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Gilbert damping phenomenology for two-sublattice magnets
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We present a systematic phenomenological description of Gilbert damping in two-sublattice magnets. Our
theory covers the full range of materials from ferro- via ferri- to antiferromagnets. Following a Rayleigh
dissipation functional approach within a Lagrangian classical field formulation, the theory captures intra- as
well as cross-sublattice terms in the Gilbert damping, parametrized by a 2 × 2 matrix. When spin pumping into
an adjacent conductor causes dissipation, we obtain the corresponding Gilbert damping matrix in terms of the
interfacial spin-mixing conductances. Our model reproduces the experimentally observed enhancement of the
ferromagnetic resonance linewidth in a ferrimagnet close to its compensation temperature without requiring an
increased Gilbert parameter. It also predicts new contributions to damping in an antiferromagnet and suggests
the resonance linewidths as a direct probe of the sublattice asymmetry, which may stem from boundary or bulk.
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I. INTRODUCTION

The fundamental connection [1] between magnetic mo-
ment and spin angular momentum underlies the important
role for magnets in nearly all spin-based concepts. An applied
magnetic field provides the means to manipulate the state
of a ferromagnet (FM), and thus the associated spin. Con-
versely, a spin-polarized current absorbed by the FM affects
its magnetization [2–5]. Exploiting a related phenomenon,
switching the state of an antiferromagnet (AFM) has also been
achieved [6]. Emboldened by this newly gained control, there
has been an upsurge of interest in AFMs [7–10], which offer
several advantages over FMs. These include the absence of
stray fields and a larger anisotropy-induced gap in the magnon
spectrum. The two-sublattice nature of the AFMs further lends
itself to phenomena distinct from FMs [11].

Concurrently, ferrimagnets (FiMs) have been manifesting
their niche in a wide range of phenomena such as ultrafast
switching [12–14] and low-dissipation spin transport [15–22].
A class of FiMs exhibits the so-called compensation tempera-
ture [23–28], at which the net magnetization vanishes, similar
to the case of AFMs. Despite a vanishing magnetization in
the compensated state, most properties remain distinct from
that of AFMs [29]. Thus, these materials can be tuned to
mimic FMs and AFMs via the temperature. In conjunction
with the possibility of a separate angular-momentum com-
pensation, when the magnetization does not vanish but the
total spin does, FiMs provide a remarkably rich platform
for physics and applications. An increased complexity in the
theoretical description [29,30] hence accompanies these struc-
turally complicated materials, and may be held responsible for
comparatively fewer theoretical studies. Nevertheless, a two-
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sublattice model with distinct parameters for each sublattice
qualitatively captures all the phenomena mentioned above.

Dissipation strongly influences the response of a magnet
to a stimulus and is thus central to the study of magnetic
phenomena such as switching, domain wall motion, and spin
transport. Nevertheless, magnetic damping has conventionally
been investigated via the ferromagnetic resonance (FMR)
linewidth. It is accounted for phenomenologically in the
Landau-Lifshitz description of the magnetization dynamics
via the so-called Gilbert damping term [31], which produces a
good agreement with experiments for a wide range of systems.
The Gilbert damping represents the viscous contribution and
may be “derived” within a Lagrangian formulation of classi-
cal field theory by including the Rayleigh dissipation func-
tional [31]. While the magnetic damping for FMs has been
studied in great detail [29,31–35], from phenomenological
descriptions to microscopic models, a systematic development
of an analogous description for ferri- and antiferromagnets
has been lacking in literature. Furthermore, recent theoretical
results on spin pumping in two-sublattice magnets [36] and
damping in AFMs [37] suggest an important role for the
previously disregarded [29] cross-sublattice terms in Gilbert
damping, and thus set the stage for the present study. Yuan
and co-workers have recently presented a step in this direction
focusing on spin torques in AFMs [38].

Here we formulate the magnetization dynamics equations
in a general two-sublattice magnet following the classical
Lagrangian approach that has previously been employed for
FMs [31]. The Gilbert damping is included phenomeno-
logically via a Rayleigh dissipation functional appropriately
generalized to the two-sublattice system, which motivates
intra- as well as cross-sublattice terms. The Gilbert damping
parameter thus becomes a 2 × 2 matrix, in contrast with its
scalar form for a single-sublattice FM. Solving the system
of equations for spatially homogeneous modes in a collinear
ground state, we obtain the decay rates of the two eigenmodes
finding direct pathways towards probing the dissipation
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mechanism and asymmetries in the system. Consistent with
recent experiments [28,39], we find an enhancement in the
decay rates [39] close to the magnetization compensation in a
FiM with an unaltered damping matrix [28]. The general de-
scription is found to be consistent with the spin pumping me-
diated damping in the magnet [34–36], and allows for relating
the Gilbert damping matrix with the interfacial spin-mixing
conductances. Focusing on AFMs, we express the magneti-
zation dynamics in terms of the Néel variable thus clarifying
the origin of the different damping terms in the corresponding
dynamical equations [38,40]. Apart from the usually con-
sidered terms, we find additional contributions for the case
when sublattice symmetry is broken in the AFM [36,41–45].
Thus, FMR linewidth measurements offer a direct, parameter-
free means of probing the sublattice asymmetry in AFMs,
complementary to the spin pumping shot noise [36].

This paper is organized as follows. We derive the Landau-
Lifshitz-Gilbert (LLG) equations for the two-sublattice model
in Sec. II. The ensuing equations are solved for the res-
onance frequencies and decay rates of the uniform modes
in a collinear magnet in Sec. III. Section IV presents the
application of the phenomenology to describe a compensated
ferrimagnet and spin pumping mediated Gilbert damping.
The case of AFMs is discussed in Sec. V. We comment
on the validity and possible generalizations of the theory in
Sec. VI. The paper is concluded with a summary in Sec.
VII. The discussion of a generalized Rayleigh dissipation
functional and properties of the damping matrix is deferred
to the Appendixes.

II. MAGNETIZATION DYNAMICS
AND GILBERT DAMPING

We consider a two-sublattice magnet described by classi-
cal magnetization fields MMMA ≡ MMMA(rrr, t ) and MMMB ≡ MMMB (rrr, t )
corresponding to the sublattices A and B. The system is
characterized by a magnetic free energy F [MMMA,MMMB] with the
magnetization fields assumed to be of constant magnitudes
MA0 and MB0. Here the notation F [ ] is employed to empha-
size that the free energy is a functional over the magnetization
fields, i.e., an integration of the free energy density over space.

The undamped magnetization dynamics is described by
equating the time derivative of the spin angular momentum
associated with the magnetization to the torque experienced
by it. The resulting Landau-Lifshitz equations for the two
fields may be written as

d

dt

(
MMMA,B

−|γA,B |
)

= −ṀMMA,B

|γA,B | = MMMA,B × μ0HHHA,B, (1)

where γA,B (<0) are the gyromagnetic ratios for the two
sublattices, and HHHA,B are the effective magnetic fields ex-
perienced by the respective magnetizations. This expression
of angular momentum flow may be derived systematically
within the Lagrangian classical field theory [31]. The same
formalism also allows us to account for a restricted form of
damping via the so-called dissipation functional R[ṀMMA,ṀMMB]
in the generalized equations of motion:

d

dt

δL[·]
δṀMMA,B

− δL[·]
δMMMA,B

= − δR[ṀMMA,ṀMMB]

δṀMMA,B

, (2)

where L[·] ≡ L[MMMA,MMMB,ṀMMA,ṀMMB] is the Lagrangian of the
magnetic system. Here δL[·]/δMMMA represents the functional
derivative of the Lagrangian with respect to the various com-
ponents of MMMA, and so on. The left-hand side of Eq. (2)
above represents the conservative dynamics of the magnet and
reproduces Eq. (1) with [31]

μ0HHHA,B = − δF [MMMA,MMMB]

δMMMA,B

, (3)

while the right-hand side accounts for the damping.
The Gilbert damping is captured by a viscous Rayleigh

dissipation functional parametrized by a symmetric matrix ηij

with {i, j} = {A,B}:

R[ṀMMA,ṀMMB] =
∫

V

d3r

(
ηAA

2
ṀMMA · ṀMMA + ηBB

2
ṀMMB · ṀMMB

+ ηABṀMMA · ṀMMB

)
, (4)

where V is the volume of the magnet. The above form of the
functional assumes the damping to be spatially homogeneous,
isotropic, and independent of the equilibrium configuration.
A more general form with a lower symmetry is discussed in
Appendix A. Including the dissipation functional via Eq. (2)
leads to the following replacements in the equations of
motion (1):

μ0HHHA → μ0HHHA − ηAAṀMMA − ηABṀMMB, (5)

μ0HHHB → μ0HHHB − ηBBṀMMB − ηABṀMMA. (6)

Hence, the LLG equations for the two-sublattice magnet
become

ṀMMA = −|γA|(MMMA × μ0HHHA) + |γA|ηAA(MMMA × ṀMMA)

+ |γA|ηAB (MMMA × ṀMMB ), (7)

ṀMMB = −|γB |(MMMB × μ0HHHB ) + |γB |ηAB (MMMB × ṀMMA)

+ |γB |ηBB (MMMB × ṀMMB ). (8)

These can further be expressed in terms of the unit vectors
m̂mmA,B = MMMA,B/MA0,B0:

˙̂mmmA = −|γA|(m̂mmA × μ0HHHA) + αAA(mmmA × ˙̂mmmA)

+ αAB (m̂mmA × ˙̂mmmB ), (9)

˙̂mmmB = − |γB |(m̂mmB × μ0HHHB ) + αBA(m̂mmB × ˙̂mmmA)

+ αBB (m̂mmB × ˙̂mmmB ), (10)

thereby introducing the Gilbert damping matrix α̃ for a two-
sublattice system:

α̃ =
(

αAA αAB

αBA αBB

)
=

(|γA|ηAAMA0 |γA|ηABMB0

|γB |ηABMA0 |γB |ηBBMB0

)
,

(11)

αAB

αBA

= |γA|MB0

|γB |MA0
. (12)
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As elaborated in Appendix B, the positivity of the dissipation
functional implies that the eigenvalues and the determinant of
α̃ must be non-negative, which is equivalent to the following
conditions:

ηAA, ηBB � 0, ηAAηBB � η2
AB ⇒ αAA, αBB � 0,

αAAαBB � αABαBA. (13)

Thus, Eqs. (9) and (10) constitute the main result of this
section, and introduce the damping matrix [Eq. (11)] along
with the constraints imposed on it [Eqs. (12) and (13)] by the
underlying formalism.

III. UNIFORM MODES IN COLLINEAR GROUND STATE

In this section we employ the phenomenology introduced
above to evaluate the resonance frequencies and the decay
rates of the spatially homogeneous modes that can be probed
in a typical FMR experiment. We thus work in the macrospin
approximation, i.e., magnetizations are assumed to be spa-
tially invariant. Considering an antiferromagnetic coupling

J (>0) between the two sublattices and parametrizing uni-
axial easy-axis anisotropies via KA,B (>0), the free energy
assumes the form

F [MMMA,MMMB] =
∫

V

d3r
[−μ0H0(MAz + MBz) − KAM2

Az

− KBM2
Bz + JMMMA · MMMB

]
, (14)

where H0ẑzz is the applied magnetic field. The magnet is
assumed to be in a collinear ground state: MMMA = MA0ẑzz

and MMMB = −MB0ẑzz with MA0 > MB0. Employing Eq. (3)
to evaluate the effective fields, the magnetization dynam-
ics is expressed via the LLG equations (9) and (10).
Considering MMMA = MAxx̂xx + MAyŷyy + MA0ẑzz, MMMB = MBxx̂xx +
MByŷyy − MB0ẑzz with |MAx,Ay | � MA0, |MBx,By | � MB0, we
linearize the resulting dynamical equations. Converting to
Fourier space via MAx = MAx exp (iωt ) etc. and switching to
circular basis via MA±(B±) = MAx(Bx) ± iMAy(By), we ob-
tain two sets of coupled equations expressed succinctly as

(
±ω − �A − iωαAA −(|γA|JMA0 + iωαAB

MA0
MB0

)
(|γB |JMB0 + iωαBA

MB0
MA0

) ±ω + �B + iωαBB

)(
MA±
MB±

)
=

(
0
0

)
, (15)

where we define �A ≡ |γA|(JMB0 + 2KAMA0 + μ0H0) and �B ≡ |γB |(JMA0 + 2KBMB0 − μ0H0). Substituting ω = ωr± +
iωi± into the ensuing secular equation, we obtain the resonance frequencies ωr± to the zeroth order and the corresponding decay
rates ωi± to the first order in the damping matrix elements:

ωr± = ±(�A − �B ) +
√

(�A + �B )2 − 4J 2|γA||γB |MA0MB0

2
, (16)

ωi±
ωr±

= ±ωr±(αAA − αBB ) + αAA�B + αBB�A − 2J |γB |MA0αAB

ωr+ + ωr−
. (17)

In the expression above, Eqs. (16) and (17), we have cho-
sen the positive solutions of the secular equations for the
resonance frequencies. The negative solutions are equal in
magnitude to the positive ones and physically represent the
same two modes. The positive-polarized mode in our notation
corresponds to the typical ferromagnetic resonance mode,
while the negative-polarized solution is sometimes termed
“antiferromagnetic resonance” [25]. In order to avoid con-
fusion with the ferromagnetic or antiferromagnetic nature
of the underlying material, we call the two resonances as
positive and negative polarized. The decay rates can further
be expressed in the following form:

ωi±
ωr±

= ᾱ(�A + �B ) − 2J |γB |MA0αAB

ωr+ + ωr−
± �ᾱ, (18)

with ᾱ ≡ (αAA + αBB )/2 and �ᾱ ≡ (αAA − αBB )/2.
Equation (18) constitutes the main result of this section
and demonstrates that (i) asymmetric damping in the two
sublattices is manifested directly in the normalized decay
rates of the two modes (Figs. 1 and 2), and (ii) off-diagonal
components of the damping matrix may reduce the decay rates
(Fig. 2). Furthermore, it is consistent with and reproduces

the mode dependence of the decay rates observed in the
numerical studies of some metallic AFMs [37].

To gain further insight into the results presented in
Eqs. (16) and (18), we plot the resonance frequencies and
the normalized decay rates vs the applied magnetic field
for a typical quasiferromagnet, such as yttrium iron garnet,
in Fig. 1. The parameters employed in the plot are |γB | =
1.8 × 1011, MB0 = 105, KA = KB = 10−7, and J = 10−5 in
SI units, and have been chosen to represent the typical order
of magnitude without pertaining to a specific material. The
plus-polarized mode is lower in energy and is raised with
an increasing applied magnetic field. The reverse is true for
the minus-polarized mode whose relatively large frequency
makes it inaccessible to typical ferromagnetic resonance ex-
periments. As anticipated from Eq. (18), the normalized decay
rates for the two modes differ when αAA �= αBB . Further-
more, the normalized decay rates are independent of the
applied field for symmetric gyromagnetic ratios for the two
sublattices. Alternately, a measurement of the normalized
decay rate for the plus-polarized mode is able to probe the
sublattice asymmetry in the gyromagnetic ratios. Thus it
provides essential information about the sublattices without
requiring the measurement of the large frequency minus-
polarized mode.
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FIG. 1. Resonance frequencies and normalized decay rates vs
the applied field for a quasiferromagnet (MA0 = 5MB0). |γA|/|γB | =
1, 1.5, and 0.5 correspond to solid, dashed and dash-dotted lines,
respectively. The curves in blue and red, respectively, depict the +
and − modes. The damping parameters employed are αAA = 0.06,
αBB = 0.04, and αAB = 0.

IV. SPECIFIC APPLICATIONS

We now examine two cases of interest: (i) the mode decay
rate in a ferrimagnet close to its compensation temperature,
and (ii) the Gilbert damping matrix due to spin pumping into
an adjacent conductor.

A. Compensated ferrimagnets

FMR experiments carried out on gadolinium iron gar-
net [23,39] find an enhancement in the linewidth, and hence
the mode decay rate, as the temperature approaches the com-
pensation condition, i.e., when the two effective [46] sublat-
tices have equal saturation magnetizations. These experiments
have conventionally been interpreted in terms of an effective
single-sublattice model thereby ascribing the enhancement
in the decay rate to an increase in the scalar Gilbert damp-
ing constant allowed within the single-sublattice model [24].
In contrast, experiments probing the Gilbert parameter in a
different FiM via domain wall velocity find it to be essen-
tially unchanged around compensation [28]. Here we analyze
FMR in a compensated FiM using the two-sublattice phe-
nomenology developed above and thus address this apparent
inconsistency.
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FIG. 2. Resonance frequencies and normalized decay rates vs
relative saturation magnetizations of the sublattices. The curves
which are not labeled as + or − represent the common normalized
decay rates for both modes. The parameters employed are the same
as for Fig. 1 with γA = γB .

The compensation behavior of a FiM may be captured
within our model by allowing MA0 to vary while keeping
MB0 fixed. The mode frequencies and normalized decay rates
are examined with respect to the saturation magnetization
variation in Fig. 2. We find an enhancement in the normalized
decay rate, consistent with the FMR experiments [23,39],
for a fixed Gilbert damping matrix. The single-sublattice
interpretation ascribes this change to a modification of the
effective Gilbert damping parameter [24], which is equal to
the normalized decay rate within that model. In contrast,
the latter is given by Eq. (18) within the two-sublattice
model and evolves with the magnetization without requiring
a modification in the Gilbert damping matrix. Specifically,
the enhancement in decay rate observed at the compensation
point is analogous to the so-called exchange enhancement
of damping in AFMs [47]. Close to compensation, the FiM
mimics an AFM to some extent.

We note that while the spherical samples employed in
Ref. [23] are captured well by our simple free energy ex-
pression [Eq. (14)], the interfacial and shape anisotropies
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of the thin film sample employed in Ref. [39] may result
in additional contributions to decay rates. The similarity of
the observed linewidth trends for the two kinds of samples
suggests that these additional anisotropy effects may not
underlie the observed damping enhancement. Quantitatively
accounting for these thin film effects requires a numerical
analysis, as discussed in Sec VI below, and is beyond the
scope of the present work. Furthermore, domain formation
may result in additional damping contributions not captured
within our single-domain model.

B. Spin pumping mediated Gilbert damping

Spin pumping [34] from a FM into an adjacent conductor
has been studied in great detail [35] and has emerged as a key
method for injecting pure spin currents into conductors [48].
The angular momentum thus lost into the conductor results
in a contribution to the magnetic damping on top of the
intrinsic dissipation in the bulk of the magnet. A variant of
spin pumping has also been found to be the dominant cause
of dissipation in metallic magnets [37]. Thus, we evaluate the
Gilbert damping matrix arising due to spin pumping from a
two-sublattice magnet [36] into an adjacent conductor acting
as an ideal spin sink.

Within the macrospin approximation, the total spin con-
tained by the magnet is given by

SSS = −MA0Vm̂mmA

|γA| − MB0Vm̂mmB

|γB | . (19)

The spin pumping current emitted by the two-sublattice mag-
net has the following general form [36]:

III s = h̄

e

∑
i,j={A,B}

Gij (m̂mmi × ˙̂mmmj ), (20)

with GAB = GBA, where the spin-mixing conductances
Gij may be evaluated within different microscopic
models [36,49–51]. Equating the spin pumping current
to −ṠSS and employing Eqs. (9) and (10), the spin pumping
contribution to the Gilbert damping matrix becomes

α′
ij = h̄Gij |γi |

eMi0V
, (21)

which in turn implies

η′
ij = h̄Gij

eMi0Mj0V
, (22)

for the corresponding dissipation functional. The resulting
Gilbert damping matrix is found to be consistent with its
general form and constraints formulated in Sec. II. Thus,
employing the phenomenology developed above, we are able
to directly relate the magnetic damping in a two-sublattice
magnet to the spin-mixing conductance of its interface with
a conductor.

V. ANTIFERROMAGNETS

Due to their special place with high symmetry in the
two-sublattice model as well as the recent upsurge of
interest [7–10,52–54], we devote the present section to a
focused discussion on AFMs in the context of the general

results obtained above. It is often convenient to describe the
AFM in terms of a different set of variables:

mmm = m̂mmA + m̂mmB

2
, nnn = m̂mmA − m̂mmB

2
. (23)

In contrast with m̂mmA and m̂mmB , mmm and nnn are not unit vectors
in general. The dynamical equations for mmm and nnn may be
formulated by developing the entire field theory, starting with
the free energy functional, in terms of mmm and nnn. Such a for-
mulation, including damping, has been accomplished by Hals
and co-workers [40]. Here we circumvent such a repetition
and directly express the corresponding dynamical equations
by employing Eqs. (9) and (10) into Eq. (23):

ṁmm = −(mmm × γmμ0HHHm) − (nnn × γnμ0HHHn)

+
∑

p,q={m,n}
αm

pq (ppp × q̇qq ), (24)

ṅnn = −(mmm × γnμ0HHHn) − (nnn × γmμ0HHHm)

+
∑

p,q={m,n}
αn

pq (ppp × q̇qq ), (25)

with

γmμ0HHHm ≡|γA|μ0HHHA + |γB |μ0HHHB

2
, (26)

γnμ0HHHn ≡|γA|μ0HHHA − |γB |μ0HHHB

2
, (27)

αm
mm = αn

nm =αAA + αBB + αAB + αBA

2
, (28)

αm
mn = αn

nn =αAA − αBB − αAB + αBA

2
, (29)

αm
nn = αn

mn =αAA + αBB − αAB − αBA

2
, (30)

αm
nm = αn

mm =αAA − αBB + αAB − αBA

2
. (31)

A general physical significance, analogous to γA,B , may not
be associated with γm,n which merely serve the purpose of
notation here. The equations obtained above manifest new
damping terms in addition to the ones that are typically
considered in the description of AFMs. Accounting for the
sublattice symmetry of the antiferromagnetic bulk while al-
lowing for the damping to be asymmetric, we may assume
γA = γB and MA0 = MB0, with ᾱ ≡ (αAA + αBB )/2, �ᾱ ≡
(αAA − αBB )/2, and αAB = αBA ≡ αod . Thus, the damping
parameters simplify to

αm
mm = αn

nm = ᾱ + αod, (32)

αm
mn = αn

nn = �ᾱ, (33)

αm
nn = αn

mn = ᾱ − αod, (34)

αm
nm = αn

mm = �ᾱ, (35)

thereby eliminating the “new” terms in the damping when
αAA = αBB . However, the sublattice symmetry may not be
applicable to AFMs, such as FeMn, with nonidentical sub-
lattices. Furthermore, the sublattice symmetry of the AFM
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may be broken at the interface [41–43] via, for example, spin
mixing conductances [36,45,55] resulting in αAA �= αBB .

The resonance frequencies and normalized decay rates
[Eqs. (16) and (18)] take a simpler form for AFMs. Substitut-
ing KA = KB ≡ K , γA = γB ≡ γ , and MA0 = MB0 ≡ M0:

ωr± = ± |γ |μ0H0 + 2|γ |M0

√
(J + K )K, (36)

ωi±
ωr±

= J (ᾱ − αod ) + 2Kᾱ

2
√

(J + K )K
± �ᾱ

≈ (ᾱ − αod )

2

√
J

K
+ ᾱ

√
K

J
± �ᾱ, (37)

where we have employed J 
 K in the final simplifica-
tion. The term ∝ √

K/J has typically been disregarded on
the grounds K � J . However, recent numerical studies of
damping in several AFMs [37] find ᾱ 
 ᾱ − αod > 0 thus
suggesting that this term should be comparable to the one
proportional to

√
J/K and hence may not be disregarded. The

expression above also suggests measurement of the normal-
ized decay rates as a means of detecting the sublattice asym-
metry in damping. For AFMs symmetrical in the bulk, such
an asymmetry may arise due to the corresponding asymmetry
in the interfacial spin-mixing conductance [36,45,55]. Thus,
decay rate measurements offer a method to detect and quantify
such interfacial effects complementary to the spin pumping
shot noise measurements suggested earlier [36].

VI. DISCUSSION

We have presented a phenomenological description of
Gilbert damping in two-sublattice magnets and demonstrated
how it can be exploited to describe and characterize the
system effectively. We now comment on the limitations and
possible generalizations of the formalism presented herein.
To begin with, the two-sublattice model is the simplest de-
scription of ferri- and antiferromagnets. It has been successful
in capturing a wide range of phenomenon. However, recent
measurements of magnetization dynamics in nickel oxide
could only be explained using an eight-sublattice model [56].
The temperature dependence of the spin Seebeck effect in
yttrium iron garnet also required accounting for more than
two magnon bands [57]. A generalization of our formalism to
a N -sublattice model is straightforward and can be achieved
via a Rayleigh dissipation functional with N2 terms, counting
ηij and ηji as separate terms. The ensuing Gilbert damping
matrix will be N × N while obeying the positive determinant
constraint analogous to Eq. (13).

In our description of the collinear magnet [Eq. (14)],
we have disregarded contributions to the free energy which
break the uniaxial symmetry of the system about the z axis.
Such terms arise due to spin-nonconserving interactions [58],
such as dipolar fields and magnetocrystalline anisotropies,
and lead to a mixing between the plus- and minus-polarized
modes [30]. Including these contributions converts the two
uncoupled 2 × 2 matrix equations [Eq. (15)] into a single
4 × 4 matrix equation rendering the solution analytically
intractable. A detailed analysis of these contributions [30]
shows that their effect is most prominent when the two

modes are quasidegenerate, and may be disregarded in a first
approximation.

In evaluating the resonance frequencies and the decay
rates [Eqs. (16) and (18)], we have assumed the elements of
the damping matrix to be small. A precise statement of the
assumption employed is ωi � ωr , which simply translates
to α � 1 for a single-sublattice ferromagnet. In contrast,
the constraint imposed on the damping matrix within the
two-sublattice model by the assumption of small normalized
decay rate is more stringent [Eq. (18)]. For example, this
assumption for an AFM with αAB = �ᾱ = 0 requires ᾱ �√

K/J � 1. This stringent constraint may not be satisfied
in most AFMs [37], thereby bringing the simple Lorentzian
shape description of the FMR into question. It can also be
seen from Fig. 2 that the assumption of a small normalized
decay rate is not very good for the chosen parameters.

VII. SUMMARY

We have developed a systematic phenomenological de-
scription of the Gilbert damping in a two-sublattice magnet
via inclusion of a Rayleigh dissipation functional within
the Lagrangian formulation of the magnetization dynamics.
Employing general expressions based on symmetry, we find
cross-sublattice Gilbert damping terms in the LLG equations
in consistence with other recent findings [36–38]. Exploiting
the phenomenology, we explain the enhancement of damp-
ing [23,39] in a compensated ferrimagnet without requiring an
increase in the damping parameters [28]. We also demonstrate
approaches to probe the various forms of sublattice asym-
metries. Our work provides a unified description of ferro-
via ferri- to antiferromagnets and allows for understanding a
broad range of materials and experiments that have emerged
into focus in the recent years.
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APPENDIX A: GENERALIZED RAYLEIGH
DISSIPATION FUNCTIONAL

As compared to the considerations in Sec. II, a more
general approach to parametrizing the dissipation functional
is given by

R[ṀMMA,ṀMMB] =1

2

∫
V

∫
V

d3r ′d3r
∑

p,q={A,B}

∑
i,j={x,y,z}

Ṁpi (rrr )

× ηij
pq (rrr, rrr ′)Ṁqj (rrr ′). (A1)

This form allows us to capture the damping in an environ-
ment with a reduced symmetry. However, the larger num-
ber of parameters also makes it difficult to extract them
reliably via typical experiments. The above general form
reduces to the case considered in Sec. II when η

ij
pq (rrr, rrr ′) =

184402-6
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ηpqδij δ(rrr − rrr ′) and ηpq = ηqp. Furthermore, the coefficients
η

ij
pq may depend upon MMMA(rrr ) and MMMB (rrr ) as has been

found in recent numerical studies of Gilbert damping in
AFMs [37].

APPENDIX B: DAMPING MATRIX

The Rayleigh dissipation functional considered in the main
text is given by

R[ṀMMA,ṀMMB] =
∫

V

d3r

(
ηAA

2
ṀMMA · ṀMMA + ηBB

2
ṀMMB · ṀMMB

+ ηABṀMMA · ṀMMB

)
, (B1)

which may be brought into the following concise form with
the notation ˜̇MMM ≡ [ṀMMA ṀMMB]ᵀ:

R[ṀMMA,ṀMMB] = 1

2

∫
V

d3r ˜̇MMMᵀ η̃ ˜̇MMM, (B2)

where η̃ is the appropriate matrix given by

η̃ =
(

ηAA ηAB

ηAB ηBB

)
. (B3)

Considering an orthogonal transformation ˜̇MMM = Q̃ ˜̇M, the
dissipation functional can be brought to a diagonal form

R[ṀMMA,ṀMMB] = 1

2

∫
V

d3r ˜̇Mᵀ Q̃ᵀη̃Q̃ ˜̇M, (B4)

where Q̃ᵀη̃Q̃ is assumed to be diagonal. The positivity of the
dissipation for arbitrary magnetization dynamics then requires
the two diagonal elements to be non-negative which further
entails the non-negativity of the determinant of η̃:

|Q̃ᵀη̃Q̃| � 0, (B5)

|Q̃ᵀ||η̃||Q̃| � 0, (B6)

|η̃| � 0 ⇒ ηAAηBB � η2
AB. (B7)
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