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Light scattering from the critical modes of the Verwey transition in magnetite
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We present inelastic light scattering data on a single crystal of magnetite (Fe3O4) across the Verwey transition.
We identify anomalies of the lattice vibrations that originate from strong coupling to electronic excitations. We
reveal spectroscopic signatures of diffusive modes in the electronic contribution to the Raman response function.
We thereby provide information on the critical dynamics and the hierarchy of the structural and electronic modes
in the mechanism of the Verwey transition.
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I. INTRODUCTION

Magnetite (Fe3O4) is the best known magnetic material,
and it is of great interest from a fundamental point of view.
Remarkably, despite extensive studies, the microscopic origin
of the physical properties of magnetite is the subject of
ongoing debate. At a sample-dependent temperature around
120 K, the interrelation between structural and electronic dy-
namics causes atomic displacements and the onset of charge
and orbital order, the so-called Verwey transition, which has
been the focus of experimental and theoretical attention for
decades [1]. The Verwey transition impacts both the symme-
try of the crystal structure and the electronic ground state.
On cooling across the transition temperature, also referred
to as the Verwey temperature, TV , the former is lowered
from cubic to monoclinic, whereas the latter changes from
conductive to insulating. In the past two decades, accurate
diffraction experiments disclosed the most elusive features
of the crystal structure and the charge and orbital order in
the monoclinic phase [2–5]. In particular, the constitutive
units of the sublattice of octahedral Fe ions, or B-type Fe
ions, are small polarons (SPs) named trimerons, comprised
of an extra electron delocalized over three ions and the atomic
displacements of the end ions toward the central ion [4,5]. It
was suggested that, in the cubic phase, dynamic fluctuations
of trimerons would aggregate into complexes, responsible for
the persistence of local electronic and structural correlations
for finite times. The thermodynamics of precursor order above
the ordering temperature gives rise to a broad ensemble of
critical effects [6–12].

The consequences of pretransitional phenomena on the
conducting state in the cubic phase are still poorly explored.
In general, the transport mechanism and the degree of delocal-
ization of the charge carriers remain under discussion. Optical
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spectroscopy in the midinfrared has so far been inconclusive
as to the possible occurrence of a Drude peak due to the
predominance of phonon features in the same frequency range
and sensitivity limitations from the Kramers-Kronig analysis
of the reflectivity data [13–15]. On the other hand, THz exper-
iments [16] have shown a narrow Drude response (∼40 cm−1)
above the Verwey temperature with a small spectral weight
(∼2 × 10−4 of the expected low-energy sum rule) compatible
with the dc conductivity and suggesting thermally activated
heavy carriers. Below the Verwey temperature, a power-law
behavior is found for the frequency-dependent conductivity
suggesting hopping conduction. The most plausible scenario
is that SP conduction dominates both the cubic and mon-
oclinic phases, and the progressive destruction of precursor
order and the higher rate of multiphonon processes with in-
creasing temperature govern the competition between regimes
of band and hopping conduction [17].

The open problems on the microscopic process of the
Verwey transition and the conduction mechanism are mutually
related. Indeed, the scenario of a pseudospin-phonon coupled
system, first put forth by Yamada, is consistent with the pre-
dominance of charge carriers with large effective mass, which
mainly give rise to hopping, rather than band, conduction [18].
Conversely, in the framework of a Hubbard-Mott or Peierls
transition, electron-phonon coupling is not strong enough for
charge carriers to self-trap, with the results that they preserve
a high propensity to coherent motion [19,20].

Inelastic light scattering is an effective tool that can be
used to gain insight into both lattice-dynamical and electronic
effects of phase transitions in solids. Here, we address the
previously mentioned intricate puzzle from different perspec-
tives. We take advantage of the broad potentials of Raman
spectroscopy in the study of vibrational effects to identify the
structural anomalies concomitant with the Verwey transition.
At the same time, we provide evidence of contributions to
the Raman response from diffusive modes of an electronic
nature. Notably, we single out spectroscopic fingerprints from
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FIG. 1. Complete data sets of Raman spectra as a function of nominal temperature for (a) 2.4 and (b) 3.1 eV excitation. Data are normalized
to the background intensity integrated between 800 and 810 cm−1. Red (green) arrows indicate magnetite (hematite) phonon modes in the
monoclinic phase. Blue-to-red color coding refers to increasing nominal temperature. Black denotes the Verwey temperature.

both charge correlations (characterized by fast dynamics) and
diffusive transport, whose characteristic time scales show a
critical dependence on temperature.

II. METHODS

The magnetite sample measured in our experiments is
a natural single crystal purchased from Surface Preparation
Laboratory (SPL), Zaandam, the Netherlands. Based on an
ac susceptibility characterization, it presents a discontinuous
transition at the Verwey temperature TV = 116 K. The sample
was mounted on the cold finger of a liquid-helium cryostat at a
base pressure of 10−6 mbar. The sample surface was polished
to optical quality without any specific orientation of the crystal
face.

Raman experiments were conducted in the 5–330 K tem-
perature range by means of a homemade Raman spectrometer
equipped with a liquid-nitrogen-cooled CCD detector. In two
different sets of experiments, the sample was illuminated by
the 514.5 nm output of an argon-ion laser and the 405 nm
emission line of a diode laser, with 10 mW nominal power
incident onto the sample surface. In the following, the two
different excitations are denoted by their photon energies,
hν = 2.4 and 3.1 eV, respectively. Raman spectra were ac-
quired in an unpolarized backscattering configuration. Due to
the experimental limitations in the rejection of the Rayleigh
light, the lower boundaries of our detection ranges are 75 and
140 cm−1, respectively, for 2.4 and 3.1 eV excitation. As a
result of the large effects of laser heating, for 2.4 eV exci-
tation the Verwey transition occurs at a nominal temperature
T ∗

V = 85 K. Asterisks in superscripts denote reference to the
nominal temperature for 2.4 eV excitation. To compensate
for the difference in the nominal temperatures, combined
data are plotted as a function of the reduced temperature,

defined as T ∗/T ∗
V − 1 and T/TV − 1, respectively, for 2.4 and

3.1 eV excitation. Accordingly, our approximate estimate of
the effective temperature at the laser spot for 2.4 eV excitation
is T = T ∗ TV /T ∗

V . Data sets in the full temperature range of
our experiments are shown in Fig. 1.

III. RESULTS AND DISCUSSION

As illustrated in Fig. 2, in our study we take into account
three possible contributions to the Raman spectra, namely
scattering of light by phonons, magnons, and electrons, with
propagating or diffusive dynamics. Typically, the first two
types of collective excitations produce narrow and broad
peaks, respectively, superimposed to an intensity continuum
from electronic Raman scattering. In a phenomenological
description, the total Raman response, S(ω), can be fit by
the sum of three separate components, Sph(ω), Sma(ω), and
Sel(ω), associated with lattice vibrational, magnetic, and elec-
tronic degrees of freedom, respectively. According to the
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FIG. 2. Pictorial representation of the different contributions to
the Raman response function of magnetite from phonons, magnons,
and electrons, with diffusive or propagating dynamics.
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FIG. 3. Spectral response obtained for 2.4 eV excitation at (a) 293 and (b) 5 K, and for 3.1 eV excitation at the same reduced temperatures.
Red (green) arrows indicate magnetite (hematite) phonon modes. Labels in red refer to the cubic counterparts of the phonon modes in the
monoclinic phase. For better comparison, data are normalized to the background intensity integrated between 800 and 810 cm−1.

fluctuation-dissipation theorem, the scattering cross section in
Raman experiments, S(ω), is proportional to the imaginary
part of the Raman response function, χ ′′(ω),

S(ω) = [1 + n(ω)]R χ ′′(ω), (1)

where 1 + n(ω) = [1 − exp (−ω/kBT )]−1 is the Bose-
Einstein thermal factor. Matrix element effects are incorpo-
rated in the proportionality factor R. To a first approxima-
tion, it can be assumed to be temperature- and frequency-
independent. In the following, Raman spectra corrected by the
Bose factor, R χ ′′(ω), are accounted for. For simplicity, they
are referred to as the spectral response.

A. Phonon excitations

First, we focus on the contribution to the spectral response
from the phonon modes with Raman activity, generally mod-
eled by Lorentzian functions, with frequency ωi , linewidth �i ,
and amplitude Ai ,

Sph(ω) = [1 + n(ω)]
N∑

i=1

Aiω�i(
ω2 − ω2

i

)2 + ω2�2
i

. (2)

The crystal structure of magnetite above TV is an inverse
cubic spinel with space group Fd3̄m. According to factor-
group analysis, the space group Fd3̄m is decomposed into
irreducible representations, which are further grouped into
(T1g + 2A2u + 2Eu + 2T2u) inactive modes, (A1g + Eg +
3T2g ) Raman-active modes, and (5T1u) infrared-active modes.
Raman- and infrared-active modes are mutually exclusive for
the presence of inversion symmetry.

Verble first analyzed the eigenvectors of the five Raman-
active modes of the cubic phase with reference to Waldron’s
molecular model [21,22]. Based on symmetry considerations,
only tetrahedral Fe3+ ions and O2− ions contribute to Raman-
active modes. In particular, according to Verble’s descrip-
tion, they comprise symmetric stretching of O2− ions along
Fe3+–O2− bonds (A1g mode), symmetric and asymmetric
O–Fe–O bending (Eg and T 2

2g modes, respectively), asymmet-
ric stretching of Fe3+ and O2− ions (T 3

2g mode), and rigid
displacements in opposite directions of the two Fe3+O4

2−
tetrahedra in the primitive cell (T 1

2g mode, the numbering

of the T2g modes, different from Verble’s, is the same as
Ref. [23]). The validity of Waldron’s molecular model de-
pends on the relative importance of the interactions within
and among B-type Fe tetrahedra and Fe3+O4

2− tetrahedra.
Combined theoretical and experimental studies of the phonon
density of states suggest comparable contributions to the over-
all structural dynamics from both tetrahedral and octahedral
Fe ions below 320 cm−1 [24,25]. On the other hand, first-
principles computations of the eigenvectors of the Raman-
active modes under consideration are in qualitative agreement
with Verble’s description [26].

As displayed in Fig. 3(a), in our spectral responses at
room temperature, four out of the five Raman-active modes
predicted by group theory are observable. The same figure
summarizes our mode assignment, which relies on polarized
Raman studies by Shebanova and Lazor, with particular ref-
erence to the controversial attribution of the 307 cm−1 peak
to the Eg or T 3

2g mode [23]. Let us note that Shebanova and
Lazor’s assignment is also supported by ab initio calcula-
tions of the phonon-dispersion curves in the cubic phase, in
quantitative agreement with the experimental data [26,27].
The additional peaks at 291 and 412 cm−1 were identified
with the E2

g + E3
g and E4

g hematite modes, respectively [28].
Our fit analysis allowed us to discriminate the Eg modes of
hematite and magnetite, which are close in energy and give
rise to a broad asymmetric band from 280 to 340 cm−1 [see
Figs. 7(a) and 7(b)]. The presence of hematite impurities is
not surprising considering the natural origin of our sample.

In the structural transition of magnetite, complex atomic
displacements, with small amplitudes down to 1 pm, give
rise to a change in crystal symmetry, which is reflected in
the modifications of a number of physical properties [2–5]. A
monoclinic cell four times larger than the cubic cell accounts
for the complete set of structural distortions that take place
upon decreasing the temperature from above to below TV .
As a direct consequence, the number of normal modes of
vibration also quadruplicates, from 42 to 168. Therefore, as
illustrated in Fig. 3(b), the phase transition is accompanied by
the emergence of a rich spectrum of new phonon modes. For a
complete assignment of the Raman-active modes in the mon-
oclinic phase, first-principles computations that can reproduce
mode frequencies and Raman cross sections with quantitative
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FIG. 4. (a) Temperature dependence of the intensity of the critical modes for 3.1 eV excitation. Reference data for the A1g mode are
also plotted. Temperature dependence of the (b) area and (c) center of gravity of the background distribution in the 240–500 cm−1 Raman
shift range. Violet (green) symbols refer to 3.1 eV (2.4 eV) excitation. Lines are guides to the eye. Vertical dashed lines denote the Verwey
temperature.

accuracy are needed. For our purposes, we restrict ourselves
to simpler considerations. The highest-frequency mode is the
monoclinic counterpart of the A1g mode in the cubic phase,
now labeled Ag . The linewidths of the T2g modes increase,
instead of decreasing for anharmonic effects, upon lowering
the temperature in the pretransition region [see Figs. 5(d)
and 5(f)]. This is interpreted here as the result of mode
splitting into submodes close in energy. Its occurrence tens
of degrees Kelvin above TV , rather than at TV , is among the
precursor effects discussed at the end of Sec. III B. No further
consideration is possible here on the relation between the
shoulder mode around 628 cm−1 and the A1g mode, as well as
between the two new modes in the 300–400 cm−1 frequency
range and the Eg mode, which thus remain unassigned.

Two sharp peaks unrelated to any Raman-active mode
of the cubic phase appear around 160 and 470 cm−1, con-
sistent with previous observations on magnetite thin films
[29]. In recent pump-probe studies, based on the comparison
between experimental data and theoretical computations of
the phonon-dispersion curves and the optical functions, we
attributed the onset of the 160 cm−1 peak to the folding to
the center of the Brillouin zone of a phonon mode of �2

symmetry at q� = (0, 0, 0.5) reciprocal-lattice units (r.l.u.,
1 r.l.u. = 2π/a, with a the lattice parameter in the cubic
phase) [30]. With the use of the same method, we assigned an
additional mode at 125 cm−1 to the monoclinic counterpart
of a phonon mode of X3 symmetry at the boundary of the
Brillouin zone in the [001] direction. The latter mode is visible
as a broad weak peak in our data at 5 K and 2.4 eV excitation
[see Fig. 1(a)], and is not discussed any further.

In early Raman experiments, the 470 cm−1 band was
observed at 130 and 300 K, and it was proposed to originate
from an optical magnon [31–33]. Indeed, the band position
is compatible with energy estimates for the lowest-energy
optical magnon of the cubic phase from inelastic neutron
scattering (INS) [34]. However, in more recent experiments,
the 470 cm−1 band was not observed at high temperatures
[15,23,29,35–37]. In particular, in our measurements the tem-

perature dependence of the band intensity is consistent with
that of a phonon mode of the monoclinic phase. The intensity
decreases rapidly across the Verwey transition, but residual
intensity persists in the cubic phase for the precursor effects
discussed in the next subsection [see Fig. 4(a)]. Conversely,
if an optical magnon of the cubic phase was the cause of
the band under consideration, the intensity would decrease
upon heating, but no complete band suppression would take
place far above TV . The observation of the 470 cm−1 band
at 300 K in Refs. [31,33] is hardly explainable by invoking
precursor effects. An alternative suggestion is that the peak
observed at room temperature is in fact a different phonon
mode of the cubic phase, namely the T 3

2g mode predicted
in the same energy range based on theoretical computations
[23,26,27]. Sample-dependent effects may play a role in its
intensity enhancement [31–33].

B. Structural anomalies

Figures 5 and 6 illustrate the temperature dependence of
the frequencies and linewidths of the phonon modes across
the Verwey transition. In our experiments, small temperature
steps down to 5 K were used in order to best resolve the
possible occurrence of structural anomalies by means of a
quantitative analysis. The single peaks associated with the
phonon modes were fit with Lorentzian functions according
to Eq. (2), after subtraction of a linear baseline in the Raman
shift range around the peak. The fit analysis of the features
in between 240 and 440 cm−1 required a different method,
briefly described in Sec. III C. Modifications in mode param-
eters are rapid for all modes. A large frequency decrease and
a linewidth increase by, respectively, 5–10 and 3–6 cm−1 take
place in proximity of the Verwey transition. Inhomogeneous
laser heating broadens the critical region and thus causes a
rounding of the temperature dependence of the mode parame-
ters on the lower-temperature side. Instead, the steep decrease
in the mode frequency between TV and TV + 14 K is an
intrinsic effect. The onset of linewidth broadening, about 40 K
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FIG. 5. Temperature dependence of the frequency and linewidth of the (a,b) A1g , (c,d) T 2
2g , and (e,f) T 1

2g modes of the cubic phase, visible in
the form of single peaks both above and below TV . Violet (green) symbols refer to 3.1 eV (2.4 eV) excitation. A vertical dashed line denotes the
Verwey temperature. The lower horizontal axis is the nominal temperature for 3.1 eV excitation and our approximate estimate of the effective
temperature at the laser spot for 2.4 eV excitation.

below TV , precedes the decrease in the mode frequencies,
starting from 95 K.

Our data provide unequivocal evidence of the concur-
rent lattice dynamical and electronic character of the Ver-
wey transition. According to the most recent theoretical and
experimental estimates, charge differences between Fe ions
in the insulating state are on the order of one-tenth of an
elementary charge [4,5,38]. This explains why the occurrence
itself of charge order has long remained controversial [39,40].
However, the occupations of different 3d orbitals at B-type
Fe ions constitute an unambiguous basis upon which to define
order parameters (OPs). Orbital, rather than charge, order was
suggested to play the most important role in the modifications
of the electronic structure from the conducting to the insu-
lating state [27]. The important renormalization of the mode
frequencies observed here despite the small amplitude of
the atomic displacements is a direct consequence of the onset
of orbital polarization below the transition temperature. More-
over, the comparable values of the frequency changes support
a cooperative picture of the Verwey transition. According to
this scenario, no significant hierarchy is established among
the phonon modes, since they all participate in the transfor-
mation process, although with measurable differences in their
contributions, particularly in terms of coupling with different
types of modes.

In this regard, the temperature dependences of both the
160 and 470 cm−1 modes resemble phonon softening, but

only partially [see Figs. 6(c) and 6(e)]. This is different
from the general behavior of the phonon modes, including
the 628 cm−1 mode and those close to the Eg mode, which
are also intrinsic to the monoclinic phase alone. None of
them exhibits any important change in frequency over the
temperature range below 95 K [see the upper panels of Figs. 5
and 6(a)]. Figures 7(c) and 7(d) show the temperature depen-
dence of the line shapes of the 160 and 470 cm−1 modes
to the highest temperatures at which they are visible. The
distribution of scattering intensity from the two modes and
the temperature range over which they contribute to Raman
scattering are anomalous. In both cases, particularly close to
the transition temperature, the best fit quality is obtained with
Fano, rather than Lorentzian, functions. Unlike Lorentzian
peak shapes, the two modes are asymmetric and, in particular,
the spectral weight is larger on the low-frequency side. Close
to the transition temperature, a dip develops on the high-
frequency side, in further agreement with a Fano line shape.
To gain reliable information on the temperature dependence
of the line-shape anomaly, the two peaks are also fit with
bi-Gaussian functions. Fano functions correctly reproduce the
peaks within the local frequency range, however the accuracy
of the fit parameters depends on the quality of the background
subtraction over a broad frequency range. To quantify the
degree of asymmetry, an asymmetry parameter is defined, β ≡
(�1 − �2)(�1 + �2)−1, where �1 and �2 are, respectively,
the left and right half-widths at half-maximum from the fit
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628 cm-1 mode 160 cm-1 mode

470 cm-1 mode

FIG. 6. Temperature dependence of the frequency and linewidth of Raman-active modes of the monoclinic phase. Violet (green) symbols
refer to 3.1 eV (2.4 eV) excitation. The shoulder mode of the A1g mode in panels (a) and (b) is clearly observable only for 3.1 eV excitation.
A vertical dashed line denotes the Verwey temperature. The lower horizontal axis is the nominal temperature for 3.1 eV excitation and our
approximate estimate of the effective temperature at the laser spot for 2.4 eV excitation.

with bi-Gaussian functions. The asymmetry parameter of the
470 cm−1 mode does not present any meaningful dependence
on temperature throughout the monoclinic phase. Instead, it
suddenly diverges in the proximity of the critical region. The
degree of asymmetry does not change for different excitations.
In particular, β = 0.27 ± 0.03 and 0.29 ± 0.06, respectively,
for 3.1 and 2.4 eV excitation. The degree of asymmetry of
the 160 cm−1 mode is lower than that of the 470 cm−1 mode
and does not depend on excitation energy either, namely β =
0.16 ± 0.15 and 0.18 ± 0.11, respectively, for 3.1 and 2.4 eV
excitation.

Recent pump-probe studies revealed that two modes that
are symmetry-forbidden in the cubic phase but symmetry-
allowed in the monoclinic phase, namely the 125 and
160 cm−1 modes, persist up to TV + 24 K [30]. Assuming that
such experiments probe in real time the same Raman tensor
that governs the present steady-state experiments [41], one
would expect the analogous effect to be observed here. Unfor-
tunately, artifacts from ineffective rejection of the Rayleigh
light in the low-frequency range prevent any conclusion on
whether the 160 cm−1 mode is visible also in our steady-state
experiments for the same 3.1 eV photon energy of light exci-
tation. On the other hand, we observe some analogous effect
for other modes. The intensity of the 470 cm−1 mode does
decrease suddenly around TV , however a broad weak feature
is observable up to 120–125 K nominal temperature, which

corresponds to an effective temperature more than 5–10 K
above the transition temperature [see Fig. 7(c)]. Analogous
considerations hold true for the shoulder mode of the A1g

mode [see Figs. 1(b) and 4(a)]. A reliable fit analysis of
the A1g and T 2

2g modes requires an additional peak in the
600–650 cm−1 Raman shift range up to 150 K nominal tem-
perature. However, the superposition of the spectral weight
associated with the A1g peak does not allow us to study
possible anomalies in line shape.

To explain this effect, we refer to the same interpretation
as in Ref. [30]. In the high-symmetry phase, the modes are
nominally forbidden simply because they are at finite wave
vector. However, fluctuations of the ordered phase with a large
correlation length and time can explain the effect. Indeed,
we propose that a second-order Raman process takes place
in which a charge fluctuation with wave vector q close to
that of the ordered phase is excited together with a phonon
mode of wave vector −q, so that the total wave vector is
conserved. The cross section for the above Raman mechanism
is meaningful only for large amplitude and a high enough
degree of correlation of the critical fluctuations, near the
Verwey temperature. The diffusive character of the electronic
modes explains why they do not contribute any energy.

Notice that the Fano line shapes observed for the critical
modes point to interference effects between scattering of light
by phonon modes and a continuous spectrum of electronic

184301-6
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FIG. 7. Temperature dependence of phonon modes and background intensity in the 240–500 cm−1 Raman shift range for (a) 2.4 and
(b) 3.1 eV excitation. Red (green) arrows indicate magnetite (hematite) phonon modes. A blue arrow denotes the central energy of the higher-
energy acoustic magnon at the � point at 115 K <TV from INS [42]. Data are offset for clarity. Temperature dependence of the monoclinic
modes at (c) 470 and (d) 160 cm−1 for 3.1 eV excitation. Red (blue) refers to the cubic (monoclinic) phase. For better comparison, data are
normalized to the background intensity integrated between 800 and 810 cm−1. For clarity, data are offset and multiplied by a factor 5 close to
the Verwey temperature. Data and fitting functions are plotted with colored symbols and lines, respectively. Black lines represent separate fit
components.

excitations and, therefore, to significant electron-phonon cou-
pling for the lattice vibrations under consideration.

C. Magnetic or electronic excitations

As illustrated in Fig. 1, intensity builds up in the mono-
clinic phase in the form of a broad background in the Raman
shift range from 240 to 500 cm−1. Gasparov et al. suggested a
possible electronic or magnetic origin of this feature, rather
than the simple onset of a rich structure of new phonon
modes [36]. In our fit analysis in Figs. 7(a) and 7(b), baseline
estimation via an asymmetric least-squares method singles out
the phonon modes from the background. It is thereby possi-
ble to study the temperature dependence of the background.
The integrated intensity of the background decreases rapidly
with increasing temperature across the Verwey transition [see
Fig. 4(b)]. The center of gravity of the baseline does not
change noticeably throughout the monoclinic phase, and it is
about 362 ± 2 and 368 ± 3 cm−1, respectively, for 2.4 and
3.1 eV excitation [see Fig. 4(c)].

INS measurements of the spin-wave dispersion of mag-
netite below TV revealed the formation of a large gap in the
acoustic branch at q�. The modifications of the spin-wave and
phonon dispersions of magnetite upon the Verwey transition
are qualitatively analogous. Indeed, the sizes of the magnetic
moments and the exchange constants depend significantly on
the charge distribution and the bond lengths and angles, all
of which change discontinuously upon the ordering process
of the Verwey transition [42]. Upon decreasing temperature
across TV , the volume of the primitive cell quadruplicates,
both for the magnetic and electronic structures. In reciprocal

space, q� becomes the center of the Brillouin zone.
Close to both edges of the gap, the spin-wave dispersions
become flat and thus give rise to a high magnon density of
states, along with a potential contribution to the optical and
Raman responses [42].

The center of gravity of the background distribution is
close to the 375 cm−1 frequency estimate of the higher-
energy magnon at the gap from the same INS experiments
at 115 K <TV [see the blue arrows in Figs. 7(a) and 7(b)]
[42]. However, it is arguable whether a one-magnon excitation
is responsible for the broad peak observable in our Raman
spectra. According to the microscopic theory by Fleury and
Loudon, the same mechanism is responsible for first-order
scattering in all types of magnetic materials, namely indirect
electric-dipole coupling, mediated by spin-orbit interaction
[43,44]. The selection rule on the ε1 and ε2 polarizations of,
respectively, incoming and outgoing light is |εz

1ε
+
2 − ε+

1 εz
2| �=

0, where ε+ = εx + iεy and z is the direction of spin order.
Therefore, in polarized Raman studies, Raman scattering from
one-magnon excitations is supposed to disappear if ε1 and
ε2 are parallel. This is not the case for the broad peak being
considered, which is also observable in XX geometry [15,36].
Its large linewidth further calls into question its possible origin
from a one-magnon excitation. In fact, first-order scattering
is restricted to the center of the Brillouin zone and is thus
supposed to give rise to narrow peaks.

An alternative suggestion is the occurrence of second-order
scattering from magnon excitations of opposite wave vectors
close to the boundaries of the Brillouin zone in the monoclinic
phase at (0, 0,±0.25) r.l.u.. Energy conservation is fulfilled
because they are at about half the energy of the magnon
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FIG. 8. Comparison between the spectral response, R χ ′′(ω) (black), at the transition temperature and in the (a) (blue) monoclinic and
(b) (red) cubic phase. The fitting functions to the background intensity defined in Eq. (3) are plotted together with the data, with the same color
coding. Shaded areas highlight the diffusive contribution to the spectral response. (c)–(e) (black symbols): Temperature dependence of the fit
parameters. The reduced temperature dependence of the dc conductivity of our sample is also plotted with a red line in panel (d). The lower
horizontal axis of panels (c)–(e) is the nominal temperature. Vertical dashed lines denote T ∗

V . To account for the effects of laser heating, fits
are repeated for R χ ′′(ω) computed from S(ω), respectively, with reference to our estimate of the effective temperature, T , and the nominal
temperature, T ∗. Error bars correspond to the differences between the fit parameters in the above two cases. Data points are average values.

excitations at q� [42]. In contrast to first-order processes,
second-order processes take place via different mechanisms
depending on the type of magnetic material [43,44]. The
so-called exchange scattering mechanism is characterized
by the absence of intrinsic selection rules on ε1 and ε2,
i.e., both symmetric and antisymmetric components of the
Raman tensor. Moreover, typical cross sections are compara-
ble to or larger than those for one-magnon scattering, and the
multiple combinations of magnon excitations possible around
the critical points of the Brillouin zone produce broad peaks,
similar to our observations. However, available data from INS
experiments do not show any noticeable gap at (0, 0,±0.25)
r.l.u. [42]. A small gap may still be present. To determine
whether Van Hove singularities develop at (0, 0,±0.25) r.l.u.,
data with better energy and momentum resolution are needed.

An electronic origin of the feature being discussed is also
possible. The onset of charge and orbital order, and the dif-
ferent electronic structure in the monoclinic phase, compared
to the cubic phase, may indeed produce rearrangements of the
spectral weight in the Raman response. However, before any
further speculation, additional Raman experiments are needed
to rule out magnon excitations altogether, for instance high

magnetic field and polarization dependences on an oriented
single crystal in the monoclinic phase.

D. Diffusive excitations

In our discussion of the diffusive response, we take into
account data at 2.4 eV excitation, which, in contrast to data at
3.1 eV excitation, are available on a spectral range suitable for
an analysis down to low frequency. Interestingly, an anomaly
in the background intensity occurs at low frequency in the
critical region. First, in the monoclinic phase, the background
intensity increases upon heating. Then, in the cubic phase, an
atypical transfer of spectral weight to higher frequency takes
place upon further increasing the temperature. Accordingly, in
Figs. 8(a) and 8(b), the background intensity at low frequency
is below that of reference data at TV both in the monoclinic
and cubic phases.

The following function represents the simplest model to fit
the background intensity in our data, with particular reference
to the low-frequency range,

R χ ′′
el(ω) = Aω

1 + (ωτ )2
, (3)
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where A is a phenomenological amplitude and τ is a phe-
nomenological time constant. Our fit analysis is exemplified
in Figs. 8(a) and 8(b). Data sets and fitting functions at
different temperatures throughout both the cubic and mono-
clinic phase are shown in Fig. 1 of the Supplemental Material
[45]. The fitting parameters A and τ are plotted as a function
of temperature in Figs. 8(c) and 8(d). It has been shown that, to
a first approximation, the simple relation R χ ′′

el(ω) ∝ ω σ1(ω)
holds true between the electronic contribution to the spectral
response, χ ′′

el(ω), and the real part of the optical conductivity,
σ1(ω), at low enough frequency [46]. Therefore, it is possible
that our data contain the Drude peak, which originates from
the diffusive dynamics of the charge carriers. If this is the case,
the phenomenological amplitude A is supposed to account
for the contribution to σ1(0) from the transport mechanism
under consideration, A ∝ σ1(0) = ne2τm∗−1, where n and
m∗ are, respectively, the density and effective mass of the
charge carriers. Indeed, as shown in Fig. 8(d), the temperature
dependences of A and σ1(0) are qualitatively similar in the
cubic phase. Our estimate of the ratio between the density and
the effective mass of the charge carriers, n/m∗ ∝ A/τ , shown
in Fig. 8(e), increases continuously upon heating, which is
suggestive of thermally activated processes. Our data do not
allow us any further consideration on the nature of the trans-
port mechanism being discussed. Ihle and Lorenz proposed a
microscopic theory for SP conduction in magnetite, according
to which diagonal transitions give rise to a Drude peak in
σ1(ω), which dominates σ1(0) below 400 K [17]. However,
their considerations are called into question by the erroneous
assignment of the polaron peak [14].

The interpretation of the Raman diffusive excitation as
being related to the Drude response in the optical conductivity
is incompatible with the order of magnitude larger scattering
time observed in THz experiment [16] and with the insulating
character of the transport below TV . Furthermore, a Drude
interpretation cannot explain the temperature dependence of
the relaxation time, τ , plotted in Fig. 8(c) either. In principle,
one can argue that, due to a critical slowing down, the relax-
ation time due to scattering with critical fluctuations increases
close to the transition temperature. However, the scattering
of the charge carriers by fluctuations of the OP is by no
means the only relaxation channel. Phonons, magnons, and
different types of fluctuations are also at play. According to
Matthiessen’s rule, in the presence of competing processes, τ

is in any case dominated by the shortest relaxation time. Any
possible increase of the time constant in one of the relaxation
channels is cut off by the higher scattering rate from different
mechanisms.

One can still think that some q = 0 relaxation of charge
contributes to Raman but not to the transport due to selection
rules. However, it is difficult to conceive how such selection
rules would be implemented for an incoherent relaxation
process.

Instead, we propose that the observed anomaly in the
background intensity comes from a process in which two
charge fluctuations with finite momentum are created. The
coupling with light does not occur through a correction of the
q = 0 charge fluctuation but through a Raman matrix element
that directly couples light to a two-mode excitation. Thus, the
process is Raman-allowed but does not contribute to the q = 0

current fluctuations that determine the optical conductivity.
The two modes are postulated to be critical modes of the
Verwey transition. In particular, in the following, we argue
that diffusive collective excitations of charge fluctuations pro-
vide a scattering channel for the electronic spectral response,
in addition to the processes of single-particle excitations.
A similar explanation was advanced for Raman scattering
in cuprates [47]. Also, this mechanism is closely related to
our explanation of the appearance of symmetry-forbidden
phonons above the ordering temperature.

A generic fluctuation mode of wave vector q, δρq (t ), is
defined as the instantaneous deviation of the Fourier trans-
form (FT) of an ordering field mode, ρq (t ), from its equi-
librium value, 〈ρq〉, also termed an order parameter (OP),
i.e., δρq (t ) = ρq (t ) − 〈ρq〉. Above the ordering temperature,
which in our case is TV , 〈ρq〉 = 0 by definition, and δρq (t ) and
ρq (t ) are equivalent. Instead, below the ordering temperature,
〈ρq〉 �= 0 at the critical wave vectors, which we generically
indicate as {qc}.

The ordering field modes accounted for here are
represented by electron density modulations. The fluctuation
modes are treated here as classical variables with relaxational
responses, consistent with our observation of a diffusive
response, along with a general interpretation of the Verwey
transition in terms of an order-disorder transformation. We
suppose that quantum tunneling of charges does not occur,
since charges are self-trapped due to polaronic effects. Still,
the treatment is not purely classical, because we do not
assume that kBT is much higher than the energy scale of the
ordering field modes.

To compute the diffusive response, we start from the
Ginzburg-Landau expansion of the free energy density in
reciprocal space, given by Eq. (4). In principle, this formalism
is suitable only for second-order transitions. Nevertheless, we
apply it to the Verwey transition, with the following caveats.
First, the ordering temperature, TV , must be replaced by the
theoretical limit of metastability for the disordered phase,
Tc < TV . Second, the critical wave vectors for the discon-
tinuous transition, {qc}, commensurate, must be replaced by
the critical wave vectors for the continuous precursor effects,
{q∗

c}, incommensurate, where diffuse scattering is the most
intense far enough from TV [7–10,48]. The sums over q in
Eq. (4) are restricted to neighborhoods of {q∗

c},

F ({ρq (t )}) =
∑

q∗
c

∑
q

1

2
[a(T − Tc )+b|q − q∗

c |2]ρq (t )ρ−q (t )

+
∑

q∗
c

∑
q

fq (t )ρ−q (t ) + o(ρ3). (4)

Below TV , a similar development holds true, to a reason-
able approximation, yet around the finite values of 〈φq〉.
Terms of higher order implicit in o(φ3) are responsible
for the discontinuous transformation at TV . a and b are
temperature-independent coefficients. An external field fq (t )
linearly coupled to the ordering field is introduced here for
the computation of the diffusive propagator. The details of
our calculations are provided in the Appendix. According
to our theoretical model, the contribution of the fluctuation
modes to the spectral response is given by Eq. (5). We defined
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FIG. 9. Comparison between the spectral response, Rχ ′′(ω) (black), at the transition temperature and in the (a) (blue) monoclinic and
(b) (red) cubic phase. The fitting functions to the background intensity defined in Eq. (5) are plotted together with the data, with the same
color coding. Shaded areas highlight the electronic contribution to the spectral response. (c) Our data from spontaneous Raman scattering
(SRS, green symbols and shaded area) are compared with data from INS (black symbols and shaded area) [7]. The black line is the theoretical
prediction for the correlation time of polaron fluctuations of �5 symmetry at (0,0,0.75) r.l.u. based on experimental estimates of the microscopic
parameters of Yamada’s model [49]. The lower horizontal axis of panel (c) is the nominal temperature. Vertical dashed lines denote TV . As in
Figs. 8(c)–8(e), data points and error bars account for the uncertainty from the effects of laser heating.

m = γ a(T − Tc ), with γ a phenomenological relaxation rate
[see Eq. (A1)]. ωM = γ bq2

M is the frequency cutoff associated
with the upper limit of the summation over the fluctuation
modes in reciprocal space, qM , large enough to contain the
fluctuation modes that contribute the most to the spectral
response, and of the order of π/a,

R χ ′′(ω)

= −
∫ +∞

−∞
dξ

1

ωξ

[
1

e(ξ+ω/2)/kBT − 1
− 1

e(ξ−ω/2)/kBT − 1

]

×
{(

ξ + ω

2

)[
arctan

(
m + ωM

ξ − ω/2

)
− arctan

(
m

ξ − ω/2

)]

−
(
ξ − ω

2

)[
arctan

(
m + ωM

ξ + ω/2

)
− arctan

(
m

ξ + ω/2

)]}
.

(5)

To understand the meaning of the parameter m, let us consider
a simple analogy to experimental techniques with wave-vector
resolution, and selective sensitivity to charge and orbital order,

such as resonant inelastic x-ray scattering (RIXS) at suitable
absorption edges and reflections. Starting from the transport
equation for the free-energy density [see Eq. (A1)], it is easy
to compute the imaginary part of the dynamical susceptibility
at the wave vector q, χ ′′(q, ω), defined as the change in
the fluctuation mode at the same point in reciprocal space,
consequent to an external field,

χ ′′(q, ω) = Im

[
ρq (ω)

fq (ω)

]
= γω

ω2 + (�/2)2
, (6)

with �/2 = m + γ b|q − q∗
c |2. The scattering intensity cal-

culated from the above response function according to the
fluctuation-dissipation theorem [see Eq. (1)] is a central peak,
i.e., a peak centered at zero energy, of linewidth �. This origi-
nates from the relaxational dynamics of electronic excitations
with correlation time proportional to 1/�. Indeed, the scatter-
ing intensity is given by the FT of the time autocorrelation of
the observable under consideration, in our case the electronic
degree of freedom.
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Under our assumption of a Ginzburg-Landau functional,
the linewidth increases quadratically around the critical wave
vector. Therefore, the parameter m represents the minimum
linewidth, proportional to the maximum inverse correlation
time, corresponding to the critical wave vector. Deviations
from our theoretical model, for instance the variable degree
of instability at different wave vectors, give rise to complica-
tions. In the following, τ̃ ∝ 1/m will be generically referred
to as the correlation time of the fluctuation modes.

As exemplified in Figs. 9(a) and 9(b), the theoretical model
defined in Eq. (5) is fit to our data. By comparison with
Figs. 8(a) and 8(b), one can observe that both Eqs. (3) and
(5) give a similar quality of fit. Extended data sets and fitting
functions are shown in Fig. 2 of the Supplemental Material
[45]. A first fit analysis is carried out with independent values
of the parameter ωM . Then, in a second step, the theoretical
model is fit again to our data, with parameter ωM constrained
to an identical value, equal to the mean from the first step. Our
estimate of the correlation time is plotted against temperature
in Fig. 9(c). Above 150 K nominal temperature, equivalent to
0.76 reduced temperature, the correlation time does not show
any large change as a function of temperature, and it decreases
continuously at a rate of −1 fs/K. Instead, near the transition
temperature, the temperature dependence of the correlation
time displays a cusplike shape. A more noticeable divergence
also sets in upon approaching the lowest temperature.

Any possible conclusion on the temperature dependence
of the correlation time in the cubic phase is questioned
by the superposition of the contribution from the processes
of single-particle excitations discussed earlier. More reliable
considerations are feasible close to, or below, TV , where this
is expected to be negligible. An important question is, what is
the true nature of the ordering field modes in our observations?
Are they indeed electron density modulations, or in fact do
they also involve atomic displacements? To address this issue,
let us compare our 0.4–0.8 ps estimate of the correlation time
around the critical region, down to the onset for the divergence
at the lowest temperature, to analogous estimates from INS.

Diffuse scattering of neutrons and nonresonant x rays was
observed above TV [7–10]. In analogy to our observations,
it originates from fluctuation modes. In contrast to Raman
scattering, in INS and nonresonant inelastic x-ray scattering
(NRIXS), the wave-vector transfer is also resolved, and the
direct observables are structural instead of electronic. The
more intense the diffuse scattering is at a given wave vector,
the longer is the correlation time of the fluctuation mode
at the same point in reciprocal space. Relative maxima in
intensity of diffuse scattering are located at critical wave vec-
tors, i.e., corresponding to the fluctuation modes that manifest
the highest instability. In the case of magnetite, above TV ,
the critical dynamics is governed by intrinsic instabilities in
the liquid of SPs, at incommensurate points in reciprocal
space, such as (0,0,0.75) r.l.u. [7]. The black line and symbols
plotted in Fig. 9(c) are, respectively, theoretical predictions
and experimental estimates of the correlation time of the
fluctuation mode of �5 symmetry at (0,0,0.75) r.l.u. from the
linewidths of the central peaks in INS [7,49].

The above time scale on the order of picoseconds and
the absence of phonon softening are both consistent with
the scenario of combined electronic and structural fluctua-

tions, with slow dynamics, compared to the phonon modes.
Instead, interestingly, the 0.4–0.8 ps time scale of the ordering
field modes in our observations in the temperature range for
reliable estimates [see the green shaded area in Fig. 9(c)]
suggests a smaller effective mass, compatible with excitations
of mainly electronic character.

IV. CONCLUSIONS

In summary, in our study we disentangled the different
contributions to light scattering in magnetite from structural,
magnetic, and electronic degrees of freedom. We thereby
gained important information on the critical modes of the
Verwey transition. We suggested a possible magnetic or
electronic origin of light scattering in the 240–500 cm−1

range, as a consequence of modifications in the spin-wave
dispersions and electronic structure of magnetite upon the
Verwey transition. In general, our results are consistent with
the concerted contribution of different modes to the essential
mechanism of the Verwey transition. Nonetheless, from a
quantitative analysis of the structural anomalies, we identified
three phonon modes of the monoclinic phase, around 160,
470, and 538 cm−1, which possess an atypical line shape
and temperature dependence. We proposed that the distinctive
features of all three phonon modes are the result of strong
electron-phonon coupling.

Special focus was placed on the electronic contribution
to light scattering in magnetite, which also manifests critical
characteristics. Indeed, a redistribution of spectral weight
takes place in the background intensity around the transition
temperature. We proposed that processes from two differ-
ent types of excitations determine our observations. Namely,
Raman scattering from single-particle excitations account for
the temperature dependence of the transport properties of
magnetite, although here it is not possible to gain any further
insight into the conduction mechanism at the origin of our
observations. An additional component that prevails in the
monoclinic phase was identified with the diffusive dynamics
of fluctuation modes.

In INS experiments, critical fluctuations were also ob-
served in the form of diffuse scattering in reciprocal space,
associated with central peaks in the inelastic spectra. The
12–26 cm−1 linewidth of the central peak at (0,0,0.75) r.l.u. in
the 125–150 K temperature range corresponds to a correlation
time on the order of 2.6–5.4 ps, which would further diverge in
the absence of the discontinuous transition at TV . In contrast,
in our observations the time scale of the diffusive response
around the critical region is on the order of 0.4–0.8 ps. The
large ratio between the above time constants suggests different
characteristics of the critical fluctuations measured in INS
and our experiments. They are supposed to originate, respec-
tively, from excitations with mainly polaronic and electronic
character.

Electronic excitations weakly coupled to lattice vibrations
are invisible to structure-sensitive probes, such as INS and
NRIXS. In contrast, if suitable absorption edges and reflec-
tions are chosen, RIXS can serve as a charge-sensitive probe.
RIXS experiments are thus needed to provide direct evidence
of the electronic excitations discussed earlier, and the wave-
vector and temperature dependence of possible instabilities
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should be studied. In particular, based on our observations,
they are supposed to give rise to broad central peaks, com-
pared to INS, with ∼10 meV linewidth around the critical
wave vectors.
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APPENDIX

In our theoretical model, we describe the return to equilib-
rium of a generic ordering field mode upon the perturbation
of an external field, in a phenomenological manner, by means
of the Landau-Khalatnikov equation of motion,

dρq

dt
= −γ

dF
dρ−q

= −(m + ν|q − q∗
c |2)ρq (t ) − γfq (t ),

(A1)

with ν = γ b. Here, γ is a phenomenological transport coef-
ficient, which depends on the physics beyond our theoreti-
cal model. To extend our treatment to the quantum regime,
where the thermal energy is of the same order as the energy
scale of the ordering field modes, we turn to the Matsubara

formalism, and we consider the diffusive propagator associ-
ated with Eq. (A1) (see Ref. [47] for a similar approach in
cuprates),

D(q, ωm) = ρq (ωm)

fq (ωm)
= −γ

|ωm| + m + ν|q − q∗
c |2

. (A2)

We compute the dynamical susceptibility, χ (ωn), as the FT
of the linear-response function, R(τ ), given by the Kubo
formula, again, in a Matsubara representation,

χ (ωn)=
∫ β

0
dτ eiωnτR(τ )= 1

h̄

∫ β

0
dτ eiωnτ 〈TτHR (τ )HR (0)〉,

(A3)

with β = 1/kBT , ωn = 2nπ/β the bosonic frequencies, HR

the effective Raman operator, and Tτ the time ordering op-
erator. In the Raman processes under consideration, to fulfill
wave-vector conservation, mode pairs of opposite wave vec-
tors q and −q are excited together. Therefore, the effective
Raman operator is assumed to contain two fluctuation modes,

HR (τ ) =
∑

q

gq δρq (τ )δρ−q (τ ). (A4)

We replace the above expression in Eq. (A3). We develop
the correlation factor, taking into account that, to leading
order, two fluctuation modes of different wave vectors are
independent variables,

χ (ωn) = 1

4h̄

∑
qq ′

gqgq ′

∫ β

0
dτ eiωnτ 〈Tτ δρq (τ )δρ−q (τ )δρq ′ (0)δρ−q ′ (0)〉

= 1

2h̄

∑
q

g2
q

∫ β

0
dτ eiωnτ 〈Tτ δρq (τ )δρ−q (0)〉〈Tτ δρq (τ )δρ−q (0)〉. (A5)

We recognize that the above correlation factors are by definition the diffusive propagator in the time domain, i.e., the inverse FT
of Eq. (A2) from Matsubara frequency space to the time domain,

D(q, τ ) = 1

β

∑
n

e−iωnτD(q, ωn). (A6)

Analytical calculations of the above integral and summation in the complex plane eventually lead to the model function of
Eq. (5).
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