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Infrared reflectance, transmittance, and emittance spectra of MgO from first principles
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By using density functional theory calculations we determined the influence of anharmonic effects on the
infrared reflectance, transmittance, and emittance of MgO. The goal is to determine the limit of validity
of a perturbative (multiphonon) approach. MgO is chosen as a test material because of the availability of
different kinds of radiative properties measured experimentally. Nonanalytic terms of the three-phonon scattering
coefficients are explicitly calculated and do not provide measurable effects. The agreement is overall very good to
such an extent that, already at room temperature, one can clearly identify regions in which four-phonon scattering
processes are dominant with respect to the three-phonon ones. The influence of isotopic disorder at cryogenic
temperatures is also settled.
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I. INTRODUCTION

Density functional theory (DFT) is considered a predictive
approach to determine anharmonic phonon-phonon interac-
tions in crystals [1]. Such a computational tool is a necessary
ingredient, for example, of the first-principles computational
methods recently developed to evaluate phonon thermal trans-
port in real systems [2–9]. In this context, finding measurable
quantities that can provide an independent benchmark for the-
oretical approaches is of paramount importance. Surprisingly,
DFT has rarely been used to interpret the anharmonic features
observable in IR reflectance, transmittance, and emittance
spectra. These kind of spectra provide a relatively direct probe
to anharmonic properties in heteropolar materials and can be
used to directly determine the anharmonic phonon self-energy
of the optically active modes [10,11].

In addition, the ability to simulate anharmonic properties
of the dielectric constant is expected to have an impact on
radiative heat-transfer studies [12]. For homogeneous het-
eropolar compounds (single crystals, glass), the key quan-
tity for describing the ensemble of radiative exchanges is
the spectral emittance for a range of wave numbers from
200 to 1500 cm−1. This adimensional quantity is defined
as the ratio of the spectral emissive power of a body to
the spectral emissive power of the blackbody at the same
temperature. Modeling an appropriate dielectric response
allows us to determine microscopic mechanisms responsi-
ble for the macroscopic radiative behavior. Improving our
knowledge of radiative heat exchanges could have practi-
cal aspects for the elaboration of new materials working
at high temperatures (refractory materials for solar-to-heat
conversion, nuclear reactor cores, thermal shields for space
shuttles, infrared emitters) or for temperature measurements

in extreme conditions via contactless methods (pyrometry, IR
thermography).

MgO is very well characterized experimentally, and it
is also a system of choice for DFT calculations given the
excellent agreement with measured phonon dispersions [13].
But a close look at the literature reveals that several questions
are still open. Indeed, Ref. [14] shows that reflectance- and
transmittance-measured spectra can be used to determine
the phonon self-energy in a wide spectral range (0 < ω <

2000 cm−1). However, in that work, the phonon self-energy is
determined after a fitting procedure limiting the physical in-
terpretation and not allowing predictions for materials whose
spectra are not known. Reference [15] reports reflectivity
measurements and shell-model calculations for Mg1−xFexO,
showing that the relevant characteristics of the spectra are
well captured by three-phonon anharmonic scattering. From
the measurements of Ref. [15] one can, however, extract
relevant information only in a limited frequency range (i.e.,
for ω < 800 cm−1, within the reststrahlen band). References
[16,17] reported first-principles molecular-dynamics (MD)
calculations which can be used to interpret reflectivity in a
wide temperature range. Unfortunately, the results that can
be obtained by MD are not as detailed as those that can
be obtained with a phonon-scattering perturbative approach
(as in Ref. [15]). More recently, Ref. [18] reported DFT
calculations of the three-phonon relaxation of the IR-active
MgO optical phonon to study dielectric-loss measurements
in a low-frequency spectral range (<200 cm−1). The results
of Ref. [18] include only coalescence three-phonon scattering
processes and are not useful above 200 cm−1, where decay
scattering processes dominate.

Another question that needs to be addressed concerns the
role of the so-called nonanalytic terms in the phonon-phonon
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scattering. Although these terms are usually assumed to be
negligible, a few examples of this kind of study are actually
present in the literature [19]. A direct evaluation for MgO is
then desirable.

In the present work, to clarify the situation we calculate
the influence of anharmonic effects, including both three- and
four-phonon scattering processes, on the infrared reflectance,
transmittance, and emittance spectra of rocksalt MgO by using
DFT. The goal is to determine the limit of validity of a
perturbative (multiphonon) approach.

II. GENERAL CONSIDERATIONS

Given an electromagnetic wave incident on the flat surface
of a material, reflectance R and transmittance T are the
fraction of the reflected and transmitted power. At the local
thermal equilibrium and by considering Kirchoff’s law of
thermal radiation, the emittance can then be defined as E =
1 − R − T . For a slab of finite thickness, R and T can be
obtained once the complex dielectric function ε̃(ω) of the
material is known. Here, ω is the frequency of the light and,
for simplicity, we consider an isotropic crystal (ε̃ is then a
scalar). R and T include the effects of multiple reflections
between the two faces of the slab. Let us call r the reflectivity
(which is the reflectance of a semi-infinite slab) and τ the
power-loss factor. In the case of normal incidence, by solving
the Maxwell equations [14,20],

r =
∣∣∣∣∣
√

ε̃ − 1√
ε̃ + 1

∣∣∣∣∣
2

, τ = exp[−4πdIm(
√

ε̃)/λ],

T = τ (1 − r )2

1 − r2τ 2
, R = r (1 + τT ), E = 1 − R − T . (1)

Here, the quantities ε̃, r , τ , R, and T are functions of ω. d

is the thickness of the slab, Im(z) is the imaginary part of the
complex number z, and 1/λ = ω/(2πc) is the wave number.

Let us consider a heteropolar crystal with only one optical
phonon mode (the generalization is straightforward). Accord-
ing to the Lorentz model,

ε̃(ω) = ε∞ + Sω2
0

ω2
0 − ω2 − iωγ

, (2)

where ε∞ is the electronic dielectric constant and ω0, S, and γ

are the frequency, oscillator strength, and damping (FWHM)
of the TO phonon mode. Using the notation of Ref. [1], S =
4πZ2/(vμω2

0 ), where Z is the Born effective charge, μ is the
reduced mass of the oscillator, and v is the unit-cell volume
of the crystal. A classical result of solid-state physics is that
Eq. (2) explains the presence of the so-called reststrahlen band
in the infrared reflectivity of heteropolar crystals. Equation (2)
does not, however, explain the additional features observed
within the reststrahlen band (see, e.g., Fig. 6.32 of Ref. [21])
in simple crystals.

A more general form for ε̃(ω) can be obtained within
perturbation theory [10,11],

ε̃(ω) = ε∞ + Sω2
0

ω2
0 − ω2 + 2ω0�(ω)

, (3)

where �(ω) is the frequency-dependent self-energy of the
TO phonon, accounting for anharmonic phonon-phonon in-
teractions. �(ω) is a complex quantity which can be de-
composed as �(ω) = �(ω) − i�(ω) (with � and � being
real). While �(ω0) is the anharmonic shift of the TO phonon
frequency, �(ω0) is its anharmonic broadening (half width
at half maximum (HWHM); see, e.g., [22,23]). The most
important difference between Eqs. (2) and (3) is that, while
in Eq. (2) the damping is a constant, in Eq. (3) it depends on
ω (by comparing Eqs. (2) and (3) the frequency-dependent
damping is actually γ (ω) = 2ω0�(ω)/ω; see Ref. [24]). This
can have observable consequences when �(ω) displays sud-
den variations.

The physical meaning of the frequency-dependent broad-
ening is not obscure. Equations (2) and (3) represent the re-
sponse to an electromagnetic field oscillating with frequency
ω, and thus, the polar atoms are forced to oscillate at ω.
Moreover, the anharmonic broadening is given by a sum
of scattering processes in which the energy is conserved
[10,22,23], but the energy of the initial vibration is ω and
not ω0 (the frequency of the decoupled TO mode). �(ω)
is actually expected to undergo sudden variations [14] since
the possibility to decay in certain phonon branches becomes
available only below certain energy thresholds (because of the
energy conservation). This is especially true for simple crys-
tals (a few atoms per unit cell) where Van Hove singularities in
the phonon density of state are, generally, more pronounced.

III. COMPUTATIONAL APPROACH

In the present work, we consider the phonon self-energy �

to be the sum of the following contributions:

�(ω) = �(3ph)(ω) + �(4ph)(ω) + �(isot )(ω), (4)

�(3ph)(ω) = �(B )(ω) + �(L) + �ωa. (5)

�(3ph) and �(4ph) are the contributions whose imaginary
part is due to three- and four-phonon anharmonic scatter-
ings, respectively. �(isot ) is the self-energy component due to
isotopic-disorder scattering.

�(B )(ω) and �(L) are defined in Ref. [23] (see also [22]).
�ωa corresponds to the optical-mode harmonic-frequency
shift associated with the lattice thermal expansion. �(L) and
�ωa are not actually due to three-phonon scattering, but they
are real and do not depend on ω. �(B )(ω) is due to three-
phonon scattering, has an imaginary component, and depends
on ω. �(B )(ω), �(L), and �ωa are gathered together into
�(3ph) because they are the lowest-order terms in the perturba-
tive expansion, � = �(3ph) + O(h̄2) [22,23], and thus, they
are expected to provide a shift of the same order of magnitude.
We remark, however, that the important characteristics of the
spectra presently shown are determined by the imaginary part
of �(ω). The real part provides contributions negligible on
the scale of the figures. The only notable exception concerns
the position of the rise of the reststrahlen band near ω0, which
is sensitive to this frequency shift.

�(4ph)(ω) is the four-phonon scattering contribution cor-
responding to Eq. (2.15b) of Ref. [25]. It is imaginary and
frequency dependent. The corresponding real part (Eq. (2.14c)
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of [25]) is included but does not provide relevant changes
to the figures. Finally, the isotopic-disorder contribution
�(isot )(ω) is calculated using Eq. (11) of Ref. [26], noting that
1/τ in Ref. [26] is the FWHM, while with the present defini-
tions � corresponds to HWHM. The needed mass variances
are determined using data from Ref. [27].

All the described quantities can be calculated entirely from
first principles with the method of Ref. [1]. DFT calculations
were done with the QUANTUM ESPRESSO package [28] within
the pseudopotential [29] and the local-density approxima-
tion [30] (LDA; 100 Ry plane-wave cutoff and 3 × 3 × 3
shifted electronic integration grid). These approximations
(DFT+LDA) are chosen since they are known to reproduce
MgO phonon dispersion extremely well [13,18]. Reflectance
and transmittance spectra are tremendously sensitive to LO
and TO phonon mode dispersion, so that this extremely
good agreement is a conditio sine qua non to well describe
all the features of these spectra. The calculation of certain
terms of � is not trivial since one needs to determine the
anharmonic phonon-scattering coefficients (APSCs) among
all the possibly involved phonons. �(B ) depends on three-
phonon scattering, and the APSCs among three phonons with
distinct wave vectors can be calculated with the approach of
[31,32]. To calculate �(L) and �(4ph) one needs to determine
scattering among four distinct phonon modes. However, since
one of the phonons is the optical mode at zero wave vector,
q = 0, the needed APSC can be determined by finite-
difference differentiation (displacing the atoms along the
q = 0 optical mode) of a three-phonon APSC calculated as in
[32]. All the scatterings were first calculated on a 4 × 4 × 4
phonon wave vector grid and then Fourier interpolated on a
100 × 100 × 100 grid (the procedure is described in detail
in Ref. [32]). Tests were done using up to 8 × 8 × 8 grids.
The equilibrium lattice spacing of MgO is a0 = 4.198 Å,
corresponding to ω0 = 411.8 cm−1. To determine �ωa we
need to determine the dependence of the lattice spacing on
the temperature a(T ). Here, a(T ) can be calculated using the
quasiharmonic approximation [13], which, however, for MgO,
overestimates the thermal expansion above T = 295 K [13].
We then used quasiharmonic calculations to determine the
T = 0 lattice spacing a(0), which turns out to be 0.43% higher
than a0 [a(0) �= a0 because of zero-point motion], compatible
with calculations in Ref. [13]. For a given temperature, we
then considered the measured relative lattice thermal expan-
sion, taken from Ref. [33], to determine a(T ). By calculating
the harmonic frequency of the TO mode at the lattice spacings
thus obtained, we have �ωa = −12.3, −16.6, −41 cm−1 for
T = 0, 295, 950 K, respectively. At the same temperatures
the shift associated with �(L) is +9.5, +12.7, +32 cm−1,
and that from �(B )(ω0) is −6.1, −8.7, −22 cm−1. The total
anharmonic shift of ω0 is then −8.9, −12.6, −31 cm−1 at
T = 0, 295, 950 K, respectively. Determining the shift in
this way for higher temperatures would be misleading since
higher-order terms should be relevant.

Finally, from the present DFT calculations ε∞ = 3.10
[which should be used in Eq. (3)]. This value slightly over-
estimates the experimental value ε∞ = 2.94 because of a
well-known error of DFT [34]. Unless otherwise stated, in
the following we will use ε∞ = 2.94. This is the only fitted
parameter of the simulations and allows a better description

of the high-energy reflectance and of the LO frequency drop
of the reststrahlen band.

IV. NONANALYTIC TERM CONTRIBUTION

In insulating heteropolar materials the dynamical matrix
can be decomposed in two components with or without an
analytic dependence on the wave vector q [1]. The nonanalytic
component is determined by the Born effective charges and
is associated with the LO/TO splitting phenomenon. A sim-
ilar analytic/nonanalytic decomposition can be done for the
anharmonic phonon-phonon scattering coefficients necessary
to compute the phonon self-energy (see, e.g., Ref. [19]). In a
different point of view, following Cowley’s work [10], there
are six contributions to the susceptibility, associated with the
six diagrams from Fig. 10 of Ref. [10]. These contributions
are of the same order in h̄, but while the first one (the most
commonly used and described in the literature) depends only
on the first derivative of the polarization with respect to atomic
displacements, the others depend on higher-order derivatives.
The calculations described in the previous sections include
only analytic contributions, or, in other words, only the first
of Cowley’s diagrams.

The contributions from the other diagrams depend on the
second derivative of the polarization and have been calculated
by using finite differences of the Born effective charges cal-
culated in a supercell (see Appendix A). It is interesting to
notice that, by using an approach different from that described
in Ref. [10], the inclusions of these diagrams can be done
through an appropriate “dressing” of the phonon self-energy
(see Appendix A), without modifying the usual expression
for the dielectric constant [Eq. (3)]. This approach has the
advantage of making transparent the link between Ref. [19],
which provides two distinct expressions for the broadening
of the TO and LO optical phonons, and Ref. [10], where
the broadening of the LO phonon is not explicitly deduced.
However, the correction of the self-energy associated with
these diagrams is very small (see Appendix A) and, for the
present purpose, can be neglected.

Cowley also described diagrams depending on the third
derivative of the polarization (with respect to atomic posi-
tions), but according to direct calculations (see Appendix B),
their contribution is also negligible: ∼0.05% variation of Z at
room temperature.

The calculations described in the present section and in the
appendixes are corrections to the �(3ph) term in Eq. (4). Given
their negligible impact, one can safely assume that analogous
corrections for the �(4ph) term should not be relevant.

V. RESULTS AND DISCUSSION

Figures 1(a) and 1(b) compare different kinds of calcula-
tions with the room-temperature reflectance and transmittance
measurements from Ref. [14]. Calculations labeled L′ and L
are done by considering a frequency-independent self-energy,
�(ω) = �(ω0), and thus correspond to the Lorentz model,
Eq. (2). As expected [14], this kind of approach reproduces
measurements only at a qualitative level. All the parameters
used for the L′ model are from DFT calculations; in particular
L′ is done by using ε∞ = 3.10. The only difference between
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FIG. 1. (a) and (b) MgO infrared room-temperature reflectance
and transmittance for a d = 0.3 mm thick plate. Measurements (exp.)
are from Ref. [14]. All the other lines are calculations done at
the different levels of approximation described in the text. �(ω)
represents our best result. The vertical arrow indicates the harmonic
TO phonon frequency. (c) and (d) �(ω) = −Im[�(ω)], where � is
the calculated self-energy of the TO mode, Eq. (4). Data taken from
Ref. [14] (exp.) vs the present calculation (tot.) decomposed into
three-phonon (3ph), four-phonon (4ph), and isotopic-disorder (isot.)
contributions. (c) and (d) report the same data on different scales.

the L′ and L models is that, in the last case, for ε∞ in Eq. (3)
we have used the experimental value ε∞ = 2.94 [34]. The
comparison between L′ and L calculations from Fig. 1(a)
illustrates the influence of this parameter. In particular, by
using the ε∞ experimental value (L model), one obtains a
better calculation/measurement agreement for ω0 (related to
the reflectance drop position of the reststrahlen band) and
for the high-frequency (ω > 1000 cm−1) behavior of the
reflectance.

In Figs. 1(a) and 1(b), calculations labeled �(3ph) include
only the lowest-order terms of the self-energy [�(4ph) =
�(isot ) = 0 in Eq. (4)], while � labels our best calculations
including all the terms in Eq. (4). From Fig. 1(a), the inclusion
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FIG. 2. IR reflectivity at various temperatures: calculations
(calc.) vs measurements (exp.) from Ref. [35].

of the lowest-order terms in the self-energy �(3ph) repro-
duces very well the reflectance in the low-frequency region,
ω < 150 cm−1, and the position of the shoulder observed at
∼650 cm−1 within the reststrahlen band. The inclusion of
four-phonon and isotopic scatterings provides only a small but
observable improvement in the 400/500 cm−1 region.

From Fig. 1(b), the measured transmittance is also very
well reproduced. Here, however, the lowest-order processes
�(3ph)(ω) are not able to reproduce data above 1100 cm−1.
Indeed, above ∼1100 cm−1 three-phonon decay processes go
to zero because of the unavailability of scattering channels,
and only the inclusion of four-phonon processes [included
in �(ω)] can provide a reasonable agreement with measure-
ments.

Figures 1(c) and 1(d) show the imaginary part of the self-
energy �(ω) and compare it with that taken from Ref. [14]
(see Fig. 3 of Ref. [15] for an analogous comparison with
the shell-model calculation). We recall that the �(ω) from
Ref. [14] is an arbitrary-shape function inserted into the
dielectric function expression in order to fit the experimental
spectra. Having this in mind and considering that the authors
of Ref. [14] did not have access to an independent determi-
nation of �(ω), the agreement with the present calculation
is remarkable: the presence of four major peaks at ∼105,
650, 860, and 990 cm−1 and their shape are indeed consis-
tently described by the two approaches. Note that the three-
phonon contribution to � has a minimum near 400 cm−1.
This energy separates remarkably well a low-frequency region
where three-phonon coalescence processes are dominant (at
room temperature) with respect to decay ones from a high-
frequency region where decay processes are dominant.

The most evident disagreement in Fig. 1(c) concerns the
intensity of the 650-cm−1 peak, which determines the pres-
ence of the reflectance shoulder at that frequency. DFT-LDA
calculations overestimate the intensity of this peak by ∼30%,
and this disagreement cannot be attributed to the neglect
of some terms in the calculations (which would eventually
further increase the peak). This problem is observable already
at cryogenic temperatures and becomes more evident by in-
creasing the temperature, as can be seen in the reflectivity
spectra in Fig. 2. Indeed, already at T = 5 K, the intensity
of the calculated reflectivity shoulder (at ∼650 cm−1) clearly
underestimates the measurements.
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(a)

(b)

FIG. 3. IR emittance at various temperatures: calculations (calc.)
vs measurements (exp.). (a) Measurements from Ref. [14] (the same
as in Fig. 1) and (b) measurements digitized from Ref. [36]. Here, d

is the thickness of the plate. Dotted lines are T = 295 K calculations
including only three-phonon scattering (and not four-phonon ones).

Let us go back to Figs. 1(c) and 1(d). The four-phonon
scattering contribution to �(ω) is visible in two regions: above
1100 cm−1, where it is the dominant contribution, and in the
300/500 cm−1 region. Here, the three-phonon scattering is
relatively small and becomes comparable to both four-phonon
and isotopic-disorder contributions. The importance of the
four-phonon contribution in the high-frequency domain is
evident in the emittance spectra of Fig. 3. Already at room
temperature (T = 295 K ∼ 0.1Tm, where Tm is the melting
temperature) there is an evident disagreement between mea-
surements and calculations done including only three-phonon
scattering. At T = 295 K, the inclusion of four-phonon pro-
cesses is, however, enough to have reasonable agreement in
the whole spectral range [Figs. 3(a) and 3(b)]. This approach
still provides qualitative agreement in a relatively wide spec-
tral range (up to 1500 cm−1) at high temperatures [T =
1065 K ∼0.3Tm; Fig. 3(b)].

At room temperature, the broadening due to isotopic dis-
order is, overall, negligible. However, this contribution does
not depend on temperature and is present in a region in
which � is relatively small [Figs. 1(c) and 1(d)]. Because
of this, it becomes very visible at cryogenic temperatures
in the transmittance spectra. Indeed, Fig. 4 compares the
present calculations with the transmittance measurements
from Ref. [37]. The agreement for temperatures below 100
K is extremely good and clearly indicates that the measured
“valley” at ∼300 cm−1 is due to isotopic disorder.

Finally, to make a comparison with similar data available
in the literature [14,35], Fig. 5 reports the imaginary part of
the dielectric function and the extinction coefficient, calcu-
lated at various temperatures. Calculations above T = 295 K
cannot be considered quantitatively correct but are given as
a reference. On the other hand, Fig. 6 reports emissivity
spectra (defined as 1 − τ ) calculated for various values of the
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FIG. 4. Temperature evolution of the MgO transmittance for a
0.5-mm-thick plate. Dots are measurements digitalized from [37].
Dotted lines are calculations in which the isotopic-disorder contribu-
tion is set to zero. Solid lines are our best calculations (which include
isotopic disorder).

thickness parameter d and compared with those obtained in
Ref. [38]. Data from Ref. [38] were obtained from classical
dispersion analysis [39], using parameters obtained after fit-
ting of reflectivity measurement (for 0.1 � d � 5 μm) or de-
rived from the measured absorbance (for 10 � d � 100 μm).
The procedure of Ref. [38] captures the overall behavior of the
emissivity, which for small d mimics absorption spectra with
a prevalent strong peak around 400 cm−1, while for larger
d values becomes pinned at unity in the absorbing region.
However, the comparison of Figs. 6(a) and 6(b) confirms how
fitting reflectance measurements provides a limited amount
of information in the low-frequency region (ω < 200 cm−1)
and misses important features above 700 cm−1, where an-
harmonicity becomes relevant. In this region, data derived
from absorbance measurements [d � 10 μm in Fig. 6(b)]
provide a reasonable description of the emissivity but were
not used to describe the low-frequency behavior. Calculations
in Fig. 6(a) are done at room temperature to compare them
with those in Ref. [38]. Higher temperatures would cause
additional broadening, whereas cryogenic features would be
narrower [38].

(a)

(b)

FIG. 5. Calculated imaginary part of the dielectric constants and
extinction coefficient at various temperatures.
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FIG. 6. Room-temperature emissivity (defined as 1 − τ ) calcu-
lated for various thicknesses d . (a) Present calculations. (b) Data
digitalized from Ref. [38] (see the text).

VI. CONCLUSIONS

We studied anharmonic (multiphonon) features of the in-
frared spectra of MgO using first-principles (DFT) calcu-
lations. Nonanalytic terms of the three-phonon scattering
coefficients were explicitly calculated and do not provide
measurable effects. Concerning reflectivity, which probes a
limited frequency range, the frequency of the most relevant
spectral features is well described by DFT, and only the
intensity of the intense peak of the phonon self-energy at
∼640 cm−1 is overestimated. On the other hand, by compar-
ing calculations with transmittance and emittance data (which
probe a much wider range), the agreement is, overall, very
good, to the extent that, already at room temperature, one
can clearly identify regions in which four-phonon scattering
is dominant with respect to the three-phonon one. The influ-
ence of isotopic disorder (negligible at room temperature) is
evident at cryogenic temperatures.
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APPENDIX A: LO SELF-ENERGY DRESSING

According to Cowley’s work [10], at the lowest order, there
are six contributions to the susceptibility, associated with the
six diagrams [labeled (a)–(f)] from Fig. 10 of Ref. [10]. The
first contribution, (a), is the most commonly described/used
in the literature, and it is included in the approach described
in Sec. III. Here, we describe how contributions (b)–(d) have

been calculated. Appendix B will then report on the calcula-
tion of diagrams (e) and (f).

Let us consider a crystal and call uls the displacement of
one atom in the unit cell identified by the lattice vector Rl .
The index s defines the atom in the unit cell and the Cartesian
coordinate. ωqj and z

qj
s are the angular frequency and the

eigenvector (orthonormal in the unit cell) of the phonon with
wave vector q and branch index j . The Born effective charges
can be defined as Zα

s = 1
N

∑
l

∂Mα

∂uls
, where Mα is the total

polarization of the crystal along the Cartesian coordinate α

and N is the number of cells. The charge associated with a
specific q = 0 mode can then be defined as

Mα
0j =

∑
s

√
h̄

2msω0j

z0j
s Zα

s , (A1)

where ms is the mass of the atom associated with the s index.
Zα

s and Mα
0j can be routinely calculated thanks to the

computational approach described in Ref. [1]. We now define

Mα
−qj,qj ′ = 1

N

∑
l,l′,s,s ′

√
h̄

2msωqj

√
h̄

2ms ′ωqj ′
z−qj
s z

qj ′
s ′

× eiq·(Rl′ −Rl )
∂2Mα

∂uls∂ul′s ′
. (A2)

This quantity is a necessary ingredient to calculate Eqs. (6.9)
and (6.10) of Ref. [10], corresponding to Cowley’s diagrams
(b)–(d). In the present work, the second derivative of the
polarization with respect to atomic displacements has been
calculated on a 3 × 3 × 3 MgO supercell by finite differen-
tiation of the Born effective charges with respect to finite
displacements of the atomic positions. Mα

−qj,qj ′ can then
be determined at any q by standard Fourier interpolation
techniques. Analogous calculations have been reported, for
example, in Ref. [19] to determine the broadening of the
LO optical phonon and in Refs. [40,41] to determine the
two-phonon spectrum of Si and Ge.

To study the effects of this interaction, let us consider the
dielectric tensor is ε̃α,β (ω) = ε

α,β
∞ + 4πχα,β (ω), with

χα,β (ω) = 1

vh̄

∑
j

2ω0jM
α
0jM

β

0j

ω2
0j − ω2 − 2ω0j�0j (ω)

. (A3)

Here, v is the unit-cell volume, and the sum runs over the
optical modes with q = 0. In the present case the optical
modes number three, are degenerate, and can be considered
polarized along the three Cartesian directions. The expression
can then be simplified with

χα,β (ω) = 1

vh̄

2ω0M
2
0

ω2
0 − ω2 + 2ω0�α (ω)

δα,β, (A4)

where Mα
0β = δα,βM0 and ω0β = ω0. To further simplify the

discussion, we consider only the �(B )(ω) contribution from
Eq. (5), having

�α (ω) = −1

Nh̄2

∑
q,j,j ′

∣∣V (3)
0α,−qj,qj ′

∣∣2
F (ω,ωqj , ωqj ′ ). (A5)

Here, the three-phonon scattering coefficients V (3) are defined
as in Ref. [32], �α does not depend on the α direction because
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FIG. 7. Self-energy of the q = 0 optical phonon of MgO at room
temperature: variation of the imaginary part after the inclusion of
the nonanalytic corrections to the three-phonon scattering. ��(ω) is
defined in the text.

of symmetry, and

F (ω,ω1, ω2) = (1 + n1 + n2)(ω1 + ω2)

(ω1 + ω2)2 − (ω + iη)2

+ (n2 − n1)(ω1 − ω2)

(ω1 − ω2)2 − (ω + iη)2
, (A6)

where n1 and n2 are the temperature-dependent Bose-Einstein
occupations related to ω1 and ω2.

After some algebra, one can see that the inclusion of
Cowley’s diagrams (b)–(d), which can be calculated with
Eqs. (6.8), (6.9), and (6.10) of Ref. [10], is equivalent (at the
same order in h̄) to substituting V (3) in Eq. (A5) with

Ṽ
(3)

0α,−qj,qj ′ = V
(3)

0α,−qj,qj ′ − h̄
Mα

−qj,qj ′

M0

ω2
0 − ω2

2ω0
. (A7)

In practice, the effects of Cowley’s diagrams (b)–(d) can
be seen as a dressing of the three-phonon scattering. Note

that Ref. [19] discusses only two special cases of Eq. (A7):
ω = ωTO = ω0 and ω = ωLO. For ω = ω0 (i.e., when the
vibration is decoupled from the electric field oscillation) the
dressing is zero. On the other hand, by inserting ω = ωLO in
Eq. (A7), after some algebra, one can obtain the expression for
the broadening of the LO phonon already derived in Ref. [19]
[keep in mind the comment on the damping given after Eq. (3)
and that ω2

LO − ω2
TO = 8πω0M

2
0 /(h̄vε∞)].

Figure 7 shows the effects of correction of Eq. (A7) for the
MgO q = 0 optical mode. In particular, it reports ��(ω) =
Im[�(ω) − �̃(ω)], where �(ω) is obtained from Eq. (A5)
as it is written and �̃(ω) is obtained from Eq. (A5) by
substituting V (3) with Ṽ (3) from Eq. (A7).

APPENDIX B: Z THERMAL AVERAGE

By looking at Eq. (6.11) of Ref. [10], it is easy to see that
the inclusion of Cowley’s diagrams (e) and (f) is equivalent to
substituting Mα

0j in Eq. (A3) with

M̃α
0j = Mα

0j + 1

N

∑
q,j ′

Mα
0j,−qj ′,qj ′ × (2nqj ′ + 1), (B1)

where Mα
0j,−qj ′,qj ′ can be defined by generalizing Eq. (A2)

and nqj ′ is the Bose-Einstein occupation associated with ωqj ′

for a temperature T . This kind of integral can be evaluated
stochastically. Indeed, given a crystal and a generic quantity
F ({uls}),

〈F 〉 	 1

N

∑
qj

F−qj,qj (2nq + 1), (B2)

where 〈F 〉 is the quantum statistical average of F at the
temperature T . 〈F 〉 can be evaluated stochastically using the
procedure described, e.g., in Ref. [42]. In practice, we con-
sidered a 3 × 3 × 3 MgO supercell. We generated different
configurations by displacing randomly the atomic positions as
in Ref. [42] and averaged the resulting Born effective charges.
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