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No-go theorem for topological insulators and high-throughput identification of Chern insulators
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For any symmorphic magnetic space group G, we prove that topological band insulators (with vanishing
first Chern numbers) cannot have a ground state composed of a single, energetically isolated band. This no-go
statement means that such topological insulators cannot be realized in tight-binding models with a single, filled,
low-energy band. An implication is that the minimal dimension of the tight-binding Hamiltonian (at each wave
vector) is four, if the topological insulator is stable, i.e., the filled bands remain topological upon addition of
nontopological bands. Otherwise, if the topological insulator is unstable, the minimal dimension is three. In
addition to our no-go statement, we present a surefire recipe to model Chern insulators and unstable topological
insulators, by energetically splitting elementary band representations; this recipe, combined with recently
constructed Bilbao tables on band representations, can be systematized for high-throughput identification of
magnetic and time-reversal-invariant topological materials. All stated results follow from our theorem which
applies to any single, isolated energy band of a G-symmetric Schrödinger-type or tight-binding Hamiltonian: for
such bands, being topologically trivial (in the category of complex vector bundles) is equivalent to being a band
representation of G.
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I. INTRODUCTION

A real-space representation of topological band insulators
is emerging from various directions [1–7], with the unifying
theme that topological nontriviality is fundamentally linked to
an obstruction to constructing Wannier functions [4,8–11]. In
band insulators, the existence of Wannier functions has tra-
ditionally justified that electrons form exponentially localized
wave packets in real space, and therefore the effects of local
disturbances are short ranged [12–14]. Despite the similarity
of such localized wave packets with the electronic orbitals
of atoms, there remains a sharp, group-theoretic distinction
between solids and a lattice of spatially isolated atoms: Wan-
nier functions and atomic orbitals may transform differently
under crystallographic point-group symmetries that preserve
at least one spatial point, as exemplified by rotations or time
reversal. This distinction was first pointed out by Soluyanov
and Vanderbilt [2] for the Kane-Mele [15–20] topological
insulator in Wigner-Dyson symmetry class AII [21]: in this
phase it is impossible to construct a Kramers pair of Wannier
functions centered at the same spatial point [2,4,5], as compar-
atively illustrated in Figs. 1(c) and 1(d). Alternatively stated,
the Wannier functions in the Kane-Mele phase cannot locally
represent time-reversal symmetry.

In the Kane-Mele model, the bands which are filled at
zero temperature exemplify a localizable topological band.
By “localizable” we mean that the band is spanned by
exponentially localized Wannier functions; by “localizable
topological band” we mean a localizable band whose Wannier
functions are obstructed from satisfying the following local
symmetry condition: for any spatial point � , all Wannier
functions centered at � form a representation of all point-
group symmetries that preserve � . If a localizable topological
band is the filled band of an insulator, we refer to this insu-

lator as a localizable topological insulator.1 Included in this
category are all (d � 3)-dimensional topological insulators
with vanishing first Chern class (c1 = 0), and whose protec-
tive symmetries are classified by the magnetic space groups
[22] (numbering 1651 in d = 3). Both time-reversal-invariant
[5,23] and magnetically ordered [24] insulators are consid-
ered; in the former case, the first Chern class vanishes by
symmetry [25]. Examples of localizable topological insulators
that have materialized in laboratories include Bi2Se3 [26,27]
[a three-dimensional (3D) Z2 topological insulator] [28–31],
SnTe [32–34], and KHgSb [35–37] (topological crystalline
insulators) [38–48]. In contrast to these laboratory examples,
not all localizable topological insulators have robust bound-
ary states: they may instead manifest nontrivial windings in
the holonomy of Bloch functions over Brillouin-zone loops
[41,49,50].

This work presents rigorous results that apply in any spatial
dimension d and to solids whose magnetic space groups (de-
noted G) are symmorphic, i.e., G consists only of symmetries
that are factorizable into products of point-group symmetries
with lattice translations. A case in point is SnTe, whose
rocksalt structure has the symmetry of the symmorphic space
group 225; in contrast, nonsymmorphic KHgSb is symmetric
under glide, which is the product of a reflection with half a
lattice translation.

1Our results do not immediately apply to band topological su-
perconductors, which have an additional particle-hole and/or chiral
symmetries in the Bogoliubov–de Gennes formalism [82]. The possi-
bility to formulate band representations for superconductors remains
an open and interesting question.
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FIG. 1. (a), (b) Topological categorization of a simple band [(a)]
and (N > 1)-band subspaces [(b)]. In spatial dimension d � 3, being
localizable is equivalent to having vanishing first Chern class (c1),
as colored blue; phases with c1 �= 0 are colored red. (c), (d) Com-
parison of Wannier functions in a nontopological and topological
(Kane-Mele) phase, with the symmetry of a honeycomb lattice with
staggered sublattices. The size of each dot measures the weight of
the Wannier function on a lattice site; the expectation value of spin
for each Wannier function is indicated by an arrow in the inset. (c)
In the nontopological phase, Wannier functions form Kramers pairs
centered on the same lattice site. (d) In the topological Kane-Mele
phase, every Wannier function is centered on a different lattice site.

Our first result is a no-go statement: a localizable topolog-
ical band cannot be a simple band. By “simple” we mean
a single band that is nondegenerate (in energy) throughout
the Brillouin torus. A localizable band spanned by locally
symmetric Wannier functions is defined to be a band represen-
tation [51–54]. Colloquially, a band representation resembles
a lattice of locally symmetric atomic orbitals [7] [as illustrated
in Fig. 1(c)], and is sometimes referred to as an atomic
insulator [55,56]. The contrapositive of the no-go statement is
that any simple band that is not a band representation cannot
be localizable, i.e., it has nontrivial first Chern class (c1 �= 0);
this is presented pictorially in Figs. 1(a) and 1(b), which
compares the topological categorization of simple bands with
nonsimple bands. To clarify, each of Figs. 1(a) and 1(b) is
a categorization of G-symmetric bands with the same, fixed
number of linearly independent Bloch functions at each wave
vector.2 Equivalently, we mean a categorization of fixed-rank,
G-equivariant vector bundles [57,58], which differs from sta-
bly equivalent classifications based on K-theory [46,59,60] or
symmetry-based indicators [56].

Our results follow from a theorem that applies to simple
bands occurring as energy eigenfunctions of Schrödinger-
type or tight-binding Hamiltonians with the symmetry G: for
such simple bands, being topologically trivial (in the category

2We do not require that a rank-(N > 1) band is connected by band
touchings.

of complex vector bundles) is equivalent to being a band
representation of G.

We have adopted a definition of topological triviality that
is standard in the theory of complex vector bundles [61,62],
but is not universally adopted in the literature of topological
band insulators. In particular, we caution that a recent work
[5] defines triviality as being a band representation, but this
is not equivalent to triviality in the theory of complex vector
bundles. The bundle-theoretic notion of topological triviality,
as well as its relation to the existence of Wannier functions,
is reviewed in Sec. II A. In Sec. II B, we describe how the
inclusion of crystallographic point-group symmetry leads to
two distinct categories for topologically trivial bands, which
we illustrate with well-known examples. A more general and
precise statement of the theorem is provided in Sec. III. One
may question if there is a loss of generality in our restriction
to symmorphic G. Actually, the hypothesis of the theorem
becomes superfluous for all nonsymmorphic magnetic space
groups with at least one nonsymmorphic element (a symmetry
that is partially a translation by a fraction of a lattice vector,
e.g., screw or glide), and possibly even for the minority of
nonsymmorphic groups without nonsymmorphic elements;
these groups just do not allow for simple bands.3

Applications of our theorem include (i) the establishment
of a minimal rank for the tight-binding Hamiltonian of any
localizable topological insulator with symmorphic symmetry.
By “rank” we mean the dimension (at each wave vector) of the
Hamiltonian, or equivalently the number of orthogonal Wan-
nier functions that span the tight-binding Hilbert space in one
primitive unit cell. The ground state of a tight-binding Hamil-
tonian refers to its low-energy, filled bands. The minimal
rank depends on whether the localizable topological ground
state is stable, i.e., whether it remains localizable topologi-
cal upon addition of band representations; stable phases are
classified by topological K-theory [46,59,60], and unstable
(or “fragile” [55]4) phases manifest in a finer classification
of vector bundles [57,58]. We find that the minimal rank
is four in the stable case, and three in the fragile case. A
second application of our theorem is (ii) a surefire recipe to
design and/or identify bands with nontrivial Chern number,
as well as fragile localizable topological bands; this recipe
may be systematized for high-throughput identification of
magnetic and time-reversal-invariant topological materials.
Points (i) and (ii) and other applications are elaborated in
Sec. VIII.

3For space groups with at least one nonsymmorphic element, bands
must be nontrivially connected as a graph due to the monodromy of
symmetry representations, as proven in the Supplemental Material of
[7]. Less general proofs exist for solids without spin-orbit coupling
in [92] and for band representations only in [76]. All type I (without
time-reversal symmetry) and II (with time-reversal symmetry by
itself) nonsymmorphic magnetic space groups have nonsymmorphic
elements in d = 2, but not in d � 3. For nonsymmorphic space
groups without nonsymmorphic elements, we are not aware of a
general proof that simple bands do not exist; however, this seems
empirically to be true for specific case studies in d = 3 [24,76,92,93].

4“Fragile” is a symmetry-enriched analog of “nontrivial but stably
trivial” in bundle theory [4,62].
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Section VII generalizes the theorem to half-integer-spin
representations of point-group symmetries, with application
to solids with spin-orbit coupling. After establishing a few
preliminary results on space groups and their representations
in Sec. IV, we prove in Sec. V that a simple band that is
a band representation is topologically trivial. The converse
statement, that topologically trivial simple bands are band
representations, is proven in Sec. VI. Finally, in Sec. IX, we
summarize our results from the perspective of establishing
rank constraints for bands.

For quick reference, we collect [in (i)–(iv) below] the
definitions of several key terms used throughout this work.
Many of these definitions are stated more elaborately in Secs.
I and III. A version of our theorem that is most physically
applicable is stated in (v) below; a more general statement of
the theorem can be found in Sec. III.

(i) An N -band subspace comprises N orthogonal Bloch
functions at each wave vector (k) in the Brillouin d-torus T d .
An N -band subspace that occurs as an energy eigenfunction
of a Hamiltonian is assumed to be energetically isolated, i.e.,
at each wave vector, an energy gap separates this subspace
from all other higher- and lower-energy bands. Often, we will
use band as a shorthand for an N -band subspace; N should be
deducible from the context. A one-band subspace is a simple
band, and a multiband (N > 1) subspace is a nonsimple band.

(ii) A localizable N -band subspace (in short, localizable
band) is spanned by orthogonal Wannier functions (num-
bering N in each primitive unit cell); all Wannier functions
referred to in this work should be understood as exponentially
localized. For a localizable band that has the symmetry of
a magnetic space group G (in short, is G symmetric), the
corresponding Wannier functions must form a representation
of G.

(iii) A rank-N band representation of G is a localizable, G-
symmetric, N -band subspace that is locally symmetric. The lo-
cal symmetry condition is as follows: For any spatial point � ,
all Wannier functions centered at � form a finite-dimensional
representation of the subgroup of G that preserves � . If a
localizable band is obstructed from being locally symmetric, it
is defined to be a localizable topological band. If a localizable
topological band is the filled band of an insulator, we refer to
this insulator as a localizable topological insulator.

(iv) An N -band subspace is topologically trivial in the
category of complex vector bundles, if there exist Bloch
functions which span the N -dimensional vector space at each
wave vector, and are continuous and periodic over the Bril-
louin torus T d . Being topologically trivial is equivalent [25]
to being localizable. For d<4, being topologically trivial is
equivalent [58,63] to a vanishing first Chern class, i.e., the
first Chern number vanishes in any closed two-dimensional
submanifold of T d .

(v) Theorem. Suppose a simple band is an energy eigen-
function of a Schrödinger-type or tight-binding Hamiltonian,
which has the symmetry of a symmorphic magnetic space
group G. Some physically reasonable conditions (elaborated
in Sec. III) are assumed to ensure that the Hamiltonian is self-
adjoint, analytic in k, and has a point spectrum. Our theorem
states that for such a simple band, being topologically trivial

(in the category of complex vector bundles) is equivalent to
being a band representation of G.

II. EXISTENCE OF WANNIER FUNCTIONS
FOR TOPOLOGICALLY TRIVIAL BANDS

Our theorem may be viewed as a symmetry-refined analog
of known relations between topological nontriviality and an
obstruction to the existence of Wannier functions; these rela-
tions will be briefly reviewed in Sec. I A, and subsequently
in Sec. II B we will introduce crystallographic point-group
symmetry to further motivate our theorem.

A. Insulators with discrete translational symmetry

Let us first consider d-dimensional band insulators in
Wigner-Dyson symmetry class A, with the additional sym-
metry of discrete translations in d-independent directions. A
well-recognized form of topological nontriviality arises for
two-dimensional insulators whose Hall conductance C1e

2/h

is quantized in units of fundamental constants; C1 is the
first Chern number (also known as the Thouless-Kohmoto-
Nightingale–den Nijs [64] invariant) of the filled bands. Gen-
erally, for d-dimensional solids, a nonzero C1 in any two-
dimensional closed submanifold of the Brillouin d-torus (T d )
is equivalent to a nonzero first Chern class (c1 �= 0) [25]. The
foundational works of Nenciu [14], Panati [25], and Brouder
et al. [10] have culminated in an equivalence between the
vanishing of the first Chern class (c1 = 0) and the existence of
Wannier functions (i.e., localizability) in (d � 3)-dimensional
solids. This equivalence broadly applies to N -band subspaces
for any N � 1, including the case of simple bands (N = 1);
we shall refer to N as the rank.

For d � 3, the vanishing of the first Chern class (c1 = 0)
is equivalent to the band subspace being topologically trivial
[58,63]. Throughout this paper, we adopt the standard defini-
tion of topological triviality from the theory of vector bundles
[61]. Applied to the Bloch problem, an N -band subspace is
topologically trivial if there exist Bloch functions5 which span
the N -dimensional vector space at each quasimomentum (k),
and are continuous and periodic over the Brillouin d-torus T d .
To translate between band- and bundle-theoretic languages,
the N Bloch functions form an N -dimensional vector space
at each k ∈ T d ; the union of all such vector spaces over the
base space T d defines a rank-N complex vector bundle. If
there exist N (continuous and periodic) sections that span
the N -dimensional vector space at each k, we say that this
bundle is topologically trivial in the category of complex
vector bundles. We will interchangeably use “sections” with
“Bloch functions,” and “vector bundles” with “bands.” For
most of this work, “topological triviality” should implicitly
be understood as for complex vector bundles, though we shall
remark briefly on real vector bundles in Sec. VIII C.

The above definition of triviality applies to any spatial
dimension d. Especially for d � 4, which is physically real-
izable in cold atoms [65,66] and electrical circuits [67–69],

5Bloch functions do not have to correspond to energy bands;
sometimes these are referred as quasi-Bloch functions [10,25,72].
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being topologically trivial more stringently constrains the
band subspace than having a trivial first Chern class: addi-
tional constraints include (but is not exhausted by) [57,62] the
triviality of all higher Chern classes. However, a nontrivial
higher Chern class can only be realized by multiband sub-
spaces; in the absence of crystallographic symmetry, simple
bands are fully classified by the first Chern class in any
dimension d [62].

B. Two categories of topologically trivial bands
with the inclusion of point-group symmetry

The inclusion of point-group symmetry allows us to distin-
guish between two categories of topologically trivial bands:
band representations and localizable topological bands. As
stated in the Introduction, a band representation is a topolog-
ically trivial band that satisfies the local symmetry condition.
Here, we offer an equivalent,6 and more constructive, defini-
tion: any band representation of a magnetic space group G

is attained by specifying a spatial point � , and specifying
a finite-numbered set of Wannier functions that transform in
a representation of the subgroup (denoted G� ) of G that
preserves � . By applying all elements of G on said Wannier
functions, we obtain an infinite-dimensional representation of
G that is a band representation (BR). Precisely, a BR of G

with position � is an induced representation of G� ⊂G. For
illustration, let us consider a BR of type-II magnetic space
group P 3m1, which is the symmetry of a honeycomb lattice
with staggered sublattices. We pick � to be a honeycomb
vertex, whose associated subgroup G� is generated by a
threefold rotation, spatial reflection, and time reversal. We
specify a Kramers pair of Wannier functions that transform in
an irreducible, spinor representation of G� [as illustrated in
Fig. 1(c)], then apply all elements of G on said Wannier func-
tions to obtain a BR. Beyond this model, Wannier functions of
BRs are commonly applied as exponentially localized, locally
symmetric basis functions for a G-symmetric tight-binding
model [4,7].

Wannier representations of G which are not BRs are re-
ferred to as localizable topological. To illustrate a localizable
topological band, let us elaborate on the low-energy filled
band of the Kane-Mele Z2 topological insulator with the same
symmetry as the staggered honeycomb lattice; we further
assume time-reversal symmetry, which guarantees that the
filled bands have vanishing first Chern class c1 = 0 [25]. By
applying all elements of G to the two representative Wannier
functions illustrated in Fig 1(d), we attain a nonsimple band
that is localizable, i.e., topologically trivial in the category
of complex vector bundles. Yet, the two generating Wannier
functions are centered on distinct honeycomb sublattices, and
hence do not form a spinor representation of time reversal;
after all, time reversal, being a spatially local operation,
always relates two orthogonal Wannier functions centered at
the same point.

A second example of a localizable topological band is the
filled band of a reflection-symmetric insulator with a nonzero
mirror Chern number [70] (this number will be explained

6This equivalence is proven in Appendix A.

below). This is exemplified by the SnTe class of topological
crystalline insulators [32], but for conceptual simplicity we
consider a simpler model, on a two-dimensional lattice with
an out-of-plane reflection axis. Any point on the plane is then
invariant under a reflection symmetry that squares to identity
(modulo a phase), i.e., the reflection symmetry is an element
of G� for any � . Suppose the filled band is the sum of two
simple bands, each transforming in opposite representations
of the reflection symmetry; each simple band further carries
a nonzero first Chern number known as the mirror Chern
number, but the sum of the mirror Chern numbers (in odd
and even representations) vanishes. The latter implies that the
filled band is topologically trivial in the category of complex
vector bundles, hence, one may certainly construct Wannier
functions which span the filled band. Yet, the nonzero mirror
Chern number implies it is impossible to construct two rep-
resentative Wannier functions which generate all other Wan-
nier functions (by application of all space-group elements),
and which also transform in a representation of reflection
symmetry.7

Before the discovery of Z2 topological insulators
[15,16,70], and topological crystalline insulators [32,35], it
was widely believed that a topologically trivial N -band sub-
space with G symmetry is necessarily a BR of G. The two
illustrations above provide counterexamples where N = 2.
Our contribution is to prove that this belief holds for N = 1,
and for any symmorphic magnetic space group G in any
spatial dimension d. By “symmorphic” we mean G is a
semidirect product of its translational subgroup T ⊂G with the
quotient group G/T , as further elaborated in Sec. IV A. This
N = 1 result may be viewed as a symmetry-refined analog
of the no-go statement mentioned in Sec. II A: not only are
simple bands unable to realize nontrivial higher Chern classes,
we find that they also cannot realize localizable topological
insulators in symmorphic magnetic space groups.

III. STATEMENT OF THEOREM

Our main result is encapsulated in the following theorem,
which applies for any spatial dimension d.

Theorem 1. For any simple band whose corresponding
projection operator is analytic throughout T d , being a band
representation of a symmorphic magnetic space group G is
equivalent to being topologically trivial in the category of
complex, unit-rank vector bundles. The latter condition is
known to be equivalent [62] to a vanishing first Chern class.

7Let us prove this by contradiction. Assume that the representative
pair of Wannier functions (w1 and w2) forms a representation of
reflection. If w1 and w2 are centered on distinct spatial positions, then
each of the two must form a single-dimensional representation of
reflection (but with opposite mirror eigenvalues). This would imply
that a Wannier representation exists for the band subspace in the
even representation of reflection, which contradicts the nonzero first
Chern number in that subspace. If w1 and w2 are centered at the same
point, it is possible that they form a two-dimensional representation
of reflection; however, such a representation is always reducible to
two one-dimensional representations, hence, we arrive at the same
contradiction.
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Let us discuss the physical scenarios where the above-
stated assumptions on the simple band are attained. The
simple band may be an energy eigenfunction of a G-
symmetric Schrödinger Hamiltonian H0 = −�+V (r ) with
energy eigenvalue εk that is nondegenerate at all k; this non-
degeneracy shall be referred to as a gap condition. To ensure
that e−ik·rH0e

ik·r , at each k, is self-adjoint, analytic,8 and
has a point spectrum, V (r ) has to satisfy certain physically
reasonable conditions,9 e.g., for d � 3 it is sufficient that V

is square integrable over the primitive unit cell. Alternatively,
H0 might be a tight-binding Hamiltonian whose matrix ele-
ments decay exponentially in real space, which ensures that
the Fourier transform of H0 is analytic throughout T d [13].
The analyticity and gap conditions ensure that the projection
operator to the simple band is analytic at all k [4,25,71,72].

IV. PRELIMINARIES

A. Space groups

For any magnetic space group G that is symmorphic, there
exists a point where each g ∈ G is the composition [denoted
(p|R)] of a transformation p that preserves said point, and a
translation by a Bravais-lattice vector R; generally, p = p(g)
and R = R(g), but we shall omit the arguments. We employ
BL as a shorthand for the Bravais lattice (e.g., R ∈ BL) and
RL for the dual (reciprocal) lattice to BL.

The set of p defines the point group P of G, which is
isomorphic to G/T [73]. p is specified by (i) a d × d real
orthogonal matrix p̌ that acts on real space, as well as (ii) a
Z2 index sp = ±1 which indicates whether or not p involves
a time-reversal operation; g = (p|R) then acts on (d+1)-
dimensional space-time as r→g ◦ r: = p̌r+R and t→spt .
In magnetic space groups without time-reversal symmetry,
sp = 1 for all p ∈ P . The standard multiplication rule for
magnetic space groups is

(q|R′)(p|R) = (qp|q̌ R + R′) with sqp = sqsp, (1)

where the presence of q̌ reflects the noncommutativity of
translations and point-group operations.

A notion that is useful to characterize Wannier functions
is a Wyckoff position � of G; � is defined as a spatial
coordinate in Rd with an associated symmetry group G�⊂G.
G� , the site stabilizer, comprises all elements of G that
preserve � , i.e., for any g ∈ G� , g◦� = � . If g◦�−� is a
BL vector for all g ∈ G (equivalently, G/G�

∼= T ), then we
say that � has unit multiplicity.

B. General representations of space groups

A simple band is spanned at each k by a Bloch function ψk,
whose phase is not uniquely defined. The projection P (k) =
|ψk〉 〈ψk| is periodic over T d . By the assumptions stated in
the theorem, P (k) is analytic at all k ∈ T d , and ψk forms a

8Precisely, e−ik·rH0e
ik·r should be in the entire analytic family of

type A, as defined in [71].
9Dimension-dependent conditions on V are stated in [71], Theorem

XIII.99: V ∈ Lp (unit cell, dd r ) for p = 2 if d � 3, p > 2 if d = 4
and p = d/2 if d � 5.

general representation of G. By this, we mean there exists a
map from g ∈ G to a unitary ρg (k) ∈ U (1), such that

ĝ ψk(r ) = ρg (k)ψspp̌k(r ). (2)

Here, ĝ is defined as a representation of G that acts on
functions of real space as ĝf (r ) = f (g-1◦r )

sp

, where ā1:=a

and ā−1:=ā (the complex conjugate).10

While Eq. (2) and the remaining proof is specific to
Schrödinger wave functions, the proof is essentially un-
changed if we replace ψk(r ) by a finite-dimensional vector in
a tight-binding basis of Löwdin-orthogonalized orbitals [74].

From the action of ĝ on ψk(r ), we deduce that ρg may be
factorized into translational and point-group components as

ρ(p|R)(k) = ρ(E|R) (p̌k)
sp

ρ(p|0)(k) = e-ispp̌k·Rρ(p|0) (k), (3)

where E denotes the identity element of the point group,
and ρ(E|R)(k) = e−ik·R describes the translational property
of Bloch functions. That such a factorization exists reflects
that G is a semidirect product of its translational and point
subgroups. A useful implication of Eq. (3) is that ρ(p|R) (0) =
ρ(p|0)(0) is independent of R. Owing to

ĥ(ĝf (r )) = f ( g-1◦(h-1◦r ) )
sq sp = f ((hg)-1◦r )

sqp

(4)

for all g = (p|R), h = (q|S) ∈ G and hg defined through
Eq. (1), the representation ĝ is linear (i.e., ĥĝ = ĥg), and
therefore

ρ(q|S) (spp̌k) ρ(p|R) (k)
sq = ρ(q|S)(p|R) (k). (5)

Under a phase redefinition (or change in gauge) of ψk, ψk

and ρg (k) transform as

ψk → eiφ(k)ψk, ρg (k) → e−iφ(spp̌k)ρg (k)eispφ(k). (6)

Under such a gauge transformation, ψk can be made analytic
at k, for every k ∈ T d ; the existence of such analytic local
sections is guaranteed by the assumed analyticity of the pro-
jection P (k).11 Whether ψk can be made analytic throughout
and periodic over T d depends not just on the analyticity of
P (k), but also requires that there are no topological obstruc-
tions in the category of complex vector bundles [25,72]. That
is, if the simple band is topologically trivial, ψk exists that is
continuous and periodic over T d ; the continuity condition on
ψk can be further strengthened to analyticity throughout T d .12

10This action of g on f defines a regular representation [84] which
is known to be linear.

11This follows from analytic perturbation theory, e.g., see [108] for
the tight binding H0, and the Kato-Rellich theorem in [71] for the
Schrödinger H0.

12A complex neighborhood of T d may be identified as a domain of
holomorphy in Cd and therefore a Stein space. Solving the second
Cousin problem over a Stein space is equivalent to proving the
existence of a global analytic section for a topologically trivial line
bundle; this has been carried out in [109]. See also related discussions
falling under the “Grauert-Oka principle” [101,110] in [25,111]. In
fact, the non-Abelian second Cousin problem has also been solved
using sheaf theory [101–103]; this implies, for a topologically trivial
band of rank N � 1, that there exist analytic and periodic Bloch
functions which span the N -dimensional vector space at each k.
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C. Localizable representations of space groups

Henceforth it should be understood that any function of
k that is described as “periodic” (respectively “analytic”) is
periodic over T d (respectively analytic throughout T d ). Being
both analytic and periodic are necessary and sufficient [13]
conditions for the Fourier transform of ψk,

wR(r ) = 1√
|T d |

∫
T d

e−ik·Rψk(r )dk (7)

to be exponentially localized; |T d | above denotes the volume
of T d . Such a localized wave packet is referred to as a
Wannier function; any band subspace which forms a general
representation of G and is spanned by Wannier functions is
said to be a localizable representation of G.

D. Band representations of space groups

As motivated in the Introduction, not all localizable rep-
resentations of G are BRs of G [75]. For the purpose of
proving our theorem, we may specialize the definition of BRs
to simple bands with symmorphic G symmetry: a localizable
representation of G given by {wR}R∈BL [cf. Eq. (7)] is a BR of
G with unit-multiplicity Wyckoff position � , if wR forms a
representation of the site stabilizer G�+R

∼= P , for any R ∈
BL. This may be viewed as a precise restatement of the local
symmetry condition first formulated in the Introduction. The
general definition of BRs that is applicable to nonsimple bands
and nonsymmorphic space groups is provided in Appendix A.

It is instructive to physically interpret [76] � as the Wan-
nier center:

r̄ := 〈w0|r|w0〉 = 1

|T d |
∫

T d

A(k)ddk, (8)

with r the position operator; the last equality utilizes a known
relation between polarization and an integral of the Berry
connection A(k) [1,77,78]. In this interpretation, a Wannier
function centered at r̄+R forms a representation of the site
stabilizer Gr̄+R.

The following lemma is useful to prove our theorem: A
sufficient condition for band representability is that a general
representation satisfies

∀ g = (p|S) ∈ G, ρg (k) = ρ(p|0)(0)e−ispp̌k·�g ; (9)

�g := g ◦ �−� ∈ BL, (10)

with g independent � ∈ Rd . Equations (9) and (10) shall be
referred to as the canonical form of a BR [51]. Especially,
ρg (k) depends on S only through �g .

Proof of lemma. Equation (10) is the defining property
for a unit-multiplicity Wyckoff position � . Any element in
G� has the form p� : = (p|−�(p|0) ) with p ∈ P; this reflects
an isomorphism with P . Combining Eqs. (9) and (10) with
Eq. (7), we derive a unitarily equivalent representation of G

on Wannier functions:

∀ g = (p|S) ∈ G, ĝ |wR〉 = ρ(p|0) (0) |wp̌R+�g
〉 . (11)

To interpret Eq. (11), ĝ has a twofold effect (i) of translating
the Wannier center R+� to g◦(R+� ) = p̌R+�g+� , and,
additionally, (ii) ĝ may transform the Wannier function around

its own center, thus inducing the phase factor ρ(p|0) (0). Let us
demonstrate that Eq. (11) describes a BR of G. Restricting
Eq. (11) to R = 0 and p� ∈ G� , we derive that p̂� |w0〉 =
ρ(p|0)(0) |w0〉, i.e., ρ(p|0) (0) is a representation of G� that
is restricted from G. One may further verify that |wR〉 =
̂(E|R) |w0〉 [cf. Eq. (7)] forms a representation of

G�+R = (E|R) G� (E|R)-1 (12)

for any R ∈ BL, which proves the lemma. �
It is instructive to demonstrate that the simple band repre-

sented by Eqs. (9) and (10) satisfies the conventional [52–54]
definition of a BR: as a representation of G that is induced
from a representation of a site stabilizer G� on a Wannier
function, for some Wyckoff position � . Indeed, were we to
carry out this induction, we would expand the representation
space of w0 to include all BL translates of w0;13 these
Wannier functions transform as

∀ (p|S) ∈ G, ̂(p|S) |wR〉 = ̂(E|p̌R+�(p|S) )p̂� |w0〉 , (13)

from which we recover Eq. (11). This proves that Eq. (11) is
a BR as conventionally defined.

V. BAND REPRESENTATIONS ARE TRIVIAL

To recapitulate, a simple BR is a Wannier representation
of G, such that each Wannier function represents its site
stabilizer. By Fourier transformation [the inverse of Eq. (7)],
we obtain a Bloch function that is analytic and periodic
[13]. More generally, an N -band BR (N � 1) is analytically
trivial, i.e., there exist N Bloch functions which are periodic
and analytic, and span the N -band BR at each k. Being
analytically trivial is generally a stronger condition than being
topologically trivial.

VI. A SIMPLE TOPOLOGICALLY TRIVIAL BAND
IS A BAND REPRESENTATION

For a simple, topologically trivial band, we have argued
that ψk can be made analytic and periodic; henceforth, these
properties are assumed for ψk; it follows from Eq. (2) that
both properties are likewise satisfied by ρg (k). Under this
assumption, there remains a freedom to perform gauge trans-
formations [cf. Eq. (6)] with eiφ(k) that is analytic and peri-
odic. Exploiting this freedom, we would show ρg (k) may be
simplified to the canonical form [cf. Eqs. (9) and (10)] for all
g ∈ G; according to the lemma in Sec. IV D, this would prove
the desired result.

It is not difficult to see that the canonical form applies to the
translational subgroup of G: ρ(E|R)(k) = e−ik·R, as derived
in Eqs. (2) and (3). Owing to the simple factorization of ρg

[cf. Eq. (3)] for symmorphic space groups, what remains is
to prove the canonical form for the point-preserving elements
of G: {(p|0)|p ∈ P}. To simplify notation in the rest of this

13Generally, one constructs Wannier functions for all Wyckoff
positions in the orbit G◦� ; for unit-multiplicity Wyckoff positions,
these Wannier functions are just the BL translates of the single
Wannier function.
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section, we shorten (p|0) to p, e.g., ρ(p|0)≡ρp. We split the
proof into three steps, which are to be proven for all p ∈ P .

(1) A general form for ρp(k) is

ρp(k) = e−ispp̌k·�p+iαp (k), with �p ∈ BL (14)

and αp(k) a real, analytic, periodic function.
(2) There exists � such that �p ∈ BL in Eq. (14) satisfies

Eq. (10).
(3) By applying a further gauge transformation, the peri-

odic component of the phase of ρp [cf. Eq. (14)] may be made
independent of k: αp(k)→αp(0).

Items 1–3 then imply Eqs. (9) and (10) with the identifica-
tion eiαp (0) = ρp(0) for all p ∈ P .

A. Proof of 1

ρp(k) is a map from the d-torus to U (1), and the ho-
motopy classes of such maps are classified by d integers;14

these integers may be identified as winding numbers (denoted
n1, . . ., nd ∈ Z) of the U (1) phase over d independent prim-
itive vectors (G1, . . ., Gd )⊂RL. Equivalently stated, if we
define θp(k) as the phase of ρp(k) such that θp(k) is analytic
throughout Rd , then θp(k+Gj ) = θp(k)+2πnj . Without loss
of generality, we may decompose θp into periodic (αp) and
nonperiodic components as

θp(k) = αp(k) + k ·
d∑

i=1

ni Si ; Si · Gj = 2πδij , (15)

where Si ∈ BL are primitive Bravais lattice vectors dual
to Gj . Since

∑
ini Si ∈ BL and the Bravais lattice has the

symmetry of the point group P , there is no loss in generality in
expressing

∑
ini Si = −spp̌−1�p with �p ∈ BL and p ∈ P .

This completes the proof of 1. �

B. Proof of 2

Equation (5) constrains the phases of ρp(k) as

sqαp(k) + αq (spp̌k) − αqp(k) − 2πn(q, p) (16)

= spq ( p̌k · �p + q̌p̌k · �q − q̌p̌k · �qp ) (17)

for all p, q ∈ P; n(q, p) ∈ Z is introduced to account for
the 2π ambiguity of the phase. That n(q, p) is independent
of k follows from the analyticity of αp(k) and the integer
valuedness of n(q, p).

Let us demonstrate that the left- [Eq. (16)] and right-hand
sides [Eq. (17)] of the above equality vanish separately. Since
αp(k) is analytic, we may apply the gradient ∇k to Eqs. (16)
and (17):

sq∇kαp(k) + spp̌−1∇spp̌kαq (spp̌k) − ∇kαqp(k) (18)

= sqpp̌−1(�p + q̌−1�q − q̌−1�qp ). (19)

14This follows because [T d, U (1)] are in one-to-one correspon-
dence with cohomology classes in H 1(T d ;Z). Applying the univer-
sal coefficient theorem, H 1(T d ;Z) ∼= Zd .

The periodicity of αp and all terms in Eqs. (18) and (19)
allows for a Fourier analysis; this demonstrates that ∇kαp(k)
does not contain a constant-in-k term, hence, the bracketed
terms in Eq. (19) vanish by linear independence. Summing
these bracketed terms over all q ∈ P and dividing by the order
(|P|) of P , we derive Eq. (10) with

� = 1

|P|
∑
q∈P

q̌−1�q . (20)

�

C. Proof of 3

Having determined that Eq. (16) vanishes for all p, q ∈ P ,
we multiply it by sq , sum over all q ∈ P and divide by |P| to
obtain

αp(k) = sp�(k) − �(spp̌k) + 2π

|P|
∑
q∈P

sqn(q, p), (21)

where �(k): = ∑
q∈Psqαq (k)/|P|. Since �(k) is indepen-

dent of p, the k-dependent terms on the right-hand side of
Eq. (21) can be removed by a gauge transformation [Eq. (6)];
we may view this as a transformation between two homotopi-
cally equivalent representations.15 This completes the proof of
the theorem. We provide a group-cohomological perspective
of n(q, p) as a two-cocyle in Appendix B. �

VII. GENERALIZATION TO SOLIDS WITH
SPIN-ORBIT COUPLING

Our theorem is generalizable to spin-orbit-coupled solids
with broken time-reversal symmetry, where the absence of
Kramers degeneracy allows for simple bands. The statement
of the theorem for spin systems is nearly identical to the
spinless case, except G is now identified with a double [79]
symmorphic magnetic space group. The proof of the theorem
with spin is essentially identical, except ψk should be replaced
by a spinor wave function, and P ∼= G� now includes a
nonidentity element [80] corresponding to a 2π rotation.

VIII. APPLICATIONS OF THE THEOREM

Our theorem (including the generalization to half-integer-
spin representations in Sec. VII) has two types of applications:
the first rules out simple localizable topological bands, which
implies a minimal rank for the tight-binding Hamiltonian
of localizable topological insulators (Sec. VIII A), and the
second guarantees simple Chern insulators (Sec. VIII B). An
application to solids with space-time inversion symmetry is
highlighted in Sec. VIII C, which illustrates a Stiefel-Whitney
obstruction that occurs only for real vector bundles.

15For any two representations (ρ0
p (k), ρ1

p (k)) of G that are related
by a gauge transformation with periodic φ(k), there exists a continu-
ous interpolation ρs

p (k) (s ∈ [0, 1]) that is itself analytic and periodic,
and a representation of G throughout the interpolation.

184305-7



A. ALEXANDRADINATA AND J. HÖLLER PHYSICAL REVIEW B 98, 184305 (2018)

A. A simple band cannot be localizable topological

The following discussion applies in any spatial dimension
d, and for G that is symmorphic. A corollary of Theorem 1
states that a simple band cannot be localizable topological,
i.e., a localizable topological band minimally has rank two.
There are two classes of localizable topological bands distin-
guished by their stability upon summation16 with a BR of G:
(i) a stable localizable topological band remains localizable
topological upon summation (as exemplified by the Kane-
Mele phase) [15], while (ii) a fragile localizable topological
band becomes band representable upon summation (as exem-
plified in [55]).

Minimal rank for the tight-binding Hamiltonian
of a localizable topological insulator

Restricting our discussion to d � 3, we deduce that the
minimal rank of a tight-binding Hamiltonian for a fragile
localizable topological insulator is three, and that for a stable
localizable topological insulator is four. By “rank” of a tight-
binding Hamiltonian, we mean the dimension of the tight-
binding Hilbert space as restricted to a wave vector, or to one
real-space, primitive unit cell.

Indeed, any G-symmetric tight-binding Hilbert space is a
BR of G [7]; this BR must be split to attain a localizable
topological band (fragile or topological). Minimally, the tight-
binding BR splits into two band subspaces, which we may
denote as filled and empty. For a localizable topological filled
band, it must be that the empty band is also localizable (i.e.,
c1 = 0); this follows because the tight-binding BR must be
localizable, and the first Chern numbers are stable invariants
[81]. If the filled band is stable localizable topological, then
so must the empty band (by the definitions of fragile and
stable given above), and therefore the combined minimal rank
is four. This minimal rank is saturated by the Kane-Mele
model [15] of the Z2 topological insulator, as well as models
[43,44] of Z2 magnetic topological insulators protected by
glide symmetry. On the other hand, if the filled band is
fragile localizable topological, the empty band may be band
representable17 and its rank is not constrained by our theorem;
then, the combined minimal rank is three. This minimal rank
is saturated by a kagome model that is detailed below (cf.
Sec. VIII B 2).

These rank constraints on the tight-binding Hamilto-
nian are supported empirically by all localizable, symmor-
phic topological insulators that we know [[5,6,15–20,23,28–
31],[35,38–46,48,60]], including the reflection-symmetric, lo-
calizable topological insulators (in Wigner-Dyson symmetry
class A and AII) that have been constructed by the minimal-
Dirac-Hamiltonian approach [47]. To clarify a difference in
methodology, there does not exist (to our knowledge) a rigor-
ous proof that equates the minimal rank of a Dirac Hamil-
tonian (linear-in-k Hamiltonian with mass terms) with the

16Precisely, we mean a Whitney sum of two vector bundles, where
at each k the two vector spaces are directly summed.

17In principle, it is possible that both empty and filled bands are
fragile localizable topological, in which case the combined rank is
minimally four by our theorem.

minimal rank of tight-binding Hamiltonians (having arbitrary
dispersion and being defined over the Brillouin torus); in fact,
it is known that the former can be larger than the latter, in
Altland-Zirnbauer class CI.18

We hope our rank constraint will guide future work in
constructing tight-binding models of localizable topological
insulators. Often a localizable topological insulator is posited
to exist by methods such as K-theory [46,59,60], symmetry-
based indicator [56], or topological invariants [40,41,82,83],
but a tight-binding model for this insulator may not yet be
known. The first step in constructing a tight-binding model is
to decide the rank of the tight-binding basis functions.

B. Program for high-throughput search of topological materials

In combination with the theory of elementary band repre-
sentations (EBRs) [51,52,54], our theorem guides the design
and identification of Chern and fragile localizable topological
insulators. EBRs are the basic building blocks of space-group
representations, and serve a role analogous to irreducible rep-
resentations of finite groups [84]. An EBR is defined as a BR
of G which cannot be split into multiple fewer-band subspaces
that are all BRs of G; if an EBR of G were splittable, then at
least one of the fewer-band subspaces cannot be a BR of G

[5–7,55]. Most EBRs satisfy two properties: (i) its Wyckoff
position � is maximal, and (ii) the representation of G� is
irreducible [5,6,54]; the exceptions to (i) and (ii) are tabulated
in the given references.

Whether an EBR is splittable is determined by compatibil-
ity relations in combining symmetry representations of little
groups over the Brillouin torus [5]; these combinations are
tabulated in the Bilbao Crystallographic Server [85] for space
groups with and without time-reversal symmetry and d = 3.
In more detail, under the link “BANDREP,” all splittable
EBRs of a specified space group are labeled as decompos-
able; under the link decomposable, all possible connected
subspaces (labeled “branch 1,” “branch 2,” ...) of a splittable
EBR are specified by their irreducible representations of little
groups at high-symmetry quasimomenta. By a “connected”
N � 1 band, we mean that symmetry-enforced band touch-
ings prevent the band from being separated energetically into
two or more components; by definition, a simple band is
always connected. In symmorphic space groups, a connected
subspace may be identified as simple if the representations of
all little groups are one dimensional. If one or more of these
connected subspaces are simple, our theorem becomes useful
in identifying Chern insulators (as discussed in Sec. VIII B 1)
and fragile localizable topological insulators (Sec. VIII B 2).

1. Modeling and identifying Chern insulators

If an EBR were splittable into a simple band which is band
unrepresentable, then our theorem guarantees that it has a
nonzero first Chern class (in short, it is a Chern band). For
lower-symmetry space groups, it is not uncommon to find
rank-s EBRs that split into s � 1 simple bands; we shall refer

18For 3D class-CI superconductors, the minimal dimension of the
Dirac Hamiltonian is eight (see Sec. VI B of [82]), yet Schnyder et al.
have produced a four-band tight-binding BdG model [112].
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to these as “candidate” EBRs. Due to the net topological
triviality of all s bands, it follows that at least two of them
must be Chern bands. Thus, if s = 2, and if the Fermi level
separates the two simple bands, a Chern insulator is guaran-
teed. We have exemplified such EBRs on a two-dimensional
(2D) checkerboard lattice (s = 2, wallpaper group P 4), and a
2D honeycomb lattice (s = 2, P 6) in [7].

For s � 3 simple bands, further work is required to de-
termine which of the s simple bands are Chern bands, e.g.,
by a symmetry representation [24,35,86–89] or a Zak-phase
analysis [7]. For illustration, we consider a three-band EBR
comprising s orbitals on a kagome lattice (wallpaper group
P 6). In a tight-binding model with (only) imaginary nearest-
neighbor hoppings, the EBR splits into three components
with first Chern numbers: C1 = 0,+1,−1, respectively [7];
a Chern insulator is attained if the Fermi level separates two
subspaces with nontrivial Chern numbers.

For any candidate EBR of a space group G, it is straightfor-
ward to design a tight-binding model of the Chern insulator;
the tight-binding basis vectors would correspond directly to
the Wannier functions that span this EBR [7]. By varying the
G-symmetric tight-binding matrix elements, we may explore
all possible splittings of this EBR, one of which would give
Chern bands.

Finally, to find a naturally occurring Chern insulator from
first principles, we propose to search for G-symmetric materi-
als with our candidate EBR in the vicinity of the Fermi level.
Let us outline our proposed method: (a) from Bilbao, identify
all candidate EBRs for a space group G and record their
irreducible representations at high-symmetry quasimomenta
(in short, we will refer to these representations as symmetry
indicators). (b) Identify several candidate materials with the
same space group. (c) For a band subspace near the Fermi
level of a candidate material, identify and compare their
symmetry indicators to that of the candidate EBRs. Band sub-
spaces whose indicators match with (at least)19 one candidate
EBR shall be referred to as candidate bands. (d) Symmetry
indicators alone do not guarantee that the candidate band is
a candidate EBR; in principle, it is possible that the same
symmetry indicators are shared by two distinct EBRs [54],
or even by an EBR and a localizable topological band [5,55].
One way to guarantee that a candidate band is a candidate
EBR is as follows: construct the locally symmetric Wannier
functions that one expects for the candidate EBR. Assuming
this is done, then one may directly apply the discussion in the
first two paragraphs (of this section) to identify Chern bands.20

(e) The task of constructing locally symmetric Wannier func-
tions may be numerically intensive, and to our knowledge
a standard software does not yet exist in the first-principles
community. Pragmatically, one may avoid this and directly
compute the Chern numbers of the simple bands (which
comprise the candidate band). For such a computation, there

19In principle, it is possible that two EBRs share the same symmetry
indicators [54].

20If one finds that a candidate band is not band representable, then
it must either be a nonsimple Chern band or a localizable topological
band.

already exist standard software [90] which utilize Wilson-loop
techniques.

2. Identifying fragile localizable topological insulators

Suppose a rank-s EBR splits into two orthogonal subspaces
(S1, S2), each of which is not necessarily connected. Then,
if S1 is band representable, S2 must be fragile localizable
topological. If S1 comprises of simple band(s) with vanishing
first Chern number(s), then our theorem guarantees that S1

is band representable. An illustration is provided by splitting
the same kagome EBR just described in Sec. VIII B 1: If
S1 is the simple band with C1 = 0, then S2 is composed
of two simple bands with C1 = +1,−1, and must therefore
be fragile localizable topological. One manifestation of this
fragile topology is a nontrivial winding of the eigenvalues of
the holonomy matrix (i.e., Wilson loop).21

Our theorem has greatest utility in magnetic space groups
which guarantee the triviality of the first Chern class [e.g.,
time-reversal symmetry, or (d − 1) orthogonal mirror sym-
metries in a d-dimensional cubic lattice]. For such groups,
S1 is guaranteed to be band representable by our theorem.
As an application, let us search in Bilbao for the following
EBR of space group 183 with time-reversal symmetry: this
EBR is labeled by the Wyckoff position � = 3c, and a trivial
onsite symmetry representation A1 of the onsite stabilizer
G� = C2v . This rank-three EBR is splittable into a simple
band (branch 1) and a pair of bands (branch 2); the latter must
be fragile localizable topological.

C. Application to bands with space-time inversion symmetry

We remark on a class of bands that arise in solids with
negligible spin-orbit coupling, and the symmetry of space-
time inversion: (r, t )→(−r,−t ). This symmetry ensures that
h(k), the tight-binding Hamiltonian, can be made real at each
k, as explained in Appendix C. The real eigenvectors of h(k)
(corresponding to the filled bands) define a real vector bundle
which is guaranteed to have vanishing first Chern class by the
space-time inversion symmetry. Since a real vector bundle (or
real band) can be embedded in a complex one (in analogy
with how real numbers can be embedded in complex numbers)
[57], our theorem also applies to real bands of symmorphic
magnetic space group G; in fact, the theorem directly implies
that any real simple band with G symmetry is necessarily a
BR of G.

Despite being trivial when viewed as a complex unit-rank
(i.e., line) bundle, a real simple band may nevertheless be
nontrivial in the category of real line bundles. Triviality in the
category of real line bundles is equivalent [62] to the vanishing
of the first Stiefel-Whitney characteristic class, or equivalently
to the existence of a real section [a real eigenvector |uk〉
of h(k) that is continuous, periodic, and nonvanishing over
T d ]. The latter implies that the Berry connection i 〈uk|∇kuk〉
(being necessarily real) must vanish at all k, and hence
the Berry-Zak phase vanishes for the holonomy over all

21It is characterized by a unit relative winding number, a topolog-
ical invariant first discovered in [41]. This invariant has also been
used to characterize other fragile phases [49].
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noncontractible Brillouin-zone loops. Utilizing the geometric
theory of polarization [77], we deduce that the corresponding
Wannier center lies at the spatial origin, modulo translations
by a Bravais-lattice vector.

An obstructed simple real band is exemplified by ei-
ther of the two energy bands of the Hamiltonian h(k) =
cos(k)σ3+ sin(k)σ1, which is real at all k ∈ T 1 (σ1, σ3 are Pauli
matrices). A real eigenvector of h(k) that is continuous at
each k must satisfy antiperiodic boundary conditions over
T 1, i.e., the Zak phase is π . This relation between the first
Stiefel-Whitney class and the Zak phase was independently
discovered in [91]. An analytic and periodic eigenvector can
be attained by multiplying the real eigenfunctions of h(k) by
a complex phase factor eik/2 [cf. Eq. (6)]; the corresponding
Wannier function is necessarily displaced by half a lattice
period (modulo lattice translations) from the origin.

We remark that a simple BR of G can also be nontrivial
in the category of G-equivariant [59] line bundles, with G

a space group. In fact, h(k) above also has the reflection
symmetry σ3h(k)σ3 = h(−k), and the filled band of h(k)
exemplifies a nontrivial reflection-equivariant line bundle.

IX. DISCUSSION AND OUTLOOK

The question of the minimal rank of a band subspace is
increasingly enriched by the interplay between band topol-
ogy and crystallographic symmetry [24,76,92,93]. A space-
group-symmetric band subspace may be topologically trivial,
yet its rank exceeds unity if there exists symmetry-enforced
band-touching points in T d . These touchings are associated
to higher-than-one-dimensional irreducible representations of
the little group at high symmetry k ∈ T d [94,95] or to the non-
trivial monodromy of nonsymmorphic symmetry representa-
tions [7,76,92,93,96]. This local-in-k perspective of symmetry
representations contrasts with a global perspective that is
required to understand topological band insulators. A case in
point are insulators with a nontrivial second (or higher) Chern
class; their rank must exceed unity [62], independent of the
presence of crystallographic symmetry.

In this work, we present a rank constraint that relies
saliently on both band topology and crystallographic point-
group symmetry: the rank of a localizable topological band
must exceed unity. To recapitulate, we have defined a local-
izable topological band as having an obstruction to locally
symmetric Wannier functions, i.e., it is a localizable band
that is not a band representation (BR). This local symmetry
condition has been defined in our Introduction, and a more
elaborate definition may be found in Appendix A. Our rank
constraint is fundamentally different from those imposed by
symmetry-enforced touching points in k space, e.g., a fragile
localizable topological band may be a sum of simple bands
with no such touching points, as exemplified by the kagome
model in Sec. VIII B 2.

An alternative restatement of this rank constraint is that the
phase diagram of unit-rank band subspaces (simple bands) is
comparatively uncomplicated, as illustrated in Figs. 1(a) and
1(b): either a simple band is unlocalizable (with a nontrivial
first Chern class) or otherwise it is a BR. Our rank constraint is
the corollary of a theorem that states the following: for simple
bands, being a band representation is equivalent to being topo-

logically trivial in the category of complex vector bundles.
It should be emphasized that our theorem applies generally
to space-group-symmetric band systems, independent of the
statistics of particles that fill the band. In particular, the
applications extend to bosonic band systems such as photonic
crystals [97,98], phonon bands [99,100], and linear circuit
lattices [67–69].

Finally, we remark on our definition of a BR as unitarily
equivalent to locally symmetric Wannier functions. A priori,
this definition is not obviously equivalent to the conventional
definition [51–54] of BRs as induced representations of space
groups; this equivalence is proven in Appendix A. Arguably,
our unconventional definition more directly and intuitively
pinpoints the difference between BRs and localizable topo-
logical bands.
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APPENDIX A: EQUIVALENCE OF DEFINITIONS
OF BAND REPRESENTATION

Two equivalent definitions for band representations (BRs)
of space groups exist: one from the perspective of inducing
a representation of site stabilizer, and another from the dual
perspective of restricting a localizable representation of a
space group to a site stabilizer. In this appendix, we prove
their equivalence.

1. General definition of localizable representations

Let us first define a rank-(N � 1) localizable representa-
tion of a magnetic space group G (symmorphic or nonsym-
morphic).

Definition 1. A localizable representation of G is an
infinite-dimensional linear representation of G on Wannier
functions {|wαn

n,R〉}αn,n,R where R ∈ BL, n labels distinct
Wannier centers � n in one unit cell, and αn distinguishes
Wannier functions centered on the same coordinate � n.

Here and throughout this paper, Wannier functions are
defined to be exponentially localized Fourier transforms of
Bloch functions:

w
αn

n,R(r ) =
∑
m,βm

∫
T d

e−ik·R√
|T d |

[U (k)]βm,αn

m,n ψ
βm

m,k(r )dk. (A1)

The Bloch functions {ψβm

m,k}m,βm
are assumed to be analytic

and periodic, and they orthonormally span the N -dimensional
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vector space at each k. As explained in the main text, such
Bloch functions exist if and only if the (N � 1)-band sub-
space is topologically trivial as a complex vector bundle [101–
103]. U (k), when viewed as a matrix with row index (m,βm)
and column index (n, αn), is unitary, periodic, and analytic.
The presence of this matrix in Eq. (A1) reflects a choice of
basis (or “gauge freedom”) for the Wannier functions [104].
It follows from Eq. (A1) all Wannier functions labeled by the
same n and αn are related by Bravais-lattice translations:∣∣wαn

n,R

〉 = ̂(E|R)
∣∣wαn

n,0

〉
. (A2)

This is a convenient choice of basis that exploits the discrete
translational symmetry.

In Definition 1, we have organized Wannier functions
according to their Wannier centers, which are defined as
expectation values of the position operator [cf. Eq. (8) for a
simple band]:

� n + R = 〈
w

αn

n,R

∣∣ r
∣∣wαn

n,R

〉
. (A3)

The number of Wannier functions centered on � n might vary
with n; the total number of Wannier functions centered within
one unit cell is N .

It is useful to define a special type of localizable represen-
tation:

Definition 2. A localizable representation of G with a
single Wyckoff position � is a localizable representation of
G where all Wannier centers are related to � by symmetry.

We may take � : = � 1, and define the site stabilizer G�

is the subgroup of G that preserves � . Definition 2 implies,
for each n = 1, . . . ,M , there exists a representative element
gn ∈ P/G� such that gn◦� = � n, with g1 being the identity
element. M = |P|/|G� | is defined as the multiplicity of the
Wyckoff position � . It follows from Eq. (A3) that ĝn |wα1

1,0〉
is centered at � n, hence the space orthonormally spanned by
{ĝn |wα1

1,0〉}α1 is a subspace of the space orthonormally spanned
by {|wαn

n,0〉}αn
; conversely, we may demonstrate that the space

spanned by {ĝ-1
n |wαn

n,0〉}αn
is a subspace of the space spanned

by {|wα1
1,0〉}α1 . Clearly then ĝn is an isomorphism between two

vector spaces, and we may as well define∣∣wα
n,0

〉 = ĝn

∣∣wα
1,0

〉
, (A4)

for all n, α; presently, we may drop the subscript of αn.
We remark that any localizable representation of G is

a direct sum of single-Wyckoff localizable representations
(possibly with distinct Wyckoff positions).

2. Conventional definition of band representations

A BR is a special type of localizable representation [51,52].
Definition 3: A band representation of G with Wyckoff

position � is the induced representation of G� ⊂ G. A direct
sum of band representations (possibly with distinct Wyckoff
positions) is also referred to as a band representation.

In more detail, inducing a finite-dimensional representa-
tion V of G� on Wannier functions {|wα

1,0〉}dimV
α=1 gives an

infinite-dimensional representation of G on Wannier func-
tions {|wα

n,R〉}α,n,R where R ∈ BL, α = 1, . . ., dimV ; n =
1, . . .,M with M the multiplicity as defined above. This in-
duced representation is a localizable representation of G with

a single Wyckoff position � , for which Wannier functions
can be chosen to satisfy Eqs. (A2)–(A4). The induced repre-
sentation on such Wannier functions is, for all g = (p|t ) ∈ G

[7,53],

ĝ
∣∣wα

n,R

〉 =
dim V∑
β=1

[
V

(
p-1

n′ ppn

)]
βα

∣∣wβ

n′,p̌R+�g,n′ ,n

〉
,

�g,n′,n = g ◦ � n − � n′ ∈ BL, (A5)

where the action of g on a vector r is g◦r = p̌r+t; if g is a
nonsymmorphic element, then t is not a Bravais-lattice vector.

To motivate the form of Eq. (A5), the action of ĝ on
Wannier functions may be separated into two effects: (i) a
translation of the Wannier center from

� n + R → g ◦ (� n + R) = � n′ + p̌R + �g,n′,n, (A6)

as well as (ii) a local transformation of Wannier functions
sharing the same center, as effected by the matrix V (p-1

n′ ppn).
To motivate the argument of V , observe that p-1

n′ ppn is the
origin-preserving component of g−1

n′ (E|−�g,n′,n)ggn, which
consecutively maps �→� n→g ◦ � n→� n′→� . This im-
plies that g−1

n′ (E|−�g,n′,n)ggn is an element in the site stabi-
lizer G� , and V a representation of G� . Note further that for
all g = (p|t ) ∈ G� , the set (p|0) forms an isomorphic point
group related to G� by conjugation, hence, we may as well
label V (g) by V (p), as we have done in Eq. (A5).

Corresponding to Eq. (A5) is the following representation
of G on N = M×dimV Bloch functions [7,53]:

[ρg (k)]β,α

n′,n = e−ispp̌k·�g,n′ ,n
[
V

(
p-1

n′ ppn

)]
βα

; (A7)

this may be derived by combining Eqs. (A5) and (A1), with
the choice [U (k)]β,α

m,n = δm,nδβ,α . ρg (k), when viewed as a
matrix with row index (β, n′) and column index (α, n), is
unitary. Equations (A5) and (A7) are the generalizations of
Eqs. (9)–(11) to M � 1 and dimV � 1.

3. Equivalent definition of band representations

We now provide an equivalent definition of a band repre-
sentation by restricting representations of space groups to site
stabilizers.

Definition 4: A band representation of G with Wyckoff
position � is a localizable representation of G with � , such
that for all n and all R ∈ BL, {|wα

n,R〉}α forms a representation
of the site stabilizer G�n+R .

Definition 4 means that for all n = 1, . . .,M (the multiplic-
ity) and all R ∈ BL, there exists a finite-dimensional unitary
representation Xn,R(p) of G�n+R , i.e., for all g = (p|S) ∈
G�n+R:

ĝ
∣∣wα

n,R

〉 =
dim Xn,R∑

β=1

[Xn,R(p)]β,α

∣∣wβ

n,R

〉
. (A8)

In comparison, for any localizable representation of G, the
full representation space {|wα

n,R〉}α,n,R forms a representation
of any subgroup of G. Since gn and (E|R) act bijectively
on Wannier centers [cf. Eq. (A3)], they also induce an iso-
morphism of vector spaces spanned by Wannier functions
[whose centers are related through Eq. (A3)]; an analogous
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demonstration has been provided in Sec. A 1. Consequently,
we may as well define Eqs. (A2) and (A4) for all n, α, and R,
which implies dim Xn,R is independent of n and R.

We would now prove the equivalence of Definitions 3 and
4. It is sufficient to prove the equivalence for BRs with a
single Wyckoff position since BRs characterized by multiple
Wyckoff positions are direct sums of single-Wyckoff BRs.

Proof. That Definition 3 implies Definition 4 is straight-
forward: recalling the definition of the site stabilizer G�n+R

as the subgroup of G which preserves � n+R, we may
restrict Eq. (A5) to g = (p|t ) ∈ G�n+R by fixing n′ = n and
p̌R+�g,n′,n = R. Then, Eq. (A8) follows for Xn,R(p) =
V (p-1

n ppn).
Let us now prove the converse: beginning from Definition

4 and Eq. (A8), we would derive Eq. (A5) which gives
Definition 3. Utilizing Eq. (A4), we first show that Xn,R(p) is
independent of R: applying that G� n

is conjugate to G�n+R =
(E|R)G�n

(E|R)-1 [cf. Eq. (12)], for any (p|T ) ∈ G�n+R

there exists (p|S) ∈ G�n
such that

[Xn,R(p)]β,α = 〈
w

β

n,R

∣∣̂(p|T )
∣∣wα

n,R

〉
= 〈

w
β

n,0

∣∣ ̂(p|S)
∣∣wα

n,0

〉 = [Xn,0(p)]β,α. (A9)

Utilizing Eq. (A4), one may similarly show that

Xn,0(p) = X1,0
(
p-1

n ppn

)
. (A10)

Inserting Eqs. (A9) and (A10) into Eq. (A8), we derive that
for all g ∈ G�n+R ,

ĝ
∣∣wα

n,R

〉 =
dim X1,0∑

β=1

[
X1,0

(
p-1

n ppn

)]
β,α

∣∣wβ

n,R

〉
. (A11)

To complete the proof, we would employ a previous observa-
tion that g-1

n′ (E|−�g,n′,n)ggn ∈ G� ; this implies that any g ∈
G can be decomposed into the product g = (E|�g,n′,n)gn′hg-1

n

for some h ∈ G� . Given the representations of h [cf.
Eq. (A11)], gn, gn′ [cf. Eq. (A4)], and (E|�g,n′,n) [cf.
Eq. (A2)], we finally derive that Eq. (A8) implies Eq. (A5)
with the identification X1,0 = V . This finishes the proof of
the equivalence. �

APPENDIX B: COHOMOLOGICAL INTERPRETATION
OF n(q, p)

In the canonical gauge where αp is k independent, the left-
hand side of Eq. (16) (which vanishes according to Sec. VI B)
reduces to

2πn(q, p) = sqαp(0) + αq (0) − αqp(0). (B1)

The aim of this appendix is to identify n(q, p) as an inho-
mogeneous 2-cocycle, and the equivalence classes of n(q, p)
(specified below) as classifying the 1D linear representations
of the point group P .

To begin, let us review a few notions from group cohomol-
ogy, as particularized to the present context. For a group H ,
we define the H module as an Abelian group on which H acts
compatibly with the multiplication operation. In our context,
we consider the P module ZT , which equals Z as a set, and
is endowed with an action (denoted ·) of an element p ∈ P on
an element m ∈ ZT : p·m = spm [105,106]. The associativity

condition αq(pr )(0) = α(qp)r (0) implies that n(q, p) is an in-
homogeneous 2-cocycle, i.e., a map from from P×P to ZT

satisfying that

0 = n(qp, r ) + n(q, p) − n(q, pr ) − sqn(p, r );

the right-hand side may be identified as an inhomogeneous
3-coboundary. Since αp is a phase it has a 2π ambiguity, and
n(q, p) is only well-defined modulo:

αp(0) → αp(0) + 2πQ(p), Q(p) ∈ Z,

n(q, p) → n(q, p) + sqQ(p) + Q(q ) − Q(qp). (B2)

The rightmost three terms may be viewed as an inhomo-
geneous 2-coboundary. Defining an equivalence for n(q, p)
modulo 2-coboundaries, the equivalence classes of such
n(q, p) define [105,107] the second group cohomology:
H 2(P,ZT ); this is isomorphic to H 1(P, U (1)T ) [105], where
U (1)T is defined as U (1) that is complex conjugated under the
action of time-reversing elements of P . In fact, H 1(P, U (1)T )
is known to classify all the inequivalent 1D linear representa-
tions [eiαp (0) ∈ U (1)] of P [105].

APPENDIX C: REALITY DUE TO SPACE-TIME
INVERSION SYMMETRY

In a space-time inversion symmetric insulator without
spin-orbit coupling [i.e., with spin SU(2) symmetry], there
exists an antiunitary operator T̃ which is a symmetry of
the Schrödinger Hamiltonian H0 and squares to identity. We
may work in a spinor basis fs (r ) where s = ±1 corresponds
to spin up and down in the z direction; in this basis, T̃ =
eiπσy/2T I is the composition of a π -spin rotation about the
y axis (a symmetry of the Hamiltonian), the time-reversal
operator T = e−iπσy/2K (with K implementing complex con-
jugation and T 2 = −1), and the spatial-inversion operator I
which maps r→−r . In composition, T̃ = KI preserves the
spin component Sz, i.e., T̃ fs (r ) = f̄s (−r ).

We now study how T̃ is represented on the Fourier trans-
form of an orthonormal tight-binding basis corresponding to
Löwdin-orthogonalized orbitals |φα,R〉, where α = 1, . . ., N

is orbital index and R a BL, i.e., on

|uα,k〉cell = 1√
|T d |

∑
R

eik·(R−r ) |φα,R〉cell . (C1)

〈 . | . 〉cell denotes the inner product over one unit cell. The
tight-binding Hamiltonian is defined as the matrix elements
of the Hamiltonian H0 in this basis:

[h(k)]αβ = 〈uα,k|e−ik·rH0e
ik·r |uβ,k〉cell. (C2)

The unitary component of the representation of T̃ is [36]

[B(k)]βα = 〈uβ,k|T̃ |uα,k〉cell =
∫

cell
ūβ,k(r )ūα,k(−r )d r;

(C3)

one may verify that this matrix is unitary

N∑
γ=1

[B(k)]αγ [B̄(k)]βγ = 〈uα,k|uβ,k〉cell = δα,β, (C4)

and symmetric [B(k)]βα = [B(k)]αβ .
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We now show that there exists a basis of |uα,k〉 for which
h(k) is real and symmetric at each k. [T̃ , H ] = 0 implies that

h(k)βα = 〈uβ,k|e−ik·rH0e
ik·r |uα,k〉cell

= 〈uβ,k|T̃ e−ik·rH0e
ik·r T̃ |uα,k〉cell

= [B(k)]βγ h̄(k)γ δ[B̄(k)]δα

= [B(k)h̄(k)B̄(k)]β,α, (C5)

using the Einstein summation convention. The symmetric

matrix B(k) can be diagonalized by an orthogonal matrix
S(k): B(k) = S(k)D(k)ST (k) where T denotes transposition.
D is a diagonal matrix with unimodular diagonal entries,
and therefore D-1(k) = D̄(k). We now implement the unitary
transformation U (k) = S(k)D1/2(k) [43], such that the trans-
formed Hamiltonian is real at each k:

h′ : = U †hU = D−1/2ST
(
SDST h̄SD̄ST

)
SD1/2

= D1/2ST h̄SD−1/2 = h̄′. (C6)
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