fields hf lop are given
by Eqs. (60) and (61) for biaxial anisotropy and dipolar
interaction, respectively. In the case of biaxial anisotropy, if
J0 ≈ J2k, where k is the helix vector, hf lop is expressed via
the saturation field hs [see Eq. (62)] that opens a simple way
to determine the anisotropy value if hf lop and hs are known.
Notice also that if the field is directed along the easy axis
Eq. (62) is identical to that for the spin-flop field in collinear

axial magnets. In contrast to the spin flop in collinear magnets,
where the flop takes place only at a very narrow interval of
the field directions along the easy axis [13], flops of the spiral
plane happen at any orientation of the field in the spiral plane.
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