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Nonreciprocal spin waves in a chiral antiferromagnet without the Dzyaloshinskii-Moriya interaction
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Nonreciprocal spin waves can facilitate the realization of spin-wave logic devices. It has been demonstrated
that the nonreciprocity can emerge when an external magnetic field is applied to chiral magnets whose spin
structures crucially depend on an asymmetric exchange interaction, that is, the Dzyaloshinskii-Moriya interaction
(DMI). Here we demonstrate that the nonreciprocity can arise even without the DMI. We demonstrate this idea
for the chiral antiferromagnet Ba2NbFe3Si2O14 whose DMI is very small and chiral spin structure arises mainly
from the competition between symmetric exchange interactions. We show that when an external magnetic field is
applied, an asymmetric energy-gap shift occurs and the spin wave becomes nonreciprocal from the competition
between symmetric exchange interactions and the external magnetic field.

DOI: 10.1103/PhysRevB.98.184405

I. INTRODUCTION

In many physical systems, waves propagating in opposite
directions share the same characteristics. In certain special
systems, on the other hand, waves propagating in opposite
directions may exhibit different characteristics. For instance,
waves with wave vector ±k may have different frequencies.
Such nonreciprocity may endow functionalities which are
difficult to realize in reciprocal systems. In particular, it was
suggested [1,2] that spin-wave nonreciprocity can facilitate
the realization of spin-wave logic devices, such as a spin
current diode. For the spin-wave nonreciprocity to emerge in
chiral magnets, certain symmetries should be broken. In the
case of the chiral magnets depicted in Fig. 1, their spin Hamil-
tonians may be invariant under the time-reversal operation T
[3], which enforces the spin-wave dispersion relation to be
reciprocal, E(k) = E(−k). Thus the time-reversal symmetry
should be broken by some means to induce the nonreciprocity.

Recently, the spin-wave nonreciprocity in chiral magnets
has been studied. The experimental results in chiral ferro-
magnets Cu2OSeO3 [4], MnSi [5], FeGe, and Co-Zn-Mn
alloys [6] indicate that the nonreciprocity arises in these
noncentrosymmetric systems when an external magnetic field
is applied. When the field direction is reversed, the sign of
the nonreciprocity is also reversed. In Cu2OSeO3, it was
demonstrated [4] that the sign of nonreciprocity depends not
only on the field direction but also on the sign of crystal
chirality. A nonreciprocal spin-wave dispersion relation has
been reported for chiral antiferromagnet α-Cu2V2O7 [7] as
well, for which, similar to chiral ferromagnets, the breakings
of the time-reversal and the spatial-inversion symmetries are
important. We remark that in these examples [4–7], the very
existence of the chiral magnetism crucially relies on the
Dzyaloshinskii-Moriya interaction (DMI) [8]. Considering
that the DMI itself requires some symmetries to be broken,
it is natural in some sense to expect the spin-wave dispersions
to be nonreciprocal in these systems.

*hwl@postech.ac.kr

In this paper, we examine theoretically the spin-wave dis-
persion in a chiral antiferromagnet Ba2NbFe3Si2O14 (BNFS)
whose spin configuration forms the triangular-helical chiral
magnetic order [Fig. 2(b)]. This system differs from the afore-
mentioned chiral (anti)ferromagnets in that its chiral magnetic
structure arises from the competition of symmetric exchange
interactions [3] instead of the DMI. We demonstrate that even
without the DMI, the spin-wave dispersion along the c axis
of BNFS becomes nonreciprocal and exhibits an asymmetric
energy shift when an external magnetic field is applied along
the c axis (parallel to k). In contrast, in the chiral antiferro-
magnet α-Cu2V2O7 [7] whose spin configuration relies cru-
cially on the DMI, the asymmetric energy shift appears when
an external magnetic field is applied and is perpendicular
to k. We remark that in view of Ref. [2], which examines
possible nonreciprocity based on symmetry considerations (or
symmetry-operational equivalence), the nonreciprocal spin
waves in BNFS (our work) and α-Cu2V2O7 [7] correspond
to two distinct cases [Figs. 3(c) and 3(d) of Ref. [2], respec-
tively], where the nonreciprocity is allowed by symmetries.
In addition, we mention that there is a distinct difference
between nonreciprocal spin-wave propagation and nonrecip-
rocal light propagation [9,10]: the light wave propagates with
polarization, but the spin wave has no polarization. Due to this
difference, the physics of the spin-wave nonreciprocity differs
from the physics of the light nonreciprocity.

The paper is organized as follows. In Sec. II, we introduce
the spin Hamiltonian for BNFS with the external magnetic
field, and obtain low-energy spin-wave excitations by the
Holstein-Primakoff transformation. In Sec. III, we provide our
numerical calculation results and discussions. Finally, the pa-
per is summarized in Sec. IV. The detailed form of the
Hamiltonian is given in the Appendix.

II. MODEL HAMILTONIAN

In order to obtain spin-wave dispersion, we start with a spin
Hamiltonian for BNFS [11–15]. This material crystalizes in
noncentrosymmetric trigonal space group P 321. Figure 2(a)
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FIG. 1. Schematic illustration of helical chiral magnet. The spin
wave propagates along the c axis (gray arrows), and the orange
arrows are the time-reversal counterparts of the yellow ones.

shows that magnetic Fe3+ ions in BNFS with S = 5/2 form a
triangle lattice on the ab plane, and the exchange paths J1 ∼
J5 are presented. Below TN = 27 K, the magnetic spin order
occurs as shown in Fig. 2(b) [11]. The magnetic spin order
within each triangle follows a 120◦ arrangement and the spin
arrangement is identical in all triangles within the same plane.
But along the c axis, the spin arrangement gets progressively
tilted and forms a spin helix whose period is about seven
layers. BNFS has two kinds of chiralities. One is the helical
chirality (εH = ±1), which represents the helical winding
direction of the spin as one moves along the c axis, and the
other is the triangular chirality (εT = ±1), which represents
the winding direction of the spin within each triangle. The
neutron-scattering study [14] on BNFS reports εH = 1 and
εT = −1.

According to Ref. [13], physical phenomena in BNFS can
be described through symmetric Heisenberg exchange inter-
actions without invoking the DMI. We thus neglect the DMI
and consider the symmetric exchange interaction only. For the
structure depicted in Fig. 2(a), the intralayer spin exchange
interaction H(l)

intra within the layer l, and the interlayer spin
exchange interaction H(l)−(l+1)

inter between the layer l and l + 1,
are as follows:

H(l)
intra =

∑
α �=α′,β

[J1Sl,α · Sl,α′ + J2Sl,α · Sl,β], (1)

H(l)−(l+1)
inter =

∑
α,β �=β ′

[J4Sl,α · Sl+1,α + J5Sl,α · Sl+1,β

+ J3Sl,α · Sl+1,β ′ ], (2)

where J1, J2, . . . , J5 are exchange parameters [Fig. 2(a)], and
spin operator Sl,α represents the magnetic moment at the l, α

site. l represents the plane index and α, β represent a position
vector within the ab plane. Strictly speaking, α denotes R +
aj , where aj is a lattice vector within each Fe3+ triangle, and
R is a reference point. Also, β denotes R + Rk + aj , where
Rk (k = 1, 2, 3) is an intertriangle position vector. When an
external magnetic field B is applied, the Zeeman interaction
appears,

H(l)
z = J0

∑
α

Sl,α · B, (3)

where J0 = 2μB , and μB is the Bohr magneton. We assume
that B is along the c axis, that is, B = Bzẑ, where ẑ denotes the
c-axis direction [Fig. 2(b)]. Then, the total spin Hamiltonian
can be obtained by adding up l,

Htotal =
∑

l

(
H(l)

intra + H(l)−(l+1)
inter + H(l)

Z

)
. (4)

FIG. 2. (a) Magnetic exchange paths (dashed arrows) in
Ba2NbFe3Si2O14 along the c axis (top) and in the ab plane (bottom).
We only depict Fe3+ triangles. The position vectors aj and Rj are
satisfied with

∑3
j=1 aj = 0 and

∑3
j=1 Rj = 0, respectively. R indi-

cates a reference point. (b) Left: Equilibrium spin configuration in
BNFS with B = 0 is the helical spin arrangement. Right: An external
magnetic field B is applied along the c axis. The ground-state spin
configuration in the presence of B is a conical spin arrangement.

To facilitate subsequent analysis, it is convenient to intro-
duce local coordinate systems whose coordinate axes vary
from atomic site to site and are aligned along the local
equilibrium spin directions. At the site l, α, the unit vectors
for the local coordinate system are

x̂′
l,α = x̂ cos θl,α cos φl,α + ŷ cos θl,α sin φl,α + ẑ sin θl,α,

ŷ′
l,α = −x̂ sin φl,α + ŷ cos φl,α, (5)

ẑ′
l,α = −x̂ sin θl,α cos φl,α − ŷ sin θl,α sin φl,α + ẑ cos θl,α,

where φl,α , θl,α are, respectively, azimuthal and polar angles
of the equilibrium spin direction at l, α. We assume that θl,α is
independent of l and α, that is, θl,α = θ . We also assume that
φl,R+aj

follows the helical pattern, that is, φl,R+aj
= εH (τ l +

εT j2π/3) [11], where τ is a helical period along the c axis.
Values of θ and τ will be determined below by minimizing the
equilibrium energy.

Applying the Holstein-Primakoff transformation, the
spin operators along local coordinate axes are written
as Sx ′

l,α = S − b
†
l,αbl,α , S

y ′
l,α = √

S/2(b†l,α + bl,α ), and Sz′
l,α =

i
√

S/2(b†l,α − bl,α ), where b, b† are bosonic annihilation and
creation operators, respectively. Then, the total Hamiltonian
can be expanded in powers of b, b†,

Htotal = H(0)
total + H(1)

total + H(2)
total

+O (third-order terms in b, b†), (6)

where H(n)
total denotes the nth-order terms. First of all, H(0)

total
reads

H(0)
total =

∑
l

{
S2(J1+2J2)

(
−1

2
cos2 θ+ sin2 θ

)

+
2∑

ν=0

S2J3+ν[cos(τ + εT ϕν ) cos2 θ + sin2 θ ]

}
, (7)
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where ϕ0 = 2π/3, ϕ1 = 0, and ϕ2 = 4π/3. Since H(0)
total

amounts to the equilibrium energy, we minimize it with
respect to θ and τ . From ∂H(0)

total/∂τ = 0 and ∂H(0)
total/∂θ = 0,

one obtains

2∑
ν=0

J3+ν sin(τ + εT ϕν ) = 0, (8)

sin θ = − J0Bz/S

3(J1 + 2J2) + 2
∑

J3+ν[− cos(τ + εT ϕν ) + 1]
.

(9)

Here, τ in Eq. (8) agrees with the helical period along the
c axis reported in Ref. [13]. On the other hand, Eq. (9)
indicates that θ = 0 when Bz = 0 and thus equilibrium spins
lie within the ab plane. When Bz is applied, however, the
equilibrium spins deviate from the ab plane [Fig. 2(b)]. Using
the measured parameters in Table II [13] that will be used
henceforth, we predict θ = 2.2◦ at Bz = 6.8 T. This value is
similar to the value reported in Ref. [16]. Also, the first-order
term is

H(1)
total = i cos θ

√
S3

2

∑
l

(
sin θ

{
3(J1 + 2J2) + 2

2∑
ν=0

J3+ν

× [− cos(τ + εT ϕν ) + 1]

}
+ J0Bz

S

)
(b†l − bl ).

(10)

This square bracket becomes zero for the value of θ that
minimizes H(0)

total.
The next order term is H(2)

total. In order to analyze H(2)
total,

it is convenient to introduce the Fourier-transformed bosonic
operator bkj , which is related to bl,R+aj

as follows:

bl,R+aj
= 1√

N

∑
k

exp[ik · (lazẑ + R)]bkj , (11)

where N is a number of layers and az is the interlayer spacing.
In terms of the Fourier-transformed bosonic operators, one
obtains

H(2)
total =

∑
k

∑
j,j ′

c
†
kj

(
αk,jj ′ βk,jj ′

βk,jj ′ δk,jj ′

)
ckj ′ , (12)

where ckj = (bkj b
†
k̄j

)
T

and αk,j ′j = δk̄,jj ′ , βk,j ′j = βk̄,jj ′ .

Here, k̄ denotes −k, and the values of the αk,jj ′ , βk,jj ′ are
given in the Appendix. With these values, it is straightfor-
ward to verify that Eq. (12) is Hermitian. The equation-
of-motion approach [17,18] is a commonly used technique
to obtain eigenvalues of the bosonic quadratic Hamiltonian
[Eq. (12)]. To utilize this approach, we transform Eq. (12)
into a standard form of the boson quadratic Hamiltonian
in Ref. [18] by extending the boson basis ckj into dkj =
(bkj bk̄j b

†
kj b

†
k̄j

)
T

. Then, Eq. (12) can be rewritten as
follows:

H(2)
total = 1

2

∑
k

∑
j,j ′

d
†
kj

(
AT

k,jj ′ Bk,jj ′

B∗
k,jj ′ Ak,jj ′

)
dkj ′ , (13)

which is in the standard form of the boson quadratic Hamilto-
nian. Here, 6 × 6 matrices Ak, Bk are

Ak =
(

αT
k 0

0 δk

)
, Bk =

(
0 βk

βk̄ 0

)
, (14)

where αk and βk are 3 × 3 matrices with αkjj ′ and βkjj ′

as their matrix elements, respectively. Then, one obtains the
following associated matrix [18] Mk:

Mk =
(

Ak −B
†
k

Bk −A∗
k

)
=

⎛
⎜⎜⎜⎜⎜⎝

δk̄ 0 0 −β
†
k̄

0 δk −β
†
k 0

0 βk −α
†
k 0

βk̄ 0 0 −α
†
k̄

⎞
⎟⎟⎟⎟⎟⎠. (15)

The eigenvalues of this 12 × 12 matrix Mk consist of E(k),
E(−k), −E(k), and −E(−k) for three spin-wave branches.

III. RESULT AND DISCUSSION

We investigate the spin-wave dispersion of BNFS by nu-
merical calculation. The spin-wave dispersion as a function of
L = kaz/2π , and B = Bzẑ are shown in Fig. 3(a). Here we
assume that k = (0, 0, k). The different colors indicate differ-
ent values of Bz. For B = 0 (black solid lines), there are three
branches of spin-wave excitations. Each of them becomes
gapless at L = 0 (c mode), L = +τ/2π (w1 mode), and
L = −τ/2π (w2 mode), where τ/2π � 0.14. Note that for
B = 0, Ec(k) = Ec(−k) and Ew1 (k) = Ew2 (−k). Thus the
dispersion relations are symmetric. As Bz increases from 0,
Ec(k) remains essentially unchanged, but Ew1 (k) and Ew2 (k)
are progressively modified. For both Ew1 (k) and Ew2 (k),
gapless points disappear and are replaced by quadratic dis-
persions. Note that the resulting energy gap is significantly
bigger for the w1 mode than for the w2 mode. Thus the relation
Ew1 (k) = Ew2 (−k) becomes broken and the dispersions for
the w1 and w2 modes become asymmetric, acquiring the
nonreciprocity. In addition, we remark that the sign of the
nonreciprocity [Fig. 3(a)] can be reversed when the sign of Bz

is reversed. The sign of the nonreciprocity can also be reversed
when the sign of the magnetic chirality εT εH is reversed,
although the magnetic chirality reversal is difficult to realize
in experiments because this reversal requires energy costs.

To understand this result, it is useful to consider the nature
of spin-wave “vibrations.” Figure 3(b) shows schematically
the spin vibration patterns for the c-mode excitation (left),
and the w1/2-mode excitation within a Fe+3 triangle. In the c

mode, all spins vibrate without altering their net in-plane com-
ponent, hence

∑3
j=1 δS‖

l,R+aj
= 0 within the triangle. Here,

‖ denotes in-plane components. For this mode, the system
has the rotation symmetry around the c axis regardless of
whether Bz is applied. Thus, Ec(k = 0) for arbitrary Bz since
this particular mode amounts to the Goldstone mode for the
symmetry. In the case of w1/2 modes, on the other hand, the
spins vibrate without alternating their net c component, and
hence

∑3
j=1 δS⊥

l,R+aj
= 0 within the triangle. Here, ⊥ denotes

out-of-plane components.
The blue plane in Fig. 3(b), which is defined by con-

necting the end points of the vibrating spins, shows the
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FIG. 3. (a) Spin-wave dispersion relation with the external mag-
netic field along the c axis. The horizontal axis L is L = k · a/2π ,
where k is parallel to the c axis and a is the lattice vector along
the c axis. When an external magnetic field B = Bzẑ is turned on,
the gap asymmetry occurs. (b) Schematic illustrations of spin-wave
excitation without B. For the c-mode excitation (left), the summation
of the three spins in a Fe+3 triangle vanishes within the plane and
survives only along the out-of-plane direction. For the w1 and w2

modes (right), on the other hand, the summation of the three spins
in a Fe+3 triangle vanishes along the c axis and survives within
the plane. The transparent arrows denote equilibrium spins. Here,
‖ (⊥) denotes in-plane (out-of-plane) components. (c) Eigenvalue
spectrum of Mk for Bz = 6.8 T. It shows that the positive and
negative energies are origin symmetry. (d) The energy-gap difference
between the w1 and w2 modes as a function of Bz.

out-of-plane vibration clearly. In the w1 and w2 modes, the
normal vector to the blue plane precesses around the c axis
anticlockwise and clockwise, respectively. If B = 0, the anti-
clockwise and clockwise precessions share the same vibration
frequencies, resulting in Ew1 (k) = Ew2 (−k) [black solid line
in Fig. 3(a)]. For Bz �= 0, on the other hand, the field itself
tends to induce the precession of the normal vector in one
particular direction, thus introducing the different between
the anticlockwise and clockwise precession frequencies. This
explains the nonreciprocity, Ew1 (k) �= Ew2 (−k), in the w1

and w2 modes. Figure 3(d) shows that the difference Ew1 (k =
τ/azẑ) − Ew2 (−k = −τ/azẑ) between the energy gaps of the
w1 and w2 modes increases with increasing Bz. For Bz =
6.8 T, the energy gaps for the w1 and w2 modes are 0.36
and 0.07 meV, respectively. Then, one obtains the gap size
difference of 0.29 meV.

In some respects, our result is similar to Ref. [7] that re-
ports the nonreciprocal spin waves in a chiral antiferromagnet
α-Cu2V2O7 with B. However, there are distinctions between
BNFS and α-Cu2V2O7 systems. In BNFS, the chiral antifer-
romagnetic order arises from competition between symmetric
exchange interactions, whereas in α-Cu2V2O7, it arises from
the DMI. Another important difference is the spin-wave prop-
agation direction. In BNFS, spin waves propagating parallel
to the external magnetic field are nonreciprocal, whereas in
α-Cu2V2O7, spin waves propagating perpendicular to the
external magnetic field are nonreciprocal.

Let us investigate the structure of Eq. (15) more closely
to better understand a reciprocal (nonreciprocal) spin wave
without (with) Bz. First of all, we remark that eigenvalues
of Mk are real even though Mk is not Hermitian. Given this
information, we can understand the reciprocity (nonreciproc-
ity) as follows. The characteristic equation det[Mk − xI]= 0
is rewritten as∣∣∣∣∣

δk̄ − xI −β
†
k̄

βk̄ −α
†
k̄ − xI

∣∣∣∣∣ ×
∣∣∣∣∣δk − xI −β

†
k

βk −α
†
k − xI

∣∣∣∣∣ = 0, (16)

where I is a 3 × 3 identity matrix, x is a real eigenvalue of
Mk, and the first (second) determinant in the left-hand side is
for −k (+k). When Bz = 0, matrix elements for k and k̄ are
related (see the Appendix) as follows:(

δk −β
†
k

βk −α
†
k

)∗

=
(

δk̄ −β
†
k̄

βk̄ −α
†
k̄

)
. (17)

Then, comparing the first and second determinants and re-
calling that x is real, one finds that the first (for −k) and
the second (for k) produce the same eigenvalues. Thus the
spin-wave spectrum is reciprocal. When Bz �= 0, on the other
hand, the relation in Eq. (17) breaks down since α∗

k �= αk̄,
δ∗

k �= δk̄ while β∗
k = βk̄. The explicit expression for αk (= δT

k̄ )
is given in Eq. (A1) and the last term of this expression breaks
the relation. Therefore, the low-energy excitation spin-wave
spectrum may become nonreciprocal, E(+k) �= E(−k).

So far, our analysis of BNFS has focused on the nonre-
ciprocity from symmetric exchange interactions [Eqs. (1) and
(2)] and neglected the DMI. To be strict, the DMI may also
exist in BNFS since it is noncentrosymmetric. According to
[19], the energy scale of the DMI is three orders of magnitude
smaller than J1, and about two orders of magnitude smaller
than J2, J3, J4, J5. Although such small DMI can generate
observable effects such as energy-gap opening [19] to the w1

and w2 modes, it cannot significantly affect the degree of the
nonreciprocity (energy-gap difference between the w1 and w2

modes) simply because the DMI energy scale is much smaller
than those of J ’s.

Our examination of the nonreciprocal spin waves in BNFS
is focused on the case when k and B are parallel to the c axis
[Fig. 2(b)]. Figure 4 shows other possible configurations of
k and B, which are not examined in this paper. For the three
cases with k and B perpendicular to each other [depicted in
Figs. 4(a)–4(c)], one can show by using a simple symmetry
argument [2] that the nonreciprocity is not possible. First,
for the case in Fig. 4(a), the spin waves propagating along
the (+a) axis and (−a) axis become reciprocal because a
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FIG. 4. Connection between spin waves with +k and −k
through symmetry operations. (a) When B (or a magnetization M)
is applied along the c direction, a spin wave propagating along the
a axis (or the b axis) becomes reciprocal because the combined
symmetry operation of the time reversal and rotation around the
k direction links the two spin-wave cases. (b),(c) Because spin
waves with ±k, which are perpendicular to the B direction, can be
connected by a rotation around the B (or M) direction, we obtain
reciprocal spin waves. (d) When k and B (or M), which are in
the ab plane, are parallel to each other, there does not exist any
symmetry operation that links the two spin waves. Hence the spin-
wave dispersion in this case can become nonreciprocal. The rotations
Rk(π ), and RB(π ) rotate around the k and B directions, respectively.
Note that k in (a), and B (or M) in (b)–(d), are parallel to the a axis
(or the b axis).

combination of the time-reversal and rotation operations can
connect the two spin-wave propagating directions. The same
symmetry argument applies to the spin waves propagating
along the (+b) axis and (−b) axis. However, this argument
does not apply to the spin waves propagating along the
direction which deviates from the ±a or ±b directions, even
though the propagation direction lies within the ab plane. For
example, when k is parallel to (a + 2b)/

√
3, the spin-wave

dispersion [Fig. 5(a)] shows much weaker nonreciprocity than
Fig. 3(a). Here an external magnetic field is along the c axis.
In this case, each spin-wave branch is asymmetric. In order
to show the asymmetric spin-wave clearly, we provide the
energy difference between +Lx and −Lx as a function of
Lx [Fig. 5(b)]. Here the nonreciprocal effect increases with
increasing spin-wave propagation vector. However, this effect
is strongly suppressed in the vicinity of Lx = 0. Thus, we
expect it to be weak at least for the long-wavelength spin
wave. Second, when B is applied in the ab plane [Figs. 4(b)

FIG. 5. (a) Asymmetric spin-wave dispersion relation for Bz =
6.8 T. The inset indicates the direction of Lx , which lies within the ab

plane. (b) Energy difference �E(Lx ) = E(+Lx ) − E(−Lx ). Colors
are introduced to identify the corresponding dispersions in (a).

and 4(c)], the actual calculation of spin-wave excitations
become complicated since the ground-state spin configuration
is not known for this case. But the symmetry analysis may
still be possible if a net magnetization in BNFS is parallel to
B. Then, spin waves in Figs. 4(b) and 4(c) are reciprocal since
spin waves with ±k can be connected by a rotation around the
B direction. We remark that this symmetry argument becomes
exact when B is parallel to the ±a axis or ±b axis. Finally, we
consider the case in Fig. 4(d), where k, B are parallel to each
other, and these are within the ab plane. In this case, two spin
waves with k ‖ B and −k ‖ B cannot be connected by any
operations, that is, this spin wave can become nonreciprocal.
Therefore, the spin wave in BNFS may be nonreciprocal
(reciprocal) when k and B are parallel (perpendicular) to each
other.

IV. SUMMARY

In summary, we have shown theoretically that the spin
wave in a chiral antiferromagnet BNFS becomes nonrecipro-
cal when an external magnetic field is applied along the c axis.
Unlike other chiral ferromagnets or chiral antiferromagnets,
where DMI is crucial for the nonreciprocity, the nonreciproc-
ity in BNFS, which has very small DMI, can arise purely from
the competition between symmetric exchange interactions and
an external magnetic field. Thus our work demonstrates that
the DMI is not crucial for nonreciprocal spin waves. Our work
also widens the material choice for nonreciprocal spin waves.
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APPENDIX: COMPONENTS OF EQ. (12)

αk, βk are presented as below:

αk =
[
−1

2
J0Bz sin θ + 1

2
(J1 + 2J2)S(1 − 3 sin3 θ )

−
2∑

ν=0

J4+νS{cos(τ + εT ϕν ) cos2 θ + sin2 θ}
]

I

+ J1S

[
1

8
(1 − 3 sin2 θ ) �3x −

√
3

4
εH εT sin θ �3y

]

+ J2S

[
1

8
(1 − 3 sin2 θ ) A+

3k −
√

3

4
εH εT sin θ A−

3k

]

+ S

4
(1 + sin2 θ ) B+

3k + S

4
cos2 θ C3k − S

2
εH sin θ B−

3k,

(A1)

βk = −3

8
S(1 − sin2 θ )(J1�3x + J2A+

3k )

+ 1

4
S(1 − sin2 θ )(B+

3k − C3k )S, (A2)
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where

�3x =

⎛
⎜⎝

0 1 1

1 0 1

1 1 0

⎞
⎟⎠, �3y =

⎛
⎜⎝

0 −i i

i 0 −i

−i i 0

⎞
⎟⎠, (A3)

(A+
3k )lm = |êl × êm| (eik·Rl + e−ik·Rm ), (A4)

(A−
3k )lm = i(êl × êm) · ên (eik·Rl + e−ik·Rm ), (A5)

(B+
3k )lm = 2δlmJ ′

4 cos kzaz + |êl × êm| J ′
+ cos kzaz

+ i(êl × êm) · ên J ′
− sin kzaz, (A6)

(B−
3k )lm = 2δlmJ ′′

4 sin kzaz + |êl × êm| J ′′
+ sin kzaz

− i(êl × êm) · ên J ′′
− cos kzaz, (A7)

and

(C3k )lm = 2δlmJ4 cos kzaz + |êl × êm| J+ cos kzaz

+ i(êl × êm) · ên J− sin kzaz. (A8)

Here, n �= l, m, where l, m = 1, 2, 3. êl is a unit vec-
tor. J± = J5 ± iJ6, J ′

4+ν = J4+ν cos(τ + εT ϕν ), and J ′′
4+ν =

J4+ν sin(τ + εT ϕν ). Since we assume that k = (0, 0, k),
Eqs. (A4) and (A5) can be written as A+

3k = 2�3x , A−
3k =

2�3y .
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