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We study the local density of the Bose-Hubbard model in the presence of on-site disorder near the Bose-glass
transition using multifractal, typical medium, and percolation theories. At incommensurate filling our findings
support the scenario of percolating superfluid clusters enhancing Anderson localization. Scaling analysis of the
superfluid density at the incommensurate filling of ρ = 1.1 and on-site interaction U = 80t predicts a superfluid-
Bose-glass transition at disorder strength of �c ≈ 30t . At this filling the local-density distribution becomes more
skew with increasing disorder strength. Multifractal analysis suggests a multifractal behavior resembling that of
the Anderson localization. In the Bose-glass phase the mode of the local-density distribution approaches an
integer value as expected from typical medium theory for the Anderson localization. Percolation analysis points
to a phase transition of percolating noninteger filled sites around the same value of disorder. On the other hand,
the behavior at commensurate filling is rather different. Close to the tip of the Mott lobe (ρ = 1, U = 22t) we
find a Mott-insulator-Bose-glass transition at disorder strength of �c ≈ 16t . An analysis of the local-density
distribution shows Gaussian-like behavior for a wide range of disorders above and below the transition.
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I. INTRODUCTION

The Bose-Hubbard model [1] was originally proposed to
demonstrate the existence of a macroscopically occupied state
under a repulsive interaction. By introducing quenched disor-
der [2,3] this model exhibits a complex phase diagram. Many
theoretical investigations of disordered interacting bosonic
models followed [3–38] early experiments on 4He films
absorbed on porous media [39–43]. More recently, due to
advances in optical lattice experiments, the Bose-Hubbard
model has also become relevant in the realm of atomic
physics [44–46]. Indeed, it quickly becomes the most impor-
tant venue for the physical realization of the Bose-Hubbard
model [45]. Bose-glass behavior has also been reported on
some doped magnets, such as NiCl2 · 4SC(NH2)2 [47–49].

In the absence of disorder the Bose-Hubbard model is
rather well understood, but the physics of the disordered
model has been shown to be much complicated. An out-
standing controversial issue is related to the quantum phase
transition at commensurate filling. Early studies suggested
that a direct superfluid -Mott-insulator transition was unlikely,
although not fundamentally impossible [3]. A third phase,
the compressible and gapless Bose glass, intervenes between
the superfluid and Mott insulator. Recent arguments justi-
fied the existence of the Bose glass upon the destruction
of the Mott insulator based on the appearance of rare but
compressible superfluid clusters [36,37,50]. Observation of a
superfluid-Bose-glass transition has been reported in recent
cold-atom experiments[51].

While the phase diagram of the disordered Bose-Hubbard
model has been extensively studied, the nature of the Bose

glass has not received that much attention. A real-space renor-
malization group study has claimed that the local density is
not self-averaging for the Bose-glass phase [52]. It has further
been proposed that replica symmetry is broken at higher than
two dimensions [32]. There are reports which suggest that the
Bose-glass phase can be understood as a system of nonper-
colating superfluid clusters [34]. But a recent quantum Monte
Carlo study on the related hard-core Bose model suggests that
the transition is not due to percolation [53].

A simple physical interpretation of the Bose-glass phase,
borrowed from Anderson localization, is that the virtually
free bosons in the presence of a sufficiently strong disorder
potential localize [54]. The wave function of the Anderson
model has been studied in great detail in recent years [55–61].
A prominent feature of the localized phase is the skew dis-
tribution of its local density [62]. More interestingly, around
the critical point between the metallic and localized phases
the wave function exhibits multifractal behavior [55,58,63].
If the Bose glass can be interpreted as an Anderson localized
phase, a natural question is whether some of those behaviors
can be rediscovered in the Bose-Hubbard model. For example,
the possible multifractal behavior of the critical state was dis-
cussed very recently in the context of cold atoms in disordered
potentials [64].

In this paper, we focus on the nature of the local density
at and close to the Bose-glass phase. In essence, we seek to
answer the following three important questions regarding the
disordered Bose Hubbard model which have not been hitherto
elaborated in the literature. (i) How does the local-density
distribution change with disorder strength? In particular, how
do its mode, skewness, and kurtosis evolve with disorder?
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(ii) If the distribution is skew, as measured from the skewness
and kurtosis, what is the shape of its multifractal spectrum?
Does it resemble that of the single-particle Anderson model?
(iii) Based on the answers to the previous questions, what
is the possible physical scenario of the superfluid-Bose-glass
transition?

This paper is organized as follows. In Sec. II we introduce
the model and the parameters for our study. In Sec. III we
discuss the effects of disorder on the incommensurate super-
fluid phase. In Sec. IV we present the effect of disorder on the
commensurate Mott phase and highlight the difference in the
local-density distribution for the two fillings. We conclude in
Sec. V. In the Appendix, we provide additional details of the
percolation analysis.

II. MODEL

The Hamiltonian for the disorder Bose-Hubbard model on
a two-dimensional square lattice takes the form

Ĥ = −t
∑

〈i,j〉
(a†

i aj + H.c.)

+ U

2

∑

i

n̂i (n̂i − 1) + �
∑

i

εi n̂i , (1)

where a
†
i (ai) is the creation (annihilation) operator of a soft-

core boson at lattice site i with number operator ni = a
†
i ai .

The sum
∑

〈i,j〉 runs over all distinct pairs of first-neighbor
sites i and j , t = 1 is the hopping integral between neighbor-
ing sites, U is the strength of the on-site interaction, εi is a uni-
formly distributed random variable in the interval [− 1

2 ,+ 1
2 ],

and � is the disorder strength. The inverse temperature is set
at β = L unless otherwise stated.

We perform a quantum Monte Carlo study of this
model within the canonical ensemble using the stochastic
Green’s function algorithm [65,66] with global space-time
updates [67]. As only a rather small system size (256 lattice
sites) can be studied, the choice of ensemble may affect
the data. As we are particularly interested in the differences
between commensurate and incommensurate fillings, we use
the canonical ensemble in which the number of particles is
fixed during the entire sampling process. Unlike most quan-
tum Monte Carlo methods the stochastic Green’s function
algorithm allows us to set the canonical ensemble rather
easily [65–67].

III. INTRODUCING DISORDER INTO
THE SUPERFLUID PHASE

We consider a system with an incommensurate filling
factor or average density ρ = 1.1, which in the absence of dis-
order shows superfluid behavior. Then, we introduce disorder
and identify the critical point of the transition to a disordered
phase. Our choice of the value ρ = 1.1 does not have any
intrinsic physical meaning. We expect similar results for other
values nearby. However, we do not attempt to choose a value
too close to ρ = 1 due to the anticipated difficulties in locating
the superfluid-Bose-glass transition point numerically.

FIG. 1. L2ρs versus disorder strength � for different system
sizes (L = 6, 8, 16), density ρ = 1.1, and on-site interaction U =
80t . The scaling analysis shows that the three curves cross at the
critical disorder strength, �c ≈ 30t . The data points are based on
averaging the data from simulations of 1000 disorder realizations.

A. Superfluid density

We follow the standard procedure to detect a transition
between superfluid and nonsuperfluid phases by monitoring
the superfluid density ρs . The Hamiltonian (1) satisfies the
conditions needed for using the conventional formula which
relates the winding number to the superfluid density [68].
Then, the superfluid density ρs can be calculated via the
winding number W as ρs = 〈W 2〉

4tβ
, where β is the inverse

temperature [69].
Figure 1 displays ρsL

2 as a function of disorder strength
� for three different system sizes: L = 6, 8, and 16. In the
neighborhood of the critical disorder strength �c, the super-
fluid density follows the scaling ansatz ρs ∼ L−zg(L

1
ν (� −

�c )), where z is the dynamical critical exponent, ν is the
correlation length exponent, and g(· · · ) is a universal scal-
ing function [70]. We based our finite-size scaling on the
assumption that z = 2 [3]. We locate the critical disorder at
�c = 29.5t , and the correlation length exponent ν = 1.15.

Our intent is not to pinpoint the critical point and its associ-
ated exponents with a very high precision but to roughly locate
the critical disorder and analyze the local-density distribution
for disorder strength close to the critical value. High-precision
calculations of the critical exponents of related models were
attempted in recent studies [25,33,53,70]. For a more pre-
cise analysis one has to consider the scaling correction and
the goodness of fit, which could be rather challenging for
the Bose-Hubbard model [33,53,55,58,63,70]. We note that
the value of ν = 1.15 we obtain is close to the latest estimates
[25,33,53].

B. Local-density distribution

After establishing the critical strength from scaling the
superfluid density, we focus on the local density. Figure 2
displays local-density histograms for system size L = 16,
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FIG. 2. Histograms of the probability P versus local density
for system size L = 16, density ρ = 1.1, interaction U = 80t , and
disorder strength between � = 5t and � = 35t . Each calculation
includes 1000 realizations for disorder averaging. The inset shows
the same quantities in semilog scale.

density ρ = 1.1, interaction U = 80t , and several disorder
strengths. Each calculation includes 1000 disorder realiza-
tions. The inset shows the same quantities in a semilogarith-
mic scale.

Figure 2 shows that while the behavior of the local-density
distribution is expected to be Gaussian-like at small disorder,
it already visibly deviates from a normal distribution at � =
5t . It becomes skew with a typical value very close to ρ =
1 and a long tail, cut off around 2.0, for large values of the
disorder strength.

The skewness and long tail of the density distribution
are the hallmark of the localized phase in the single-particle
Anderson model [62,63,71,72]. However, a true long-tail dis-
tribution with no upper bound does not exist in the present
model, as the local density is always cutoff at integer filling,
most likely due to the Hubbard energy penalty. We emphasize
that the model we study is the standard Bose-Hubbard model
without hard-core constraint. Therefore these findings suggest
that even in the Bose-glass phase the long-tailed distribution
does not extend all the way to infinity but is truncated due to
the energy penalty for multiple occupations of a local site.

We corroborate these observations by calculating the skew-
ness, kurtosis, and mode of the local-density distribution as a
function of disorder strength. These measurements quantify
the broadening of the distribution as the disorder increases.
Figure 3 shows that both the skewness and kurtosis grow
with disorder strength and reach an apparent plateau for
large disorder values. The local-density distribution for large
disorder has kurtosis close to 8, which is far from the kurtosis
of 3 for a Gaussian distribution. We also plot the mode of
the distributions in Fig. 3 (bottom panel). We clearly see
the mode of the distribution shifting from 1.1 to 1 as the
disorder increases and settling at 1 for disorder � larger than
20t . According to the typical medium theory for Anderson
localization, the localized phase is signaled by a typical local
density equal to zero [73–75]. For bosons a zero value of
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FIG. 3. The skewness and kurtosis (top panel) and mode (bottom
panel) of the local-density distribution as a function of disorder
strength for system size L = 16, density ρ = 1.1, and interaction
U = 80t as a function of disorder �. The distribution for � = 0
is very narrow, and its kurtosis cannot be calculated with enough
precision. Mode is estimated from the histogram of the local-density
distribution with a bin size of 0.01.

the typical local density corresponds to the commensurate
occupation, in our case of 1.

C. Multifractal analysis

For ρ = 1.1 the Bose glass can be considered a diluted-
particle phase on a Mott-insulating background where, in the
first approximation, the bosons exceeding integer occupation
behave as independent particles in a random potential where
each local site is already occupied by one particle. Since
Figs. 2 and 3 support this point of view, we perform a
multifractal analysis to look for similarities with the Anderson
model [55,58–61,63].

The multifractal analysis is based on the basic idea that
the moments of a distribution cannot be described by a single
exponent but are a continuous function of the order of the
moment. Calculations are performed by dividing the system
into different box sizes and calculating the moment for each
box size. The moment is defined as

Zq (l) =
Nl∑

i

[mi (l)]
q, (2)

where mi (l) is the local quantity (mass by convention) for the
ith box, Nl is the total number of boxes of linear size l, and q

is any real number. For our data with system size L = 16, we
choose l = L/2, L/4, and L/8. The multifractal dimension
can be defined as the limit of the ratio of the logarithm of the
moment to the logarithmic of the box size divided by (q − 1),

Dq = 1

q − 1
lim
l→0

log[Zq (l)]

log l
. (3)

The logarithmic functions can have an arbitrary positive real
number but one as their base. In practice, the limit of l → 0 is
estimated by linear extrapolation of log[Zq (l)] vs log l.
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FIG. 4. Mass exponents of local density averaged over 1000
disorder realizations. Local density is measured for system size L =
16, density ρ = 1.1, and interaction U = 80t for disorder strengths
� = 5t, 10t, 15t, 20t, 25t, 30t, and 35t . The mass exponent of a
nonfractal system is included [τ (q ) = 2(q − 1)] for comparison.

One can also define the mass exponent

τ (q ) = (q − 1)Dq. (4)

There are two special points in the mass exponents: q = 1 and
q = 0. For q = 1, the mass exponent is always equal to zero,
provided that the input mi (L) is normalized. For q = 0, the
mass exponent is equal to the negative of the dimension of the
support. In this case the support is a square lattice; therefore
τ (q = 0) = −2. A multifractal distribution is defined as a
distribution which possesses a nonlinear dependence between
the mass exponent τ and the order of the moment q [76–78].
For nonfractal systems, their mass exponent is simply given as
τ (q ) = 2(q − 1) for a system with support on a square lattice.

For the Bose-Hubbard model at incommensurate filling,
we choose the mass to be the deviation of the local density
from an integer value: mi (L) = |ρi − 1|. This quantity is
normalized for each disorder realization before we perform
the multifractal analysis. Then τ (q ) is calculated for each
realization separately and averaged over 1000 realizations for
each disorder strength,�. Three different box sizes are used,
l = 8, 4 and 2, and 41 different moments between q = −5
and q = 5 are used. We use the package MFSBA for the
analysis [79,80]. Figure 4 displays the mass exponent for
different disorder strengths between 5t and 35t . For a system
which does not exhibit multifractality, the mass exponent is a
linear function, τ (q ) = 2(q − 1), also included in Fig. 4. Note
that for small values of the disorder τ (q ) is very close to the
nonfractal limit. As the disorder increases, the τ (q ) curves
bend farther from the straight line, in particular for negative
values of the moment. This is a typical signal of multifractality
[81,82].

Another common measure of multifractality is the singu-
larity spectrum f (α). For each value of q, we can define the
Hausdorff dimension as

f (q ) = lim
l→0

1

log �

Nl∑

i

Mi (l, q ) log Mi (l, q ), (5)
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FIG. 5. Singularity spectrum of the local density averaged over
1000 disorder realizations. Local density is measured for system size
L = 16, density ρ = 1.1, and interaction U = 80t for the disorder
strength values of � = 5t, 10t, 15t, 20t, 25t, 30t, and 35t .

where Mi (l, q ) = [mi (l)]q/
∑Nl

j [mj (l)]q . Similarly, for each
value of q, we can define the average value of the singularity
(distribution) strength as

α(q ) = lim
l→0

1

log �

Nl∑

i

Mi (l, q ) log mi (l). (6)

The above equations set up an implicit relation between f

and α [81,82]. For systems which are nonfractal, the singular-
ity spectrum is concentrated around the point (d, d ), where
d is the system dimensionality, d = 2 in our case. On the
contrary, for monofractal or multifractal systems, an inverted
curve with a maximum at (α(q = 0), f (q = 0)) is obtained,
where f (q = 0) is the Hausdorff dimension of the support.
Therefore for a square lattice f (q = 0) = 2 [82]. The width
of the singularity spectrum is a measure of the degree of
multifractality. A monofractal distribution has a very narrow
spectrum, while a strongly multifractal quantity displays a
wide singularity spectrum.

To calculate f (α) we use the same set of q values we
employ in the calculation of τ (q ). Figure 5 displays f (α)
for disorder strengths from 5t to 35t . For weak disorder
within the superfluid phase the singularity spectrum shows
a rather sharp peak close to (2,2). As the disorder increases
α(q = 0) increases from around 2 to a value close to 3 for the
largest disorder we explore. At the same time the singularity
spectrum widens with increasing disorder.

We quantify the width of the distribution by fitting f (α)
and then solving for the two solutions when f (α) = 0 to
obtain αmin and αmax. The width of the singularity spectrum
can be defined as W = αmax − αmin [83,84]. Figure 6 displays
W as an increasing function of the disorder strength. This
widening increases faster between � = 10t and � = 25t . For
� > 25t the width of the spectrum still increases but at a
lower rate.

Notice that the discussion and data presented in this section
are not a multifractal finite-size scaling analysis like the ones
done recently for the noninteracting models which display
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FIG. 6. Width (W = αmax − αmin) of the singularity spectrum of
the local density averaged over 1000 disorder realizations for L =
16, ρ = 1.1, and U = 80t .

the Anderson localization transition [55,56,58,63]. The τ , α,
and f are estimated by using Eqs. (2) to (6) for a system of
size L = 16. The notion of multifractality describes a system
with scale-invariant fluctuations which cannot be reduced to
a single exponent. In general, scale invariance exists only
at a second-order transition point, which presumably is the
superfluid-Bose-glass transition within our model. For this
very reason, one should expect multifractality only at exactly
the critical value of disorder. The present analysis does not
verify the scale invariance, and it cannot pinpoint the value
of the critical disorder based on multifractal finite-size scaling
analysis. Our data for the mass exponents and the singularity
spectrum provide good evidence of multifractal behavior, but
they are not definite proof.

D. Percolation analysis

Since the early studies of the disordered Bose-Hubbard
model, percolation has been considered a mechanism to un-
derstand the superfluid-to-Bose-glass transition [34,85–89].
However, there are some difficulties in using percolation as a
criterion to identify the transition. First, the choice of the local
physical quantity is important. In this study we focus on the
local density, but it is not entirely clear whether it is unique
or even a proper choice. Second, regardless of the method,
local mean field or quantum Monte Carlo, the precision of the
measured local quantity is limited.

In our approach we need to choose a cutoff which discerns
the sites with an integer local occupation number from those
with noninteger occupation. If a local site meets the criteria
|ρi − 1| < ε, it is considered to have an integer occupation
number. The cutoff is clearly influenced by the precision
of the measured quantity. We thus choose three different
cutoffs, ε = 0.01, 0.02, and 0.04, where ε = 0.01 is a realistic
estimate for the smallest cutoff. We do not attempt to choose
a smaller cutoff, as it would be too close to the Monte Carlo
sampling error. Since the local density is not an averaged
quantity over the lattice, its measurement is generally more
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FIG. 7. The probability of finding a percolating cluster of non-
integer filling. Three cutoffs for integer filling are shown, ε =
0.01, 0.02, and 0.04 for the black, red, and blue lines, respec-
tively. A local site is considered with integer occupation number if
|ρi − 1| < ε. We define the probability of a percolating realization
as Ppercolated = Npercolated/N . Npercolated is the number of realizations
with at least one percolated noninteger filling cluster. N = 1000
independent realizations are used for each data point.

prone to carry a large statistical error. Figure 7 shows the
probability of a system with a noninteger percolating cluster
as a function of disorder for these three different cutoffs.
Ppercolated = Npercolated/N , where Npercolated is the number of
realizations with at least one percolated cluster of noninteger
filled sites out of a total of N realizations. See the Appendix
for the definition of percolation and examples of randomly
chosen realizations for several values of disorder strength.

With the cutoff ε = 0.01, the probability of a percolating
cluster becomes 50% for � � 27t , which is slightly smaller
than the critical disorder strength of 29.5t we found by scaling
the superfluid density. Most percolation transitions are second
order; therefore one can attempt to perform a finite-size
scaling to locate the critical point and its exponents [90,91].
Given the available system sizes, we do not attempt to perform
a more detailed finite-size scaling.

IV. INTRODUCING DISORDER INTO THE
MOTT-INSULATING PHASE

In the absence of disorder the Bose-Hubbard model at
integer fillings is well understood. For strong interaction the
ground state is a Mott insulator. According to previous studies,
the Bose-glass phase can appear from very weak disorder
[24]. We note that a recent study suggests the Bose-glass
phase at weak disorder is anomalous [92]. We are mostly
interested in the local-density distribution near the Mott in-
sulator to a gapless Bose glass. As we did for the case of
ρ = 1.1 in the previous section, we first established the critical
value of disorder at a fixed interaction. Since the tip of the
Mott-insulator lobe occurs at Uc ≈ 16.7t [24], we decide to
introduce disorder at a slightly large value of U = 22t .

First, we look at the excitation gap. It has been suggested
that there is no direct Mott-insulator-superfluid transition
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FIG. 8. Mott-insulator gap Eg versus disorder strength � for
different system sizes, L = 6, 8, and 16, at interaction U = 22t .
Data from 100 disorder realizations are averaged for each data point.
The inset displays Eg for several values of � as a function of 1/L.
By extending those curves, we find �c ≈ 15.7t . The corresponding
inverse temperatures for the linear system sizes are βt = 12 for
L = 6, βt = 16 for L = 8, and βt = 32 for L = 16. Data points are
simulation results; lines are guides to the eye.

[24,36,37]; thus the vanishing of the particle excitation gap
corresponds to the Mott-insulator-Bose-glass transition. The
Mott gap is calculated as follows. We obtain the chemical
potential by adding a particle to the system as μ1 = E(N +
1) − E(N ) and also by removing a particle from the system
as μ2 = E(N ) − E(N − 1). The Mott gap is given as Eg =
μ1 − μ2. Figure 8 displays the change in the energy gap Eg

with increasing values of � for three different system sizes,
L = 6, 8, 16 at U = 22t for 100 disorder realizations. Since
we are dealing with finite systems we find a finite gap for each
� we consider, and we need to perform an extrapolation to
infer the value of the gap at the limit of L → ∞. The inset in
Fig. 8 shows Eg as a function of 1/L for � = 15t, 16t, 18t ,
and 20t . By extrapolating Eg versus 1/L for different values
of � we extract a value of the critical disorder of �c ≈ 15.7t .

Figure 9 displays the histogram of the local density for
1600 disorder realizations for L = 16, ρ = 1.0, βt = 16, and
U = 22t for disorder strength � between 5t and 26t . The
probability distribution of the local density for systems with
weak disorder is Gaussian-like; the distribution does spread
out with increasing disorder, but unlike the ρ = 1.1 case, its
skewness is small, and the local density spreads over both
sides of the peak. This remains the case even for large values
of disorder when the system is far from the Mott-insulator
phase (�c ≈ 15.7t).

We further corroborate these observations by calculating
the skewness, kurtosis, and mode of the distribution as a
function of disorder. Figure 10 shows those quantities and
confirms our findings. Both the skewness and kurtosis are
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FIG. 9. Histograms of the probability P versus local density for
disorder strength of � = 5t, 8t, 11t, 14t, 17t, 20t, 23t , and 26t . The
system size is L = 16, the density is ρ = 1.0, and the interaction
is U = 22t . Here 1600 disorder realizations are calculated for each
value of disorder strength.

greatly reduced compared with the values for ρ = 1.1. In
particular the kurtosis, which can be interpreted as a measure
of the density of outliers, is fairly close to 3 even for rather
strong disorder far away from the Mott-insulator phase. In
contrast to the case of ρ = 1.1 the mode is fixed at a constant
value of ∼1.

We conclude that for ρ = 1 the validity of the analogy
with Anderson localization is obscure since the picture of
single particles in a disorder potential may not be valid.
Characteristics of the Anderson transition do not show up in
the local density.
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FIG. 10. The skewness and kurtosis (top panel) and mode (bot-
tom panel) of the local-density distribution as a function of disorder
strength for system size L = 16, density ρ = 1.0, and interaction
U = 22t . The distribution for � = 0 is very narrow, and its kurtosis
cannot be calculated with enough precision. Mode is estimated from
the histogram of the local-density distribution with a bin size of 0.01.
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FIG. 11. Examples of the percolation pattern of local density
for 32 different realizations with disorder strength � = 15t . All
the clusters are percolated in this case. Clusters have size L = 16,
density ρ = 1.1, and interaction U = 80t .

V. CONCLUSION

We studied the spatial structure of the disordered Bose-
glass phase at both incommensurate and commensurate

FIG. 12. Examples of the percolation pattern of local density for
32 different realizations with disorder strength � = 25t . Nineteen of
the clusters are percolated. Clusters have size L = 16, density ρ =
1.1, and interaction U = 80t .

fillings. We analyzed our results at incommensurate filling
based on a simple picture of the single-particle Anderson
localization. Given this picture, we tested some of the charac-
teristics of local density for the Anderson localization, such as
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FIG. 13. Examples of the percolation pattern of local density for
32 different realizations with disorder strength � = 30t . Ten of the
clusters are percolated. Clusters have size L = 16, density ρ = 1.1,
and interaction U = 80t .

the skewness of the distribution and multifractality. We found
that for incommensurate filling (ρ = 1.1), the local particle
density has a skew distribution, and the multifractal analy-
sis resembles that of the single-particle Anderson localized

FIG. 14. Examples of the percolation pattern of local density for
32 different realizations with disorder strength � = 35t . Six of the
clusters are percolated. Clusters have size L = 16, density ρ = 1.1,
and interaction U = 80t .

phase. We note that a single particle in a two-dimensional ran-
dom potential lattice localizes unconditionally [71,72,93,94].
Even though the local density resembles that of the Anderson
transition, the interaction should be relevant.
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We also performed a percolation analysis and found that
the probability of the noninteger filling cluster does show
a qualitative change near the transition between Bose glass
and superfluid. The difficulty in precisely defining integer
filling and the limitation in the available system size remain
hindrances for a definite answer. However, if the transition is
simply a classical percolation transition, then multifractality
should not exist. A plausible scenario to reconcile multi-
fractality and percolation behavior is that almost percolating
clusters enhance Anderson localization. It is worthwhile to
mention that the notion of percolation in the local superfluid
amplitude enhancing the superfluid-to-Bose-glass transition
due to localization was proposed before [87]. This picture
does not preclude multifractality due to the Anderson local-
ization at the critical point.

The commensurate (ρ = 1) case shows very different be-
havior. The skewness and the moment of the local-density dis-
tribution are greatly reduced when compared with the values
obtained at incommensurate filling even when the system is
far away from the Mott-insulating phase. Clearly, the local-
density distributions of the Bose glass at commensurate and
incommensurate fillings cannot be described using the same
picture. In particular, a single-particle picture like that in
the Anderson localization should fail for integer filling. Last,
whether the characteristics of the single-particle Anderson
localization remain intact for other fillings, in particular ρ =
1.5, is a worthwhile topic for a future study.

We conclude by reiterating the answers to the three ques-
tions we posted in the Introduction. (i) For the incommen-
surate filling, the local-density distribution becomes increas-
ingly skew with increasing disorder, its mode approaches an
integer when the system is in the Bose-glass phase, and its
skewness and kurtosis show substantial increases with larger
disorder strengths. However, in the case of commensurate
filling, there are only very small changes in the local-density
distribution, and its mode stays close to an integer, whereas
its skewness and kurtosis show only modest changes with
respect to the disorder. (ii) For the incommensurate filling,
we calculate the multifractal spectrum. The peaks of the
singularity spectrum correspond to α > 2, which is evidence
of the fractal nature of the local density. (iii) Based on
these findings, we conclude that for incommensurate filling
the transition has the characteristics of the Anderson localiza-
tion. We further performed a percolation analysis and found
that the disorder of the percolation transition is rather close to

that of the Anderson transition. Thus our results are consistent
with the notion of percolation in the local density enhancing
the superfluid-to-Bose-glass transition due to localization as
proposed by Sheshadri et al. [87].

Note added. Recently, we noticed a numerical study on
multifractality in disordered Bose-Einstein condensates after
this study was completed [95].
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APPENDIX: PATTERNS OF PERCOLATING CLUSTERS

We discussed the percolation of noninteger filling clusters
in Sec. III. In this appendix we randomly pick 32 realiza-
tions from four disorder strengths (� = 15t, 25t, 30t, 35t) to
illustrate the change in the number of percolating clusters as
a function of disorder. The cutoff criterion for a local site
with integer filling is defined as |ρi − 1| < ε. Figures 11–14
are for ε = 0.01. Each realization contains 16 × 16 sites.
The black and white squares represent sites with integer and
noninteger occupation numbers, respectively. The blue area
represents the cluster formed by the noninteger occupied sites.
The cluster is defined starting at the top and contains all the
sites with noninteger occupation which are connected. The
realization is considered percolated if there is one noninteger
filling cluster which spans from the top to the bottom of the
lattice. Since periodic boundary conditions are used in the
calculation, this definition may underestimate the value of
the disorder strength for the percolating cluster. For weak
disorder, deep in the superfluid phase � = 15t , all the realiza-
tions are percolated. As the disorder increases, progressively
more realizations break into isolated fragments of noninteger
filling sites.
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